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Abstract
Co-integration of multi-state single transistor neurons and synapses was demonstrated for highly
scalable neuromorphic hardware, using nanoscale complementary metal-oxide-semiconductor (CMOS)
fabrication. The neurons and synapses were integrated on the same plane with the same process
because they have the same structure of a metal-oxide-semiconductor �eld-effect transistor (MOSFET)
with different functions such as homotype. By virtue of 100% CMOS compatibility, it was also realized to
co-integrate the neurons and synapses with additional CMOS circuits, such as a current mirror and
inverter. Such co-integration can enhance packing density, reduce chip cost, and simplify fabrication
procedures. Neuronal inhibition and tunability of the �ring threshold voltage were demonstrated for an
energy e�cient and reliable neural network. The multi-state single transistor neuron with low peak power
consumption of 120 nW that can control neuronal inhibition and the �ring threshold voltage was
achieved. Spatio-temporal neuronal functionalities are demonstrated with analyses of a fabricated
neuromorphic module, which is composed of a single transistor neuron and a set of single transistor
synapse. Image processing for letter pattern recognition and face image recognition is performed using a
hardware-based circuit simulation and a software-based neuromorphic simulation, respectively.

Introduction
Although software-based arti�cial neural networks (ANNs) have led to breakthroughs in a variety of
intelligent tasks, they inevitably have inherent delays and signi�cant energy consumption because the
hardware structure to support the ANNs is still based on the von Neumann architecture.1–3 To overcome
these limitations, hardware-based ANNs, known as brain-inspired neuromorphic systems, have been
intensively studied.4–6 The human brain consists of neurons for the computational function and
synapses for the memory function, as shown in Fig. 1a. There are about 1011 neurons and 1015

synapses, and thus it is important to implement neurons and synapses with high density in order to
mimic the brain in hardware.7,8

Neurons are mainly composed of CMOS-based circuits, while synapses primarily comprise memristors.9–

15 However, circuit-based neurons are problematic for high packing density with low-cost because they
are composed of a capacitor, integrator, and comparator including many transistors.16,17 Furthermore,
simultaneous integration of circuit-based neurons and memristor synapses in a single chip is challenging
because they use different materials and fabrications. Even worse, they should be linked to each other via
speci�c interconnections owing to their inherent heterotypic structures. Such interconnections hence
impose constraints on increasing packing density and simplifying process complexity. Also, extra energy
consumption cannot be avoided at the interface between the neurons and the synapses.

Meanwhile, few works to co-integrate memristor based arti�cial neurons and synapses in a single
crossbar array for a fully memristive neural network have been reported.18–20 It should be noted that the
neuromorphic hardware heavily relies on extra interface and control circuitry that collect, process, and
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transport data, as well as neurons and synapses.21–23 Therefore, the neuromorphic hardware should
contain additional CMOS circuits to support processing units, peripheral interfaces, memory, clocking
circuits, and input/output for a complete application. However, memristors cannot be co-integrated with
CMOS circuits on the same plane because they use different materials and fabrications. Although
memristor arrays could be directly integrated on the top of the CMOS circuits, line resistance effects were
observed and further scaling of the memristor arrays was di�cult because the memristor arrays should
be located between lower interconnections and upper interconnections or on top of the multi-layered
metal interconnections.14 These problems will be exacerbated as the metal interconnections of CMOS
circuits become more complex and the number of the metal layers increases. Furthermore,
commercialization of memristive devices is hindered by the immaturity of the fabrication process, which
limits large scale integration with high yield.24 From another point of view, neuronal inhibition and
tunability of �ring threshold voltage are important for an energy e�cient and reliable neural network.25–27

However, the memristor neurons cannot self-function for control of neuronal inhibition and �ring
threshold voltage due to the lack of controllability.

In this work, highly scalable neuromorphic hardware was implemented by simultaneously integrating
multi-state single transistor neurons and synapses on the same plane. Both devices have the same
homotypic MOSFET structure. In detail, the MOSFET for a neuron and a synapse encloses a charge trap
layer in gate dielectrics with the same manner as a commercial �ash memory based on a SONOS
structure that comprise a gate poly-crystalline Si (S), blocking SiO2 (O), charge trap Si3N4 (N), tunneling
SiO2 (O), and channel single-crystalline Si (S). Due to this CMOS compatibility, they were fabricated and
integrated on the same plane using the standard Si CMOS fabrication. It is possible to co-integrate single
transistor neurons and synapses with CMOS circuits for processing units, peripheral interfaces, memory,
clocking circuits, and input/output at the same time and thus co-integration of the entire neuromorphic
system is available. Therefore, a highly scalable neural network can be implemented in a single chip,
which can enhance packing density, reduce chip cost, and simplify fabrication procedures. Unit neuron
and a set of synapses were fabricated and directly interconnected. And their connection properties were
analyzed. The abovementioned charge trap Si3N4 in the MOSFET can allow multi-states. The multi-states
according to trapped charges control the excitatory/inhibitory function or changes the �ring threshold
voltage (VT,�ring) in the neuron, while they regulate synaptic weight in the synapse. These homotypic
neurons and synapses were directly connected to realize spatio-temporal neural computations. At the
same time, CMOS circuits such as a current mirror and inverter, which are key elements for analog and
digital circuits, were fabricated on the same plane to show the feasibility of co-integration of the interface
and control circuits. In addition to real device fabrication, image recognition was successfully
implemented with the aid of experimental based simulations.

Results And Discussion
Unit device characteristics of neuron and synapse
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 N-channel single transistor neuron and synapse have the same SONOS structure, as shown in Fig. 1b.
The intercalated charge trap nitride (Si3N4) in the multi-layered gate dielectrics allows multi-states
according to the amount of trapped charges. They can perform two functions: (i) enable
excitatory/inhibitory function or tuning the VT,�ring in the neuron and (ii) control weight update in the
synapse. Like the homotype, the neuron and the synapse have the same structure but operate differently,
as shown in Fig. 1c. For neuron operation, input current (Iin) collected from the pre-synapses is applied to

a n+ drain (or source) electrode, and output voltage (Vout) is produced from the same n+ drain (or source)
electrode. For synapse operation, the voltage transferred from the pre-neuron (Vin) is applied to the gate

electrode of the synapse, and output current (Iout) is �own from the n+ source (or drain) electrode. These
neurons and synapses were fabricated on an 8-inch wafer by using the same standard Si CMOS process,
and were connected to each other through metallization for a monolithically integrated neuromorphic
system, as shown in Fig. 1d. The fabrication details are described in Supplementary Information 1.

As mentioned earlier, the excitatory/inhibitory state of the neuron is determined by electron trapping in the
nitride of the SONOS structure. An inhibitory function that disables the �ring of the neuron is necessary,
because it can improve the energy e�ciency of the neuromorphic system by selectively �ring a speci�c
neuron. Hence it can realize effective learning and inference through the winner-takes-all (WTA)
mechanism.28-30 As shown in Fig. 2a, unless the electrons are trapped in the nitride, the neuron is at a
low-resistance state (LRS). Thus, current �ows through the channel when the Iin is applied. As a
consequence, charges are not integrated and a leaky integrate-and-�re (LIF) function is inhibited.
Otherwise, the neuron is at a high-resistance state (HRS) when trapped electrons in the nitride raise a
potential barrier between n+ source and p-type channel referred to as a p-n built-in potential. Accordingly,
charges are integrated until the �ring. For the neuron operation, the gate of the neuron transistor is a kind
of a pseudo-gate, unlike a conventional actual-gate. It is used not for the LIF operation but for charge
trapping. For electron trapping in the nitride, a positive voltage pulse is applied to the pseudo-gate.
Afterwards, it is sustained in a �oating state for the neuron operation. Due to non-volatility of the trapped
charges even without gate biasing, energy consumption is much smaller compared to our previous study,
which required additional and continuous gate voltage control.31,32

Fig. 2b shows output characteristics of the fabricated n-channel single transistor neuron, which is
represented by the drain current versus drain voltage (ID-VD). Its gate length (LG) and channel width (WCH)
are 880 nm and 280 nm, respectively. Before the electron trapping, ID �ows regardless of VD. After the
electron trapping with gate voltage (VG) of 12 V and pulse time of 100 ms, the ID does not �ow at a low
VD. However, a large amount of ID abruptly �ows beyond a critical VD; this is called latch-up voltage
(Vlatch). This is known as a phenomenon of single transistor latch (STL) and serves as a threshold

switch.33,34

Fig. 2c shows the Vout versus time when a constant Iin was applied to the drain electrode of the single
transistor neuron, before and after the electron trapping. The Vout was measured at the same drain
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electrode. Before the electron trapping, the applied Iin directly �owed through the channel toward the
source, and charge accumulation (integration) was not allowed. As a result, the inhibitory function was
enabled, unlike the two-terminal based memristor neuron. After the electron trapping, the applied Iin did
not �ow out toward the source and charges accumulated in a parasitic capacitor (Cpar). According to this
integration process, VD equivalent to Vout was increased prior to the VT,�ring. Simultaneously, iterative
impact ionization was induced by the increased VD, and holes accumulated in the body. When the Vout

reaches Vlatch, which is the same as the VT,�ring, the accumulated charges in Cpar are suddenly discharged
by STL. This is a �ring process. Therefore, spiking of the neuron was mimicked. Fig. S2 shows the energy
band diagram during the LIF operation, which was extracted by a TCAD device simulation. Note that at
the moment of the �ring, the energy barrier between the n+ source and p-type body is lowered enough to
allow the integrated charges to escape toward the source. The measured spiking frequency (f) was
increased as the Iin was increased. In addition, leaky characteristics appeared, as described in
Supplementary Information 3. The single transistor neuron shows typical LIF operation.

In addition to the control of the excitatory/inhibitory state, the VT,�ring was tunable by controlling the
trapped charge density in the nitride. This tunable property of the VT,�ring is important to implement a

reliable neuromorphic system.25-27 If the conductivity of the synapse is unsuitably low or high owing to
process-induced variability and endurance problems, the targeted number of �rings cannot be achieved.
To suppress this instability, a tunable VT,�ring is required. As shown in Supplementary Information 4, the
VT,�ring was increased as the number of pulses that can control the trapped charge density was increased.

This tendency is because fewer electrons were injected over the built-in potential of the n+ source and the
p-type body due to the greater amount of trapped charges, and thereby the Vlatch was increased. In
summary, the demonstrated multi-state single transistor neuron harnesses both controllability of the
excitatory/inhibitory and tunability of the VT,�ring.

The f of the LIF neuron can be modeled as follows:

where Roff is the resistance at HRS during the integration. As the VT,�ring decreases, the f increases
because the �ring occurs at the lower voltage. It should be noted that the VT,�ring, which corresponds to
the Vlatch in Fig. 2b, is determined by various parameters such as LG (Supplementary Fig. 5), body doping

concentration, and energy band gap.34,35 As the Iin increases, charging speed becomes faster, the f tends
to be increased. Besides the VT,�ring and Iin, the Cpar plays an important role in controlling the f. From the
above equation, the f is increased as the Cpar is reduced because it takes shorter time to charge the
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smaller parasitic capacitor (Supplementary Information 6). Accordingly, energy consumption per spike
(E/spike) is also decreased as the Cpar is reduced. Power consumption was compared between the single
transistor neuron and the memristor neuron. The peak power consumption was extracted from the
multiplication of peak current and peak Vout (Supplementary Information 7). It was found that the single

transistor neuron consumed 120 nW, which was 10 to 104-fold smaller than the consumption of the
memristor neuron, owing to a small cross-sectional channel area for current �owing due to high
scalability of the nano-CMOS fabrication. On the other hand, it is noteworthy that the single transistor
neuron has a bidirectional characteristic, in which the spiking operation is possible in both the drain
input/output (I/O) and source I/O (Supplementary Information 8). This bidirectional characteristic can
provide more degrees of freedom in designing a neuromorphic system. Thus, we employed both methods
to construct a neuromorphic system.

Since the synapse device has the same SONOS structure as the neuron, the weight of the synapse can be
adjusted by controlling the trapped charge density in the nitride. For example, if the electrons are trapped
by applying a positive bias to the gate, the threshold voltage (VT) is shifted rightward and the channel
conductance is decreased at the same read voltage, as depicted in Fig. 2d. This is a kind of depression.
Otherwise, VT is shifted leftward and the channel conductance is increased at the same read voltage. This
is a kind of potentiation. Fig. 2e shows transfer characteristics of the fabricated n-channel single
transistor synapse, which is represented by the drain current versus gate voltage (ID-VG). Its LG and WCH

are 1880 nm and 180 nm, respectively. VT was adjusted by the applied gate voltage that controls the
trapped charge density. The potentiation-depression (P-D) curve in Fig. 2f shows the conductance change
(weight update) according to the number of applied pulses with an identical amplitude and duty cycle.
Both VG and VD for the reading operation were set as 1 V. The VG for potentiation and depression was set
as -11 V with a pulse width of 100 ms and 11 V with a pulse width of 10 ms, respectively. As a result, 32
levels (5 bits) of conductance states were secured.

 

Co-integration of neuron and synapse

If a neuron and a synapse are homotypic, they can be integrated on the same plane at the same time with
the same fabrication. Thereafter they can be connected by metal interconnections. This co-integration is
demonstrated for two layers in a neural network. One is a pre-layer composed of a pre-synaptic neuron
and a transmitted synapse. The other is a post-layer comprising a transmitting synapse and a post-
synaptic neuron. Figs. 3a-c show the co-integrated pre-synaptic neuron and transmitted synapse as the
pre-layer. Referring to the circuit schematic of Fig. 3a, a constant input current (Iin,neuron) is applied to the
drain electrode of the neuron, and the drain is connected to a gate of the synapse to apply the output
voltage from the pre-synaptic neuron (Vout,pre-neuron). Note that this con�guration employs the
abovementioned drain I/O scheme. Therefore, when spiking of the neuron occurs, the corresponding drain
current (ID) �ows through the channel of the synapse. Its magnitude is modulated by the synaptic weight.
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In the case of a three-terminal synapse such as a MOSFET, input resistance to the gate is huge. On the
contrary, in the case of a two-terminal synapse such as a memristor, the input resistance is too small to
suppress the loading effect where a neuronal output is in�uenced by the resistance of the synapse when
it is directly connected to the neuron.36,37 This is a great advantage for large-scale co-integration of pre-
synaptic neurons and transmitted synapses, as explained in Supplementary Information 9. Fig. 3b shows
the fabricated pre-synaptic neuron and transmitted synapse interconnected through metallization. As
shown in Fig. 3c, the spike-shaped output current of the transmitted synapse (Iout,syn) was increased
according to the Vout,pre-neuron of the excitatory pre-synaptic neuron in order of weight: w1<w2<w3. It
should be noted that the f of the Iout,syn was determined by the Iin,neuron. The spiking was inhibited when it
was connected to the inhibitory pre-synaptic neuron, as shown in Supplementary Information 9. Note that
stable inference operation is allowed unless the tunneling oxide thickness of the SONOS-based synapse
is reduced (Supplementary Information 10). This is because the synaptic weight would not be changed
by Vout,pre-neuron, which is small compared to the voltage of potentiation/depression. Figs. 3d-f show the
co-integrated post-layer composed of the transmitting synapse and the post-synaptic neuron. As shown
in the circuit schematic of Fig. 3d, a constant gate voltage (Vin,syn) is applied to the transmitting synapse,
and the drain of the synapse is connected to the source of the post-synaptic neuron. Iout,syn is thus
applied to the post-synaptic neuron. The output voltage is measured at the source of the post-synaptic
neuron. In other words, it adopts the source I/O scheme. If the Iout,syn is applied from the source of the
transmitting synapse to the drain of the post-synaptic neuron (drain I/O scheme), the source voltage of
the transmitting synapse is �oated. This is the reason why the post-synaptic neuron is selected to have
the source I/O scheme. Fig. 3e shows the fabricated transmitting synapse and post-synaptic neuron
interconnected through metallization. As shown in Fig. 3f, the f of the output voltage from the excitatory
post-synaptic neuron (Vout,post-neuron) is increased according to the increment of Iout,syn from the
transmitting synapse in order of weight: w1<w2<w3.

Another way to connect the transmitting synapse and the post-synaptic neuron is suggested in
Supplementary Information 11, where a current mirror is used. The current mirror is composed of two
NMOSFETs and two PMOSFETs. In this case, the drain I/O scheme of the post-synaptic neuron is
available by reversing the direction of the Iout,syn. This con�guration is also attractive to modulate the
Iout,syn over a wide range by changing the channel width of the current mirror. In addition to the current
mirror that can be used for analog circuitry, an inverter composed of an NMOSFET and a PMOSFET,
which is a fundamental block to construct digital logic circuitry that controls the neural network for
collecting, processing, and transporting data, was also fabricated on the same plane with co-integration
of the neuron and synapse at the same time (Supplementary Information 12).

 

Gain modulation and coincidence detection
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Using the co-integrated neurons and synapses, spatio-temporal neural computations such as gain
modulation and coincidence detection were carried out. In biology, gain modulation is observed in many
cortical areas and is thought to play an important role in maintaining stability.38-41 Herein gain
modulation was realized by co-integration of two transmitting synapses and one post-synaptic neuron, as
shown in the circuit diagram of Fig. 4a. Two types of pre-synaptic inputs are applied to the gate
electrodes of two synapses. A driving input (VG,S1) enables the post-synaptic neuron to �re and a
modulatory input (VG,S2) tunes the effectiveness of the driving input, as illustrated in Fig. 4b. As shown in
Fig. 4c, the f of the post-synaptic neuron was modulated by the VG,S2 for the �xed VG,S1. This is because
the Iin applied to the post-synaptic neuron was increased as the VG,S2 was increased. Fig. 4d shows the
secondary data that the f was increased as the VG,S2 was increased at various VG,S1.

Coincidence detection is another important neural computation that encodes information by detecting the
occurrence of temporally close but spatially distributed input signals. It has been found that coincidence
detection is signi�cant for highly e�cient information processing in auditory and visual systems.42-45 By
the co-integration of neuron and synapses, coincidence detection is also possible. When two inputs were
applied at the same time, the f was increased because the Iin applied to the post-synaptic neuron was
increased, as illustrated in Fig. 4b. Accordingly, it is possible to determine whether two inputs are
simultaneously applied. Fig. 4e shows the corresponding data. When the two input signals applied at the
same time, the f of the neuron was larger than the other cases of the two signals that were not
synchronized. In addition, when two input signals overlapped for a certain period of time, the f of the
neuron increased only in the overlap region.

 

Letter recognition with hardware circuit simulation

The neuromorphic system is commonly used to recognize images such as letters, numbers, objects, and
faces. Pattern recognition of a letter was demonstrated with the aid of SPICE circuit simulations that were
based on the measured neuron-synapse characteristics. As a simple model, the neuron is composed of a
threshold switch and a parasitic capacitor connected in parallel. As a result, the simulated electrical
properties are similar to the measured characteristics from the fabricated neuron, as shown in
Supplementary Fig. 3. The synapse was implemented with a three-terminal MOSFET, and the weight of
the synapse was controlled by adjusting the VT. We implemented two types of neural networks: a
classi�er based on a single-layer perceptron (SLP) and an auto-encoder based on a multi-layer perceptron
(MLP). First, a neural network for the classi�er was constructed to distinguish the letters ‘n’, ‘v’, and ‘z’,
which was composed of 3×3 black-and-white pixels (Fig. 5a). It was composed of 9 input layers labeled
with ‘i1’ to ‘i9’, which correspond to each pixel and 3 output layers labeled with ‘On’, ‘Ov’ and ‘Oz’ that are
corresponding to each letter (Fig. 5b). The circuit diagram for the classi�er is shown in Supplementary
Fig. 13. Note that the output neurons were connected to each other to enable the lateral inhibition.
According to the output voltage of the output neurons, each letter was identi�ed. First spiking occurred in
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the �rst neuron for the input of ‘n’, the second neuron was for the input of ‘v’, and the third neuron was for
the input of ‘z’. It should be noted that the multi-state properties of the single transistor neuron play an
important role in recognizing a pattern. First, it was con�rmed that the unwanted spiking was inhibited by
the inhibitory neurons prior to reaching the VT,�ring, which can enhance the energy e�ciency of the neural
network. Second, it was veri�ed that the pattern was well recognized by appropriately tuning the VT,�ring,
even if the synaptic weight was changed abnormally. This feature can enhance the reliability of the
neural network (Supporting Information 14).

 In order to improve the recognition rate of an image, an auto-encoder is commonly used.46 The auto-
encoder can remove the effect of noisy input and reconstruct the image by encoding the image and
decoding it again. As shown in Fig. 5c, we implemented the auto-encoder by use of the MLP network with
one middle layer. The input layer and the output layer were composed of 9 neurons, and each layer
represented each pixel. After encoding three letters in the �rst perception, the information of each pixel
was newly decoded in the second perception. A circuit diagram for the auto-encoder is shown in
Supplementary Fig. 15. It should be noted that the inhibitory function of the single transistor neuron
allowed the auto-encoder operation. In more detail, the middle neurons were connected to each other to
enable lateral inhibition, and hence the noisy signal could be removed. Receiving the signal from the
middle neurons, some output neurons expressed spiking while others were inhibited. The excited output
neuron was decoded as a black pixel, while the inhibited output neuron was decoded as a white pixel, as
shown in Fig. 5c. As a result, noisy input images became clearer via the image reconstruction by the auto-
encoder.

 

Face recognition with software simulation

Using the hardware-based circuit simulation, off-chip learning that is applicable to inference operation
with �xed weights of the synapses was implemented. On the other hand, on-chip learning is also possible
by using additional circuits. With the aid of a MATLAB software simulation, a network capable of face
recognition through on-chip learning was explored. A fully connected two-layer spiking neural network
(SNN) consisting of 32×32 input neurons, 20 neurons in a middle layer, and three output neurons was
designed, as shown in Fig. 6a. The measured neuron-synapse characteristics were re�ected to the
simulation based on the circuit diagram of Fig. 6b. From the Yale Face Database, nine training images
composed of 32×32 pixels were selected (Fig. 6c).47 After clustering from an unsupervised crossbar, the
classi�cation was evaluated by a supervised crossbar. Neuronal output was converted through a
waveform generator to make a proper pulse shape (Supplementary Fig. 16a). In addition, synaptic weight
updates, which depend on the time difference between the pre-synaptic pulse (Vpre) and post-synaptic

pulse (Vpost) according to a learning rule of spike timing dependent plasticity (STDP), were made.26,30 It
should be emphasized that such circuits for waveform generation can be co-integrated on the same
plane with neurons and synapses by standard CMOS fabrications. Also, it is noteworthy that lateral
inhibition of the output neurons was enabled for e�cient learning and inference by the WTA. After the
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training, the conductance of the synapses was determined, as shown in the visual map diagram of the
synapse array (Fig. 6d). The recognition rate was evaluated with a test set containing 24 images of three
people. As a result, a recognition rate of 95.8 % was achieved for ‘after training with the lateral inhibition’
and that of below 60 % was observed for ‘after training without the lateral inhibition,’ as shown in Fig. 6e.
Unless the lateral inhibition was applied, a high level recognition was not performed because the global
weight updates were performed via the �ring of all engaged neurons. In addition, even though the
conductance of the synapses were abnormally changed by process-induced variability or endurance
problems, the recognition failure was prevented by the VT,�ring modulation (Fig. S16d). These results prove
that the reliable neural network can be implemented by the multi-state single transistor neuron.

Conclusion
Completely CMOS-based neuromorphic hardware with high scalability was fabricated by the co-
integration of single transistor-based neurons and synapses that are homotypic. The charge trapping
layer intercalated in the neurons and synapses allows multi-states. They were used to control the
excitatory/inhibitory function and to modulate the �ring threshold voltage for the neurons. They were also
utilized to determine the weight for the synapses. The single transistor neuron consumed peak power of
120 nW, which was 10 to 103-fold reduced relative to the consumption of the memristor neuron
(Supplementary Information 17). Because the neuron and the synapse have exactly the same structure,
they were simultaneously integrated on the same plane at the same time with the same fabrications. This
feature permits improvement of packing density, reduction of chip cost, and simpli�cation of the
fabrication procedures. In addition, it is possible to co-integrate with additional CMOS circuits for
processing units, peripheral interfaces, memory, clocking circuits, and input/output due to the same in-
situ CMOS fabrications.

Methods
Fabrication: Neurons and synapses with the same SONOS structure, which had a tunneling oxide (SiO2)
of 3 nm, a charge trap nitride (Si3N4) of 6 nm, and a blocking oxide (SiO2) of 8 nm, were fabricated. They
were interconnected through metallization (Ti/TiN/Al) using a standard Si CMOS process. See
Supplementary Information 1 for details of the fabrication process.

Electrical characterization: Electrical characteristics of the co-integrated neurons and synapses were
measured using a B1500 semiconductor parameter analyzer (Agilent Technologies). I-V characteristics of
the neuron and synapse were measured by voltage source current measurement (VSCM) mode, and the
spiking characteristic of the neuron was measured by current source voltage measurement (CSVM)
mode. A semiconductor pulse generator unit (SPGU) was used to control the excitatory/inhibitory state
and the �ring threshold voltage of the neuron, as well as the weight of the synapse. The leaky
characteristic of the neuron was measured using a Keithley 6221 current pulse source (Keithley). The
source current was measured using a TDS 744A oscilloscope (Tektronix).
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TEM analysis: TEM images were taken using FE-STEM (HD-2300A) by Hitachi High-Technologies
Corporation.

SEM analysis: SEM images were taken using CD-SEM (S-9260A) by Hitachi High-Technologies
Corporation.

Device simulation: Device simulations for the analysis of the neuron characteristics were performed
using a TCAD Sentaurus simulator (Synopsys). All the device parameters were set as the closest values
obtained from the SEM and TEM images.

Hardware-based circuit simulation: Circuit simulations for the letter pattern recognition were performed
using LTspice software (Analog Devices). Neurons were modeled with a capacitor and a threshold switch,
wherein the parasitic capacitance (Cpar) and �ring threshold voltage (VT,�ring) were extracted from the
measured spiking characteristics of the neuron. Synapses were modeled with a three-terminal MOSFET, in
which the device parameters were set as the closest values obtained from the SEM and TEM images. The
weight of the synapses was controlled by changing the threshold voltage (VT) of the MOSFET.

Software-based simulation: Software simulations for the face image recognition were performed using
MATLAB. Spiking characteristics of the neurons and P-D characteristics of the synapses were re�ected in
the simulation.
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Figure 1

Concept of co-integrated single transistor neurons and synapses. a, Schematic of biological neuron and
synapse. 1011 neurons and 1015 synapses are densely interconnected in human brain. b, Schematic of
co-integrated single transistor neurons and synapses. They have exactly the same SONOS structure,
which includes a charge trap layer (Si3N4) in the gate dielectrics as shown in the cross-sectional TEM
image. They are fabricated with the same fabrications and connected through metallization. c, Operation
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scheme of the neuron and synapse. The input and output of the neuron are current and voltage,
respectively, while those of the synapse are voltage and current. d, Fabricated 8 inch wafer in which single
transistor neurons, synapses, and additional CMOS circuits were co-integrated. It was fabricated with 100
% standard Si CMOS fabrications.

Figure 2

Unit device characteristics of single transistor neuron and synapse. a, Operation principle of the single
transistor neuron. The excitatory and inhibitory state of the neuron are determined by electron trapping in
the nitride. b, Output characteristic (ID-VD) of the fabricated single transistor neuron. The single transistor
latch (STL) phenomenon that allows threshold switching near Vlatch was observed only after electron
trapping (excitatory). c, Spiking characteristics of the fabricated single transistor neuron. The neuronal
spiking by LIF operation was excited after electron trapping, while it was inhibited before electron
trapping. d, Operation principle of the single transistor synapse. The weight of the synapse can be
adjusted by controlling the trapped charge density in the nitride. e, Transfer characteristic (ID-VG) of the
fabricated single transistor synapse after potentiation and depression. Threshold voltage (VT) was
shifted leftward after potentiation and rightward after depression. f, Potentiation-depression (P-D)
characteristic of the fabricated single transistor synapse. 32 levels of the conductance state were secured
(5 bits).
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Figure 3

Co-integrated single transistor neuron and synapse. a, Circuit diagram of pre-synaptic neuron and
transmitted synapse connection in the pre-layer of neural network. The output voltage of the pre-synaptic
neuron (Vout,pre-neuron) is transmitted to the gate of the synapse. b, Fabricated pre-synaptic neuron and
transmitted synapse interconnected through metallization. c, Measured synapse output current (Iout,syn)
as a function of synaptic weight. The level of Iout,syn became higher when the synaptic weight was
larger. d, Circuit diagram of transmitting synapse and post-synaptic neuron in the post-layer of neural
network. The current of the transmitting synapse is applied to the source of the post-synaptic neuron. e,
Fabricated transmitting synapse and post-synaptic neuron interconnected through metallization. f,
Measured neuron output voltage (Vout,post-neuron) as a function of synaptic weight. The spiking
frequency (f) of Vout,post-neuron became higher when the synaptic weight was larger.
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Figure 4

Gain modulation and coincidence detection by co-integrated single transistor neuron and synapses. a,
Circuit diagram of connected two transmitting synapses and one post-synaptic neuron for gain
modulation and coincidence detection. b, Schematic diagram of gain modulation and coincidence
detection. Neuronal output can be determined by the modulatory input as well as the driving input, and
the coincidence of the two inputs can be detected from the neuronal output. c, Spiking characteristics of
the post-synaptic neuron depending on the modulatory input voltage (VG,S2) when the driving input
voltage (VG,S1) was �xed. The spiking frequency (f) was increased as the VG,S2 was increased because
the input current to the post-synaptic neuron was increased. d, f as a function of the VG,S2 at various
VG,S1. e, Spiking characteristics of the post-synaptic neuron depending on the delay between the two
signals. f was larger when two signals became more synchronized. When two signals overlapped for a
certain period of time, the f was increased only in the overlap region.
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Figure 5

Letter recognition with hardware-based circuit simulation by re�ecting the measured characteristics of
single transistor neuron and synapse. a, Input image of the 3×3 pixel letter pattern. b, Single-layer
perceptron (SLP) network for a classi�er and classi�cation results. Each input layer represents each pixel,
and each output layer represents each letter. Classi�cation determined by which neuron expressed
spiking �rst was performed. All other neurons except the �rst spiked output neuron were laterally
inhibited. c, Multi-layer perceptron (MLP) network for an auto-encoder and its encoding/decoding results.
Each input layer represents each pixel of noisy input, and each output layer represents each pixel of
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reconstructed output by the auto-encoder. The output neuron in which spiking was excited could be newly
decoded as a black pixel, and the output neuron in which spiking was inhibited could be newly decoded
as a white pixel to reconstruct a clearer image from a blurred noisy pattern.

Figure 6

Face recognition with software-based simulation by re�ecting the measured characteristics of single
transistor neuron and synapse. a, Spiking neural network (SNN) for face recognition. The input layer is
composed of 1024 neurons that represent each pixel, the middle layer is composed of 20 neurons, and
the output layer is composed of three neurons that represent each person’s face. b, Simpli�ed circuit
diagram to represent the connection of neuron-synapse. Neuronal output is converted through a
waveform generator to make a proper pulse shape applied to the synapse for STDP learning. c, Nine
training images of three people. d, Visual map of the synapse array to represent the conductance of the
synapses, ‘before training’, ‘after training with lateral inhibition’, and ‘after training without lateral
inhibition’. e, Comparison of recognition rate depending on the number of training epochs between ‘after
training with lateral inhibition’ and ‘after training without lateral inhibition’. Higher recognition rate is
achieved with the inhibitory function of the neurons.
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