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Cointegration implications of linear rational 
expectation models 

Bank of Finland Research 
Discussion Papers 6/2008 

Mikael Juselius 
Monetary Policy and Research Department 
 
 
Abstract 

This paper derives the cointegration spaces that are implied by linear rational 
expectations models when data are I(1). The cointegration implications are easy to 
calculate and can be readily applied to test if the models are consistent with the 
long-run properties of the data. However, the restrictions on cointegration only 
form a subset of all the cross-equation restrictions that the models place on data. 
The approach is particularly useful in separating potentially data-consistent 
models from the remaining models within a large model family. Moreover, the 
approach provides useful information on the empirical shock structure of the data. 
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Lineaaristen rationaalisten odotusten mallien 
implikoimat yhteisintegroituvuusrelaatiot 

Suomen Pankin keskustelualoitteita 6/2008 

Mikael Juselius 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Tässä tutkimuksessa kehitetään menetelmä, jonka avulla lineaaristen rationaalis-
ten odotusten (LRE) mallien implikoimat yhteisintegroituvuusrelaatiot voidaan 
helposti johtaa. Yhteisintegroituvuusrelaatioiden avulla voidaan testata, ovatko 
LRE-mallien ja aineiston pitkän ajan ominaisuudet yhdenmukaisia keskenään. 
Toisaalta yhteisintegroituvuusavaruuden rajoitteet muodostavat vain osan kaikista 
rajoitteista, jotka LRE-malli implikoi. Siten yhteisintegroituvuusrelaatiot antavat 
välttämättömän, mutta eivät riittävää ehtoa mallin voimassaololle. Menetelmä on 
erityisen käyttökelpoinen silloin, kun halutaan erottaa mahdolliset aineiston kans-
sa yhdenmukaiset mallit muista malliperheen jäsenistä. Lisäksi menetelmän avulla 
voidaan vertailla LRE-mallin ja empiirisen mallin pitkän ajan sokkirakenteita 
keskenään. 
 
Avainsanat: rationaaliset odotukset, yhteisintegroituvuus 
 
JEL-luokittelu: C52 
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1 Introduction

Rational expectations (RE) models are often difficult to estimate empirically.
There are several reasons for this. For instance, rational expectations
models imply cross equation restrictions that demand complicated and
computationally burdensome econometric techniques, such as the powerful
methods derived by Hansen and Sargent (1980, 1981, 1991) and Johansen and
Swensen (1999, 2004). Moreover, rational expectations models often provide
sharp predictions about long-run steady state behavior but may be less detailed
with respect to short-run dynamics.1 However, the short-run dynamics are also
heavily constrained by the cross equation restrictions of the theoretical models,
and can thereby cause rejections of potentially useful models.
Estimates of rational expectations models also rely on various assumptions

regarding the degree of integration of the variables. It is often the case
that these assumptions do not conform with the corresponding statistical
properties of the data, essentially invalidating the approach at the outset.
For example, most empirical specifications assume stationary variables even
though statistical unit-roots are commonly found in actual data.2

The preceding discussion suggests that there is need for a formal evaluation
method of rational expectations models that; (i) are relatively easy to compute
and apply, (ii) take into account the statistical properties of the data, for
example statistical unit-roots, and (iii) do not place heavy restrictions on the
short-run dynamics of the data.
This paper suggest an approach that solves all of the conditions (i)—(iii) for

a very broad class of linear rational expectations models. In particular, linear
rational expectations models have implications for cointegration when data is
non-stationary. The restrictions on cointegration form a subset of the complete
set of restrictions on data that are implied by the theory model. Hence, the
cointegration implications serve as a necessary, but not sufficient, condition
for the model to hold. The cointegration implications ensure consistency with
the long-run properties of the data, but places no restrictions on the short-run
dynamics. Moreover, the cointegration implications turn out to be very easy
to derive and apply.
The cointegration implications cannot, by themselves, distinguish between

forward looking rational expectation models and backward looking models.
Such distinctions can only be made by considering the complete set of cross
equation restrictions.

1This is well known and has led to practitioners to augment the models by, for example
by adding lags, in order to get more realistic dynamics. Examples can be found in Fuhrer
(2000) and Gali and Gertler (1999).

2This paper takes a pragmatic view with respect to unit-roots and treats them as
statistical properties of data that need to be taken into account. The unit-roots are typically
dependent on sample length’s or different choices of variable measures and deterministic
terms. However, due to potential spurious correlation and non-standard asymptotic
inference, the problem cannot be ignored. The problems of ignoring statistical unit-roots
are discussed by Johansen (2006).
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These ideas are illustrated in an empirical application to various versions
of the new Keynesian policy model (NKM) on US quarterly data.3 This
application demonstrates the usefulness of the present approach. In particular,
the analysis suggests that a version of the NKM, with a particular shock
structure and marginal costs approximated by the output gap, is more
consistent with the long-run properties of the data than the other versions
of the NKM.
The paper is organized as follows. The next section introduces the class of

exact linear rational expectations model that are considered. The cointegration
implications of this class, both for its exact and inexact versions, are derived
and discussed. Section 3 discusses alternative specifications of the NKM,
introduces the data, the statistical model, and investigates the cointegration
implications of the model. Section 4 concludes.

2 The linear rational expectations model

This section introduces the linear rational expectations model and derives its
cointegration implications for alternative interpretations of the disturbance
terms. In particular, both exact and inexact versions of the model are
considered.
The general form of the linear rational expectations models that are

considered here is

EtAf(L
−1)Ab(L)yt +B(L)xt + ΦDt = 0 (2.1)

C(L)xt = εt (2.2)

where z = (y0t, x
0
t)
0 is a p dimensional column vector, yt is a r dimensional

column vector of endogenous variables, xt is a p−r dimensional column vector
of exogenous variables, Et is a shorthand for Et[· | Ωt] and Ωt is the agents
information set at time t, Af(z) and Ab(z) are r × r matrix polynomials
of the m1:th and m2:th degree with zeros inside and outside the unit circle
respectively, B(z) is a r× (p− r) matrix polynomial of the m3:th degree with
zeros outside the unit circle, ΦDt collects the deterministic terms, and εt is
vector white noise. It is also assumed that both Af(z) and Ab(z) have square
summable inverses. These assumptions guarantee that Af(z) has a one sided
polynomial expansion of degree m1 in the negative powers, while Ab(z) and
B(z) has corresponding expansions in the positive powers of degrees m2 and
m3 respectively. Thus, Af(L

−1)Ab(L) and B(L) can be represented as

A(L) =
m2X

i=−m1

a−iLi, B(L) =
m3X
i=0

b−iLi (2.3)

3Derivations and discussions of this model can be found in Clarida et al (1999), Gali and
Gertler (1999), and Woodford (2003), among others.
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where A(L) = Af(L
−1)Ab(L) and A(1) is of full rank.4 Note that the

non-stationary elements of yt is completely determined by the xt process since
A(1) is of full rank.
The (p − r) × (p − r) matrix polynomial C(z) is assumed to satisfy the

assumption that C(z) = 0 implies either |z| > 0 or z = 1. These assumptions
allow unit-roots in the exogenous vector process xt but excludes the possibility
of seasonal unit-roots. Also, since the focus here is on cointegration properties
of (2.1), it is assumed that all elements xi,t of xt are difference stationary, ie
xi,t ∼ I(1) for i = 1, ..., p− r, and not internally cointegrated.5

The first equation of the model can be thought of as an Euler equation
that arise through optimizing behavior on behalf of the agents, given quadratic
objective functions and linear constraints. Alternatively, (2.1) can be seen as
a linearized version of a non-linear Euler equation, given that the latter is not
‘too’ concave or convex.6 Two examples illustrate the model.

Example 1 (term structure of interest rates)

Let p1,t be the one-period interest rate at time t and let pn,t be the n-period
interest rate at t. Following Hansen and Sargent (1991) a rational expectations
hypothesis of the term structure takes the form

Et
1

n
(p1,t + p1,t+1 + ...+ p1,t+n−1) = pn,t (2.4)

This model is a special case of (2.1)—(2.2) where yt = p1,t, xt = pn,t, Af(L
−1) =

(1+L−1+L−2+ ...+L−n+1)/n, Ab(L) = 1, B(L) = −1, ΦDt = 0. If we choose
C(L) = 1 − L, then pn,t is a random walk process which implies that p1,t is
a unit root process as well by virtue of (2.4). Despite the simple structure
of (2.4), this model cannot be formulated within the framework of Johansen
and Swensen (1999). The reason is that the term structure equation contain
negative powers of the lag operator of higher order than one.

Example 2 (new Keynesian model)

Consider the following model7

ȳt = φ1Etȳt+1 + φ2ȳt−1 − φ3 (it −Etπt+1) (2.5)

πt = φ4Etπt+1 + φ5πt−1 + φ6x̄t (2.6)

it = φ7it−1 + (1− φ7) (φ8 (Etπt+1 − π∗t ) + φ9ȳt) (2.7)

4The assumptions that ensure A(1) to be of full rank are not crucial to the cointegration
implications derived below. However, if the condition is violated, yt can be non-stationary
independently of the xt process. In such cases, the assumed order of integration of the xt
process below must be reconsidered the ensure consistency of the model. An example of this
is provided in Section 3.1.2.

5This assumption is made out of convenience and to avoid cumbersome notation. It
would be easy to include stationary xi,t, or stationary linear combinations of the xi,t:s, since
they do not change the cointegration space implied by the model.

6Since, the xt process is assumed to be I(1) the model must be linearized around
stochastic trends as in Altug (1989) and Ireland (2004). In fact, these linearizations provide
the cointegration relationships in the general case.

7Constant terms representing the sums of steady state values are ignored to ease the
exposure.
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where ȳt = yrt − yft is the gap between real output y
r
t and the flexible price

output level yft , it is the nominal interest rate, πt is the inflation rate, x̄t is
a measure of marginal costs, and π∗t is the target level of inflation set by the
central bank. The parameters φi are functions of the structural parameters
of the theory. The first equation is an optimizing IS curve, the second is a
new Keynesian Phillips curve (NKPC), and the last equation is a Taylor type
policy rule combined with interest rate smoothing behavior.
For particular choices of parameter values, marginal cost measures, shock

structures, and policy targets (2.5)—(2.7) correspond to the ‘benchmark’ new
Keynesian models of Clarida et al (1999) and Woodford (2003), among others.
The model also (roughly) includes more recent specification, such as Ireland
(2004) and Bekaert et al (2005), where unobservable shocks enter the model.
The model given by (2.5)—(2.7) is a special case of (2.1)—(2.2) if we set

yt = (ȳt, πt, it)
0, xt = (x̄t, π∗t )

0,

A(L) =

⎛⎝ 1− φ1L
−1 − φ2L −φ3L−1 φ3
0 1− φ4L

−1 − φ5L 0
−φ9(1− φ7) −φ8(1− φ7)L

−1 −φ7L

⎞⎠ (2.8)

and

B(L) =

⎛⎝ 0 0
−φ6 0
0 φ8(1− φ7)

⎞⎠
The linear rational expectations model (2.1)—(2.2) is similar to that considered
by Hansen and Sargent (1980, 1981). Given Ωt, (2.1) is exact in the sense that
it will fit perfectly. Hansen and Sargent indicate two ways of introducing
a disturbance term into the equation and thereby making it suitable for
econometric evaluation.
The first option, following Hansen and Sargent (1981), is to assume that the

investigator observes a information set, Λt, that consists of (at least) current
and past y:s and x:s but is smaller than the agents information set Ωt, ie
Λt ⊂ Ωt. In addition, Ωt includes additional information that is relevant for
forecasting xt. In this case, one get a omitted information interpretation of the
disturbance term. This is an example of an exact linear rational expectations
model.
The other option is to partition xt = (x01,t, x

0
2,t)

0 where only x1,t is observable
to the investigator. In this case one gets a missing variables interpretation of
the disturbance term and the rational expectations model is said to be inexact.
In the next subsections we derive the cointegration implications for both

the exact and the inexact case of the linear rational expectations model.
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2.1 Cointegration implications of the exact model

In the subsequent discussion we set ΦDt = 0 without loss of generality.8 The
assumptions so far ensures that xt ∼ I(1) and yt ∼ I(1). It is very easy to
work out the cointegration implications for the exact model. If the model is
true and Λt is observable, then the r × p dimensional matrix

Ã = − (A(1), B(1)) (2.9)

defines the implied cointegration space of the theoretical model. Since A(1)
is of full rank, equation (2.9) defines r cointegration relations. That (2.9)
defines the theoretical cointegration space can be shown by applying a similar
argument as that of CS87. Evaluate the matrix polynomials of (2.1) at unity
and subtract the results from both sides of the equation to get

Et (A(L)−A(1)) yt + (B(L)−B(1))xt = −A(1)yt −B(1)xt (2.10)

Noticing that

A(L)−A(1) =
m2X

i=−m1

a−i(Li − 1)

=
m1X
i=1

ai(L
−i − 1)−

m2X
i=1

a−i(1− Li)

=
m1X
i=1

a∗i∆
+ −

m2X
i=1

a∗−i∆

where ∆+ = (L−1−1), ∆ = (1−L), a∗i =
Pm1

j=i aj, a
∗
−i =

Pm2

j=i a−j, and that a
similar decomposition can be made for B(L)−B(1) by defining the parameters
b∗−i =

Pm3

j=i b−j, (2.10) can be rewritten as

Et

m1X
i=1

a∗i∆
+yt −

m2X
i=1

a∗−i∆yt −
m3X
i=1

b∗−i∆xt = −A(1)yt −B(1)xt (2.11)

where the left hand side is stationary since yt ∼ I(1) and xt ∼ I(1). This
implies that the right hand side is stationary as well, and hence, that (2.9)
defines the cointegration space implied by the model.
It is important to understand that, together with the model in (2.1)—(2.2),

(2.9) has several testable implications. In particular, the theory implies a
specific structure of the cointegration space, a given cointegration rank, and a
fixed number of common trends. All of these predictions can and should be
used to distinguish the subset of models that are (long-run) data consistent
from those that are not.
The preceding is readily illustrated by using the examples from above.

8However, when specifying an empirical model within which the cointegration
implications can be tested one needs to carefully consider the deterministic terms. For
instance, It is often the case that the deterministic terms need to be restricted in order to
avoid undesired behavior such as quadratic growth etc.
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Example 1 (continued)

Evaluating the polynomial of Example 1 in the unit point yields Af(1) =
(1+1+...+1)

n
= n

n
= 1. Thus, (2.9) implies Ã = (−1, 1) as expected.

Example 2 (continued)

Evaluating the polynomial in (2.8) of Example 2 in the unit point and
combining with the matrix B(L) = B = B(1) yields

Ã = −
⎛⎝ 1− φ1 − φ2 −φ3 φ3 0 0

0 1− φ4 − φ5 0 −φ6 0
−φ9(1− φ7) −φ8(1− φ7) −φ7 0 φ8(1− φ7)

⎞⎠
Hence, in this case the model implies three cointegration vectors and two
common stochastic trend. It was assumed in Section 2 that all elements of xt
are I(1) and not cointegrated. In Example 2 this implies that the two stochastic
trends are associated with marginal costs and the central bank inflation target.
It is easy to modify the model setup to accommodate other, perhaps more
standard shock structures as well. We return to this issue in Section 3.

2.2 Cointegration implications of the inexact model

The preceding section assumed that observations on the vector processes yt
and xt were available. However, suppose that only a part of the exogenous
process xt, a p1 = p − r − p2 dimensional vector x1,t say, is observable. In
this case we would like to derive the cointegration implications of the theory
model for the observable process (y0t, x

0
1,t)

0. To achieve this, note that the
cointegration space under complete information on xt is given by (2.9). If
B(1) = (B1(1), B2(1)) is partitioned correspondingly to xt = (x01,t, x

0
2,t)

0, the
stationary linear combinations can be written as

(A(1)yt +B1(1)x1,t +B2(1)x2,t) ∼ I(0) (2.12)

where B1(1) is a r × p1 matrix and B2(1) is a r × p2 matrix that describes
how the unobserved stochastic trends enter into the structural cointegration
space. Let 0 < b = rank (B2(1)) ≤ min {r, p2}. The problem is to find the
cointegration sub-space that only involves stationary linear combinations of
the observable variables. This can be achieved by premultiplying the term
inside the parenthesis in (2.12) by a (r − b) × r matrix Θ of full row rank
that satisfies ΘB2(1) = 0. Unfortunately, Θ is not unique and there is no way
to guarantee a representation of the cointegration space that makes economic
sense. Nevertheless, it allows us to derive testable cointegration implications
of the model
Finding a candidate for Θ is computationally very easy. One way is to

perform elementary operations on B2(1), summarized by some r× r matrix Ξ,
such that

ΞB2(1) =

µ
0 0
0 Ib

¶
12



The candidate for Θ is then obtained by collecting the first r − b rows of Ξ.
To see this, partition Ξ as Ξ = (Ξ01, Ξ

0
2)
0, where Ξ1 collects the first r− b rows,

and premultiply (2.12) by it to getµ
Ξ1A(1)yt + Ξ1B1(1)x1,t

Ξ2A(1)yt + Ξ2B1(1)x1,t + x2,t

¶
∼ I(0) (2.13)

which demonstrates that Ξ1 is a candidate for Θ.
Given a matrix Θ that satisfies the properties above, the sub-cointegration

space for the observable part of the process is defined by

ÃΘ = − (ΘA(1), ΘB1(1)) (2.14)

Thus, in general, there will be a reduction in the number of cointegration
vectors as a result of the (non-stationary) unobservables. A model that
includes more unobservable I(1) variables than there are endogenous variables
will in general imply no cointegration.
A question of considerable theoretical interest is how to specify the

processes that govern the unobservable variables. For example, is there
a stochastic productivity trend in output as in Ireland (2004) or a time
varying central bank inflation target as in Kozicki and Tinsley (2005)? The
rotation of the cointegration space in (2.13) can be used to provide empirical
answers to such questions. A test of cointegration rank on the observable
variables combined with stationarity tests of the x1,t variables will reveal the
number of unobserved stochastic trends. Moreover, the b × (p − p2) matrix
− (Ξ2A(1), Ξ2B1(1)) provides a representation of the b unobserved stochastic
trends in terms of the observable variables, as can be seen from (2.13). This
representation shows how the unobserved stochastic trends are propagated
in the observed part of the system and can therefore be used to empirically
distinguished between different structures of the unobserved shocks.

Example 2 (continued)

Following Ireland (2004), let x̄t = ȳt, π∗t = π∗ = 0, and yft = yft−1 + εy,t, where
εy,t is white noise technology shock.9 Hence, yt = (yrt , πi, it)

0, x1,t = {∅}, and
x2,t = (y

f
t )
0. With these choices we get

A(1) =

⎛⎝ 1− φ1 − φ2 −φ3 φ3
−φ6 1− φ4 − φ5 0

−φ9(1− φ7) −φ8(1− φ7) −φ7

⎞⎠ (2.15)

and

B21(1) =

⎛⎝ φ1 + φ2 − 1
φ6

φ9(1− φ7)

⎞⎠
9Ireland04 also assumes stationary preference, cost push, and policy shocks. These are

ignored here since they do not affect cointegration. He also uses a slightly different policy
rule than that of (2.7).
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A representation of the cointegration space is obtained by

ÃΘ = −ΘA(1) = −
Ã
1 0 1−φ1−φ2

φ9(1−φ7)
0 1 −φ6

φ9(1−φ7)

!
A(1)

which implies two cointegration relations and one common trend given by the
unobserved flexible price level of output.

3 Empirical application

This section illustrates the approach of Section 2 on different alternative
empirical specifications of the new Keynesian model presented in Example 2.
For this purpose, a sample of US quarterly data starting in 1983:1 and ending in
2006:4 is used. First, the different empirical versions of the NKM are discussed.
This is followed by a discussion of the data and the statistical model. Finally
the cointegration properties of the different models are discussed. The focus in
this section is on illustrating the approach and, thus, some empirical aspects,
for instance sensitivity analyzes with respect choices of variable measures or
sample lengths, are not considered fully here.

3.1 Alternative specifications of the NKM

The main advantage of the methods developed in Section 2 is that they can
readily be used to distinguish between the potentially data consistent model
variants when there are many candidates within a model family, such as the
new Keynesian model. Here, alternative versions of the NKM are considered
that are distinguished from each other with respect to different variable
measures and shock structures. In particular, I consider two popular measures
for marginal costs, the output gap and labor’s share, and two alternatives for
the stochastic trends, a technology shock and permanent changes to the central
bank inflation target. The models for the different measures of marginal costs
are treated separately in order to facilitate the exposition.

3.1.1 The NKM with output gap as marginal costs

Consider the NKM of Example 2 in Section 2. Let marginal costs equal the
flexible price output gap, ie x̄t = ȳt = yrt−yft , and assume that the flexible price
level of output is approximately equal to some measure of potential output,

14



ynt , ie y
f
t ≈ ynt .

10 With these changes, the model can be written as

yrt = ynt + φ1Et

¡
yrt+1 − ynt+1

¢
+ φ2

¡
yrt−1 − ynt−1

¢− φ3 (it −Etπt+1) (3.1)

πt = φ4Etπt+1 + φ5πt−1 + φ6 (y
r
t − ynt ) (3.2)

it = φ7it−1 + (1− φ7) (φ8 (Etπt+1 − π∗t ) + φ9 (y
r
t − ynt )) (3.3)

where the variables have the same interpretation as before. There are two
possible sources of stochastic trends within this specification of the system, a
technology shock originating in yft as in Ireland (2004), and a time varying
central bank inflation target, π∗t , as in Kozicki and Tinsley (2005).

11

We first consider the exact rational expectations model variants that can
be obtained from this system. Since the true central bank inflation target is
unknown to the public, it cannot be a source for the stochastic trends in the
exact model. Thus, the only possibility to introduce a stochastic trend in the
exact version of (3.1)—(3.3) is through potential output. But this implies that
real output shares this stochastic trend, and hence, that the output gap must
be stationary. Since there are no other sources of stochastic trends, both the
nominal interest rate and inflation must be stationary as well. Hence, given
the data vector zt = (yrt , it, πt, y

n
t )
0, the exact version of (3.1)—(3.3) implies

three cointegration vectors corresponding to the stationary output gap, the
stationary inflation rate, and the stationary nominal interest rate.
A more interesting variant of (3.1)—(3.3) is obtained by assuming that there

are permanent changes in the unobserved central bank inflation target. In this
case, it is no longer certain that the output gap is stationary since real output
can contain the stochastic trend in the central bank inflation target as well as
the stochastic technology trend. In fact, which variables share the stochastic
trends in ynt and π∗t are now dependent on the particular parameter values in
(3.1)—(3.3).12 The cointegration space of the inexact variant of (3.1)—(3.3) is
easy to calculate given yt = (y

r
t , πt, it)

0, x1,t = (ynt ), x2,t = (π
∗
t )

A(1) =

⎛⎝ 1− φ1 − φ2 −φ3 φ3
−φ6 1− φ4 − φ5 0

−φ9(1− φ7) −φ8(1− φ7) −φ7

⎞⎠ , B1(1) =

⎛⎝ φ1 + φ2 − 1
φ6

φ9(1− φ7)

⎞⎠
and

B2(1) =

⎛⎝ 0
0

φ8(1− φ7)

⎞⎠
From B2(1) it is directly seen that

Θ =

µ
1 0 0
0 1 0

¶
10This latter assumption has been severely questioned in the literature, for example by

Gali and Gertler (1999). Since the empirical analysis here is intended merely to illustrate
the method of Section 2, this assumption is maintained throughout for convenience.
11These are by no means the only possibilities if unobserved preference and cost push

shocks are included in the model as in Ireland (2004).
12For example, a parameter choice that does not violate det (A(1)) 6= 0 and yields a

stationary output gap is φ4 + φ5 = 1 and φ6 6= 0.
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satisfies the requirements of Section 2.2. Thus, the sub-cointegration space in
terms of the observable variables z = (yrt , πt, it, y

n
t )
0 have the representation

ÃΘ =

µ
1− φ1 − φ2 −φ3 φ3 φ1 + φ2 − 1
−φ6 1− φ4 − φ5 0 φ6

¶
(3.4)

implying two cointegration vectors and two common trends. This cointegration
space can be interpreted as describing an optimizing IS-curve and a new
Keynesian Phillips curve, where the nominal interest rate is exogenously given.
The output gap is stationary if φ4 + φ5 = 1 and φ6 6= 0. The real interest rate
is stationary if φ1 + φ2 = 1 and φ3 6= 0.

3.1.2 The NKM with labor’s share as marginal costs

The other popular measure of marginal costs is labor’s share. Let st represent
this measure. The NKM can then be written as

yrt = ynt + φ1Et

¡
yrt+1 − ynt+1

¢
+ φ2

¡
yrt−1 − ynt−1

¢− φ3 (it −Etπt+1) (3.5)

πt = φ4Etπt+1 + φ5πt−1 + φ6st (3.6)

it = φ7it−1 + (1− φ7) (φ8 (Etπt+1 − π∗t ) + φ9 (y
r
t − ynt ) + φ10st) (3.7)

where st has been added to the policy rule for consistency. To make things
interesting, both ynt and st are assumed to have separate stochastic trends.
This implies that we can have both exact and inexact versions of the model
that are interesting.
The exact model is obtained by assuming a constant central bank inflation

target, π∗t = π∗ = 0. Given yt = (yrt , πt, it)
0 and xt = (ynt , st)

0, the
cointegration space of the exact version of (3.5)—(3.7) is given by

Ã =

⎛⎝ 1− φ1 − φ2 −φ3 φ3 φ1 + φ2 − 1 0
0 1− φ4 − φ5 0 0 −φ6

−φ9(1− φ7) −φ8(1− φ7) −φ7 φ9(1− φ7) −φ10(1− φ7)

⎞⎠ (3.8)

implying three cointegration vectors and two common stochastic trends. It is
interesting to note that, with marginal costs equal to the exogenously given
labor’s share, the restriction φ4 + φ5 = 1 implies that A(1) is singular. This
leads to a difficult problem if labor’s share is I(1), since in that case the model
has the unreasonable implication that inflation is I(2).13

As before, the inexact model is obtained by assuming that π∗t ∼ I(1).
The cointegration implications of this variant of (3.5)—(3.7) are very easy to
derive given (3.8) and the discussion in Section 3.1.1. Since, yt = (yrt , πt, it)

0,
x1,t = (y

n
t , st)

0, and x2,t = (π
∗
t ), B2(1) is the same as in Section 3.1.1 implying

13To see this, note that given φ4+φ5 = 1 and by subtracting (φ4+φ5)πt from both sides
of (2.6) the equation can be written as ∆πt =

φ4
φ5
Et∆πt+1 + φ6x̄t. Juselius (2006) shows

that it is difficult to reject a unit-root for labor’s share measure even over moderately long
samples. Thus, from an empirical point of view it would be hard to reconcile the use of this
measure with the restriction φ5 + φ6 = 1.
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Model Type yt x1,t x2,t MC r + p1 CI-rank
1 E (yrt , πt, it)

0 ynt — yrt − ynt 4 3
2 I (yrt , πt, it)

0 ynt i∗t yrt − ynt 4 2
3 E (yrt , πt, it)

0 (ynt , st)
0 — st 5 3

4 I (yrt , πt, it)
0 (ynt , st)

0 i∗t st 5 2

Table 1: Versions of the NKM implied by different assumptions on the stochastic trends and

measures of marginal costs. The column labeled ‘type’ indicates if the rational expectations

model is exact or inexact. The column ‘MC’ indicates which measure is used for marginal

costs, the column ‘r+p1’ provides the number of observables, and ‘CI-rank’ gives the implied

cointegration rank.

that the same Θ can also be used. Thus, the cointegration space in terms of
the observable variables z = (yrt , πt, it, y

n
t , st)

0 is given by

ÃΘ =

µ
1− φ1 − φ2 −φ3 φ3 φ1 + φ2 − 1 0

0 1− φ4 − φ5 0 0 −φ6

¶
(3.9)

implying two cointegration vectors and three stochastic trends. This
cointegration space is can be interpreted as before, with it exogenously given.
Table 1 summarizes and labels the four different model variants of Section

3.1.1 and Section 3.1.2.

3.2 Data

The discussion in the preceding section indicates that data on real output,
the inflation rate, the short term interest rate, labor’s share, and potential
output are needed in order to test the different model specifications in Table
1. I use (the log of) seasonally unadjusted nominal GDP, deflated by a chain
index for the GDP deflator, obtained from the Bureau of Economic Analysis
(BEA), as a measure of real output. The inflation rate is calculated from the
consumer price index (all categories) which is obtained from the Bureau of
Labor Statistics (BLS). The short-term interest rate is the 3-month secondary
market yield on US Treasury bills obtained from the Federal Reserve Board’s
historical data. The measure of Labor’s share is constructed from non-farm
business data and obtained from the BLS. Finally, the measure of potential
output is Hodrick and Prescott filtered real GDP (using scale parameter 1600).
The quarterly sample is 1983:1—2006:4 or 96 observations of each variable.14

Figure 1 shows the output gap and labor’s share. Figure 2 shows the inflation
rate and the short term interest rate.
14It is possible to obtain a much longer sample than that used here. Unfortunately, there

is strong evidence of a structural break in the cointegration space in the beginning of the
1980’s (see Juselius, 2006). Since the objective here is to illustrate the method proposed in
Section 2, only on the most recent structurally stable sample is considered.
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Figure 1: The output gap (seasonally adjusted in order to facilitate the
exposure) and non-farm business labor’s share

Figure 2: CPI inflation and short term interest rates
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3.3 Statistical model

The linear rational expectations model presented in Section 2 has several
testable implications for the long-run properties of the data, such as the
number of common trends and the structure of the cointegration space. It
seems natural to choose a model within which these implications can be tested
in a consistent way.
One such alternative is provided by the the p-dimensional cointegrated

VAR-model with k lags

∆Xt =
k−1X
i=1

Γi∆Xt−i +ΠXt−1 +ΨDt + εt (3.10)

where the p-dimensional vector process Xt is assumed to be at most I(1), Dt is
a p× f matrix that collects the deterministic components, and εt ∼ Np(0,Σ).
The parameter matrices are Γi, Π, Ψ, and Σ respectively. Cointegration can
be tested as a reduced rank hypothesis on the Π matrix. If the rank, r, of Π is
is equal to p, then Xt is stationary, ie Xt ∼ I(0). If 0 < r < p, then Xt ∼ I(1)
is cointegrated with r cointegration vectors and p− r common trends. In this
case, Π = αβ0, where α and β are two (p × r) matrices of full column rank.
The cointegration space is spanned by β0. If r = 0 then Xt ∼ I(1) and the
process is not cointegrated.
An important special case is obtained when 0 < r < p and a deterministic

linear trend is restricted to the cointegration space. The reason for restricting
the linear trend is that (3.10) implies quadratic trends in Xt otherwise. If
the trend is restricted, ΠXt−1 in (3.10) can be written as αβ̃

0
X̃t−1, where

β̃ = (β0, κ)0, κ is a r-dimensional vector, and X̃t−1 = (X 0
t−1, t)

0.
The test for the reduced rank of Π, known as the trace test, was developed

by Johansen (1991). The null hypothesis of the trace test is that the rank of
Π is less or equal to r. Hence, the natural testing sequence from a statistical
point of view is to start by testing r = 0 and then successively increasing the
rank by one until the first non-rejection.
Given Π = αβ

0
, general linear hypotheses on β can be tested in the form

Hβ : β = (H1ϕ1, ...,Hrϕr) (3.11)

where Hi(p × (p − mi)) imposes mi restrictions on βi, and ϕi((p − mi) × 1)
consists of p −mi freely varying parameters. The likelihood ratio test of the
hypotheses is asymptotically χ2. The α-vectors can also be restricted in a
similar way. Of special interest is the case where one or several rows in α
consist of zeros. A variable with a zero row in α is said to be weakly exogenous.
In many cases, some or all of the exogenous variables xt in (2.1)—(2.2) will be
weakly exogenous.15 The properties of the model are investigated in Johansen
(1995).

15If we allow cointegration among the exogenous variables in (2.2), weak exogeneity will
not necessarily hold.
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X12,t X34,t

Rank λi p-value λi p− value

0 0.52 0.00 0.54 0.00
1 0.22 0.04 0.25 0.02
2 0.07 0.53 0.12 0.17
3 0.01 0.29 0.11 0.14
4 — — 0.01 0.33

Table 2: The reduced rank hypothesis of the different models and samples. The λi are the
eigenvalues corresponding to the estimates of the cointegration vectors. Bold values indicate

non-rejection at the 5% significance level.

3.4 Cointegration implications of the NKM

Inspection of Table 1 of Section 3.1 reveals that models 1 and 2, where marginal
costs are measured by the output gap, share the same set of observable
variables. Thus, only one statistical model is needed in order to tests both
versions. A similar observation can be made for models 3 and 4 of the table.
The data vector that nests models 1 and 2 is X12,t = (y

r
t , πt, it, y

n
t )
0 and the

data vector that nests models 3 and 4 is obtained by adding labor’s share to
X12,t, ie X34,t = (y

r
t , πt, it, y

n
t , st)

0.
Initial modeling of X12,t suggested that two lags were needed to account

for the variation in the data. In addition, one dummy variable was included
corresponding to a series of interest rate cuts in the fourth quarter of 1984.
Given these choices, there were no significant misspecification in the model
and the long-run parameters were structurally stable.16 Virtually identical
results were obtained for X34,t expect that an extra dummy variable for the
first quarter of 2000 was added to account for an outlier in labor’s share.
With these choices of lags and dummy variables, cointegrated VAR models

were fitted to X12,t and X34,t. The results from testing the reduced rank
hypothesis of the two statistical models reported in Table 2. The tests indicate
that appropriate choice of cointegration rank is two in both models, although
the choice of rank equal to one was also borderline accepted. These results
have the important implication that the exact model variants 1 and 3 in Table
1 cannot be consistent with the long-run structure of the data. However, the
inexact models 2 and 3 are still viable options. If this is the case, we should
expect that the nominal interest rate is weakly exogenous, in addition to the
exogenous variables of the theoretical models.
The results of testing the null hypotheses of stationarity and weak

exogeneity in the variables are reported in Table 3. As can be seen form
the table, stationarity is rejected in all variables. Moreover, weak exogeneity
cannot be rejected in the nominal interest rate, the potential output measure,
and labor’s share. These results are supportive of the two inexact models.
In particular, the assumptions of a non-stationary technology shock and a

16The tests used to investigate long-run structural stability of the models include
constancy tests of the estimated cointegration space, constancy of the log-likelihood, and
constancy of the canonical correlations λi, described in Dennis (2006). The details are
available upon request.
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Xt Test yrt πt it ynt st
X12,t stat 0.00 0.00 0.00 0.00 —

exo 0.00 0.00 0.93 0.38 —
X34,t stat 0.00 0.00 0.00 0.00 0.00

exo 0.00 0.00 0.97 0.38 0.11

Table 3: Tests for stationarity (stat) and weak exogeneity (exo). The numbers are p-values
of the null hypothesis. Bold values indicate non-rejection at the 5% significance level. The

‘Model’ column indicate to which model version of the NKM the tests apply (see Table 1).

H Restrictions β̃ LR, χ2(df) p-value

X12,t = (yrt , πt, it, y
n
t )
0

HIS,1 — β̃1 = (1− φ1 − φ2, −φ3, φ3, φ1 + φ2 + 1)
0 1.49(1) 0.22

HIS,2 φ1 + φ2 = 1 β̃3 = (0, −φ3, φ3, 0)0 17.73(2) 0.00

HPC,1 — β̃2 = (−φ6, 1− φ4 − φ5, 0, φ6)
0 7.38(1) 0.01

HPC,2 φ4 + φ5 = 1 β̃3 = (−φ6, 0, 0, φ6)0 11.04(2) 0.00

HIS,1 ∩HPC,1 — See (3.4) in the text. 10.52(2) 0.01

X34,t = (yrt , πt, it, y
n
t , st)

0

HIS,1 — β̃1 = (1− φ1 − φ2, −φ3, φ3, φ1 + φ2 + 1, 0)
0 0.83(2) 0.66

HIS,2 φ1 + φ2 = 1 β̃3 = (0, −φ3, φ3, 0, 0)0 17.35(3) 0.00

HPC,1 — β̃2 = (0, 1− φ4 − φ5, 0, 0, −φ6)0 14.11(2) 0.00

HIS,1 ∩HPC,1 — See (3.9) in the text. 18.81(4) 0.00

Table 4: Structural test on the cointegration spaces implied by models 2 and 4 in Table 1.
H·,· indicates that the null hypothesis of the restrictions implied by either the optimizing
IS curve (index IS) or the new Keynesian Phillips curve (index PC) is being tested tested.

The second index indicates if there are restrictions on the parameters.

non-stationary central bank inflation target are consistent with the long-run
variation in the data.
The cointegration spaces (3.4) and (3.9) of models 2 and 4 in Table 1 have

testable restrictions since they are over identifying. These restrictions are
tested in Table 4, where the individual cointegration vectors, corresponding to
the optimizing IS curve and the new Keynesian Phillips curve, are first tested
separately and then jointly.
Several interesting results emerge from Table 4. The tests of HIS,1

indicate that the long run behavior of the data is roughly consistent with an
optimizing IS curve when the coefficients are allowed to vary freely. However,
the restriction φ1+φ2 = 1 tested in HIS,2 is rejected implying a non-stationary
real interest rate. The results of the new Keynesian Phillips curve are weaker.
The Phillips curve in HPC,1 is rejected on a 5% significance level, but not on
a 1% significance level, when the output gap is used to measure marginal
costs. The restriction φ4 + φ5 = 1 is rejected implying that the output gap

21



is non-stationary.17 The NKPC is rejected when labor’s share is used as a
measure of marginal costs.18 The test of the cointegration space implied by
model 2 in Table 1, HIS,1 ∩HPC,1, is rejected on a 5% significance level but not
on a 1% significance level. The joint test of the cointegration space implied by
model 4 is rejected.
The analysis of the new Keynesian model in this section demonstrates

the applicability of the approach suggested in this paper, particularly when
there are several model candidates within a family of models. Taken together,
the evidence in this section indicate that out of the four NKMs that were
considered (see Table 1), only model 2 is (roughly) consistent with the long-run
properties of the data. However, it should be remembered that the empirical
analysis in this paper was primarily intended to illustrate the present approach.
Thus, a more careful analysis that takes other specifications of the NKM into
account, for instance with respect different variable measures or open economy
considerations, is need in order to properly evaluate the new Keynesian
framework. Evidence from other countries would also be helpful in this respect.

4 Conclusion

This paper derived the cointegration implications of both exact and inexact
linear rational expectations models when data is non-stationary. These
implications are easy to calculate and can readily be used to test the long-run
data consistency of the model. The approach is particularly useful in
distinguishing the potentially data relevant models from the remaining models
within a large model family. Moreover, the approach offers useful information
on the shock structure of the data which can be used to further advance the
models. The approach was illustrated by an application to various versions of
the new Keynesian model.

17This result indicates that the persistence in the business cycles is sufficiently high that
25 years of quarterly data is not enough to reject a unit-root in the output gap. If a longer
sample is considered, 1960:1—2006:4 say, then the output gap becomes stationary. Another
interpretation of the result is that potential output is poor proxy for the flexible price level
of output.
18Note, that in this case it is unnecessary to test the restriction φ4+φ5 = 1 since the labor’s

share was found to be non-stationary. In fact, labor’s share does not become stationary even
if the sample is extended to 1960:1—2006:4.
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