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Abstract

We study the panel dynamic ordinary least square (DOLS) estimator of a

homogeneous cointegration vector for a balanced panel of N individuals

observed over T time periods. Allowable heterogeneity across individuals

include individual-specific time trends, individual-specific fixed effects and

time-specific effects. The estimator is fully parametric, computationally

convenient, and more precise than the single equation estimator. For fixed N

as T fi 1, the estimator converges to a function of Brownian motions and the
Wald statistic for testing a set of s linear constraints has a limiting v2(s)
distribution. The estimator also has a Gaussian sequential limit distribution

that is obtained first by letting T fi 1 and then letting N fi 1. In a series of
Monte-Carlo experiments, we find that the asymptotic distribution theory

provides a reasonably close approximation to the exact finite sample

distribution. We use panel DOLS to estimate coefficients of the long-run

money demand function from a panel of 19 countries with annual

observations that span from 1957 to 1996. The estimated income elasticity

is 1.08 (asymptotic s.e. ¼ 0.26) and the estimated interest rate semi-elasticity

is )0.02 (asymptotic s.e. ¼ 0.01).
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I. Introduction

This paper considers the extension of the single equation dynamic ordinary

least squares (DOLS) method of Saikkonen (1991) and Stock and Watson

(1993) for estimating and testing hypotheses about a cointegrating vector to

panel data. We call the estimator panel DOLS. We discuss its limit distribution

and apply it to estimate the long-run money demand function using a panel

data set of 19 countries with annual observations spanning from 1957 to 1996.

Panel DOLS is fully parametric and offers a computationally convenient

alternative to the panel ‘fully modified’ OLS estimator proposed by Pedroni

(1997) and Phillips and Moon (1999). Properties of panel DOLS, when there

are fixed effects in the cointegrating regression, have been discussed by Kao

and Chiang (2000). We take this to be the starting point for our analysis. In our

environment, the cointegrating vector is homogeneous across individuals but

we allow for individual heterogeneity through disparate short-run dynamics,

individual-specific fixed effects and individual-specific time trends. Moreover,

we permit a limited degree of cross-sectional dependence (CSD) through the

presence of time-specific effects.

We present two limit distributions for panel DOLS. The first limit

distribution is obtained for a fixed number of cross-sectional units N, letting

T fi 1. In this case, panel DOLS converges in distribution to a function of
Brownian motions and the Wald statistic for testing a set of s linear constraints

has a limiting v2(s) distribution. This limit theory seems well suited for many
applied macroeconomic or international problems. Here, researchers often

have available panel data sets of moderate N but much larger T. With the

passage of time, these data sets will gain time-series observations but they are

unlikely to acquire many more cross-sectional units.1 We also obtain the

sequential limit distribution by first letting T fi 1 for fixed N, and then

letting N fi 1 as proposed by Phillips and Moon (1999). Here, panel DOLS

has a limiting Gaussian distribution and as in the fixed N case, the Wald

statistic has a limiting chi-square distribution. In the absence of linear trends in

the cointegrating regression, the sequential limiting normality of the estimator

is theoretically interesting but has less practical import because the limit

distribution of the test statistics is identical to the T fi 1 distribution with

fixed N. However, when linear trends are present, the sequential limit theory

produces considerable simplifications. Here, the estimator of the cointegration

1For example, if the observational unit is a national economy, the total number of countries may
fluctuate over time, but is unlikely to go to infinity. While the break-up of the Soviet Union created
several new economies, the opposite trend is at work in Europe where the EMU may eventually
combine to form a single economic unit. But beyond this, researchers typically choose to group
countries into classes that share common characteristics such as income levels, stages of development
or geography which often result in panels with 5–20 individuals.
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vector and the time-trend slope coefficients remain correlated for fixed N as

T fi 1 but are asymptotically uncorrelated when T fi 1 then N fi 1.
As single equation cointegration vector estimators are super consistent, it is

natural to ask what is to be gained by using the panel estimator. The answer is

that super consistency means that convergence towards the asymptotic

distribution occurs at rate T but it says nothing about the sampling variability

of the estimator for a fixed value of T. In fact, the statistical properties of

single-equation cointegration-vector estimators can be quite poor when

applied to sample sizes associated with macroeconomic time series typically

available to researchers (e.g. Inder, 1993; Stock and Watson, 1993). Moreover,

even limited amounts of heterogeneity in the short-run dynamics across

individuals can generate considerable disparities in single-equation DOLS

estimates of the true homogeneous cointegration vector. In these situations,

combining cross-sectional and time-series information in the form of a panel

can provide much more precise point estimates of the cointegration vector

with reasonably accurate asymptotic approximations to the exact sampling

distribution. In a series of Monte-Carlo experiments, we study the small

sample performance of panel DOLS and compare it with single-equation

DOLS. Panel DOLS generally performs well under the short-run dynamic

designs that we consider and can attain a striking improvement in estimation

precision over that of single-equation DOLS with even a modest number of

cross-sectional units.

We then apply panel DOLS to estimate the long-run demand for M1

money. The countries in our study are Austria, Australia, Belgium, Canada,

Denmark, France, Finland, Germany, Iceland, Ireland, Japan, Norway, New

Zealand, the Netherlands, Portugal, Spain, Switzerland, the United Kingdom,

and the United States. Here, we build on the time-series contributions by

Baba, Hendry and Starr (1992), Ball (1998), Hoffman, Rasche, and Tieslau

(1995), Lucas (1988) and Stock and Watson (1993), and the cross-sectional

studies by Mulligan and Sala-i-Martin (1992), and Mulligan (1997), most of

which has focused on US data.2

The studies cited above report conflicting results along three dimensions.

First, point estimates from time-series studies exhibit substantial dependence on

the sample period of the data. Income elasticity estimates from post-WWII US

data typically lie well below 1 – which implies the existence of economies of

scale in money management – whereas estimates obtained from pre-WWII

observations or those that combine pre- and postwar observations are generally

close to 1. Using annual US data spanning from 1903 to 1987, Stock and

Watson’s (1993) DOLS estimate of the income elasticity is 0.97. When the

sample spans from 1903 to 1945, their estimate is 0.89 but drops to 0.27 when

2Less recent cross-sectional studies include Meltzer (1963) and Gandolfi and Lothian (1976).
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the data span from 1946 to 1987. Ball (2001) extends these data and obtains an

estimate of 0.42 when the observations span from 1946 to 1996. Using annual

observations from 1900 to 1958, Lucas’s (1988) estimate of theM1 (permanent)

income elasticity is 1.06 and his estimate of the (short-term) interest rate semi-

elasticity is)0.07. Using data spanning from 1958 to 1985, his income elasticity
estimate drops to 0.21 and his interest semi-elasticity estimate is )0.01.
Secondly, there is tension generated by the large difference between the

estimates from time-series studies and those from postwar cross-section studies.

Mulligan and Sala-i-Martin’s (1992) estimates from a 1989 cross-sectional data

set from the Survey of Consumer Finances range between 0.82 and 1.37.

Mulligan (1997) runs OLS on for a panel of 12,000 firms observed from 1961 to

1992 and obtains an income-elasticity estimate of 0.83. Thirdly, there is

substantial cross-country variation even amongst economies of similar income

levels and financial market development. In our analysis, single-equationDOLS

with trend gives such disparate income elasticity estimates as )1.23 for New
Zealand and 2.42 for Canada. The corresponding interest rate semi-elasticity

estimates range from 0.02 for Ireland (which has thewrong sign) to)0.09 for the
UK. When trends are omitted, the income elasticity estimates range from 0.13

for Belgium to 2.64 for Norway and the interest semi-elasticity estimates range

from 0.02 for Ireland to )0.16 for Norway.
With only 40 annual observations, the heterogeneity that we observe in the

point estimates may plausibly have been generated from an underlying data

generating process with a homogeneous cointegration vector and heterogeneous

short-run dynamics. When we include heterogeneous linear trends and estimate

the cointegrating vector by panel DOLS, we obtain a point estimate of the

income elasticity of 1.08 (asymptotic s.e. ¼ 0.26) and a point estimate of the

interest semi-elasticity of )0.02 (asymptotic s.e. ¼ 0.01). Moreover, these

estimates, which are more in line with those from cross-sectional studies on US

data, are stable as the span of the time-series dimension is varied and are

reasonably robust to the inclusion or omission of heterogeneous linear trends.

The remainder of the paper is organized as follows. The next section des-

cribes the representation of the non-stationary panel data and regularity con-

ditions assumed in the paper. Section III describes the panel DOLS estimator

and discusses its asymptotic properties. Section IV reports the results of a

Monte-Carlo experiment to examine the small sample performance of the panel

DOLSestimator and the accuracyof the asymptotic approximations. In sectionV

we present our long-run money demand study and section VI concludes the

paper. Proofs of propositions and supplementary results from themoney demand

study are given in an appendixwhich is available upon request from the authors.3

3Alternatively, the appendix can be downloaded from the http://www.wcon.ohio-state.edu/Mark/
nmark.htm.
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II. Representation of cointegrated observations in panel data

Consider a balanced panel of individuals indexed by i ¼ 1,…,N observed

over time periods t ¼ 1,…, T. Vectors are underlined and matrices appear in
bold face. W(r) is a vector standard Brownian motion for 0 £ r £ 1, and [Tr]
denotes the largest integer value of Tr for 0 £ r £ 1. As is standard in the
literature, we will drop the notational dependence on r and write

R 1
0
W ðrÞdr asR

W and
R 1
0
W ðrÞdW ðrÞ0 as

R
W dW 0. Scaled vector Brownian motions are

denoted by B ¼ KW where K is a scaling matrix. For any matrix A, ||A||

denotes the Euclidian norm, [Tr(A0A)]1/2.
We will be working with double indexed sums. In some instances – to

deal with individual-specific fixed effects or common-time effects – these

sums will involve transformations of the original observations. To handle

such situations, we generically denote the sample cross-moment matrix

averaged over N and T2 as MNT and let the precise definition depend upon

the particular model under consideration. Also, we generically denote the

limit of the moment matrix as T fi 1 for any given N by MN. As N fi 1,
MN need not converge to a constant and we denote this limit as MN .

Similarly, our generic notation for the sample cross-product vector between

the regressors and the equilibrium error is mNT, and the limit for fixed N as

T fi 1 is mN.

As the model we study allows for individual specific effects, perhaps

it would be more accurate to call the estimator dynamic least squares dummy

variable (LSDV). However, in the interests of simplicity, we will refer to the

estimator as panel DOLS.

(i) Triangular representation

Let fðyit; x0itÞ
0g be a (k + 1) dimensional vector of observations where yit is a

scalar and xit is a k-dimensional vector. Observations on each individual i obey

the triangular representation

yit ¼ ai þ kit þ ht þ c0xit þ u
y
it; ð1Þ

Dxit ¼ vit; ð2Þ

where (1, )c0) is a cointegrating vector between yit and xit that is identical
across individuals. The composite equilibrium error yit ) c0xit is potentially
comprised of an individual-specific effect ai, an individual-specific linear
trend kit, and a common time-specific factor ht. The remaining idiosyncratic
error uyit is independent across i but possibly dependent across t. An alternative
representation for equation (2) allows xit to have an individual-specific vector

of drift terms and for the trend in equation (1) to be induced by this drift. With
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some minor modifications, the results of this paper continue to hold in this

alternative environment.4

In addition to individual-specific fixed effects and linear trends, potentially

disparate short-run dynamics of the covariance stationary error process fwy
itg ¼

fðuyit; v0itÞ
0g introduces an additional source of heterogeneous behaviour across

individuals. The underlying error dynamics are given in Assumption 1.

Assumption 1. (Error Dynamics.) fwy
itg is independent across i ¼ 1,…, N,

and has the moving average representation

wy
it ¼ Wy

i ðLÞ�
y
it; ð3Þ

where f�yitg 
 i:i:d: with Eð�yitÞ ¼ 0; Eð�yit�
y0
it Þ ¼ I, Ejj�yitjj

4 < 1, Wy
i ðLÞ ¼P1

j¼0 Wy
ijL
j is a (k + 1) · (k + 1) dimensional matrix lag polynomial in the

lag operator L, where
P1
j¼0 jjw

ymn
ij j < 1; and wymn

ij is the m,n-th element of

the matrix Wy
ij.

Our assumption that wy
it is independent across individuals ðE½w

y
itw

y
jtk� ¼ 0;

i 6¼ j; 1 � k � 1) follows the recent econometrics literature on

non-stationary panel data (e.g. Phillips and Moon, 1999a,b; Kao and Chiang,

2000; Pedroni, 1997). Unlike these authors, we assume that the coefficients in

the Wy
i ðLÞ polynomial are fixed for a given i although they can differ across

individuals.

Let Wi be a k + 1-dimensional standard Brownian motion. By Assumption

1, it follows that for each i ¼ 1,…,N, fwy
itg obeys the functional central limit

theorem

1ffiffiffiffi
T

p
X½Tr�
t¼1
wy
it!
D

Wy
i ð1ÞW i � B

y
i ; ð4Þ

as T fi 1, where Byi ¼ ðByui;B0viÞ
0
is a scaled mixed Brownian motion and

Xy
i ¼E½B

y
i ð1ÞB

y
i ð1Þ

0�¼ Xy
uu;i Xy0

vu;i

Xy
vu;i Xvv;i

" #
¼Wy

i ð1ÞW
y0
i ð1Þ¼Cy

0;iþ
X1
j¼1

ðCy
j;iþCy0

j;iÞ;

Cy
j;i ¼ Eðw

y
itw

y0
itjÞ ¼ E

uyitu
y
itj uyitv

0
itj

vitu
y
it vitv

0
itj

" #
¼ Cy

uu;j;i Cy0
vu;j;i

Cy
vu;j;i Cvv;j;i

" #
:

4The trend in equation (1) can be induced by a drift in {yit}. If instead, there is a drift in {xit} but
none in {yit}, where Dxit ¼ ai + vit with xi0 given, then repeated substitution gives xit ¼ xi0 + ait +nit
where nit ¼

Pt
j¼1 vit is a driftless vector I(1) process. The cointegrating regression becomes

yit ¼ c0
0
xi0 þ c0

1
ait þ c0

2
nit þ u

y
it . In this case, the ensuing analysis is to be performed using the

statistical properties of nit. In computations, one can follow the recommendations of Phillips
and Moon (2000) to obtain an estimate of nit first by estimating the drift aiT ¼
1
T

PT
t¼1 Dxit ¼ 1

T ðxiT  xi1Þ and then using n̂nit ¼ xit  xi0  taiT .
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The issues involved in panel cointegration vector estimation and testing

parallels that in the single equation environment. For a single equation, OLS

is a consistent estimator of the cointegrating vector but its asymptotic

distribution depends on the long-run covariance between uyit and vit. This
nuisance parameter dependency invalidates standard hypothesis testing in the

OLS framework without modifications. DOLS, dynamic generalized least

square (GLS), and fully modified OLS are examples of such modifications.

Similarly, in panel data, Phillips and Moon (1999) and Pedroni (1997) show

that for fixed N, the pooled OLS estimator is a consistent estimator of the

cointegrating vector as T fi 1 and can be used in a first pass in getting

point estimates. In panel data, however, the problems of second-order

asymptotic bias and nuisance parameter dependence are compounded and

are potentially more serious in the sense that the bias accumulates with the

size of the cross-section. In particular, if cOLS
NT

is the OLS estimator for the

pooled cross-section time-series data, one cannot rule out the possibility thatffiffiffiffi
N

p
T ðcOLS

NT
 cÞ diverges as T fi 1 and then N fi 1. It follows that the

distribution for a Wald statistic for testing linear restrictions becomes even

less useful as the cross-sectional dimension of the panel grows as it too can

diverge.

III. Panel DOLS

We consider the panel DOLS estimator of the vector of slope coefficients c
and its limit distribution for various subcases of the model in equations (1) and

(2). We take the model with individual-specific effects as our starting point.5

Section (i) discusses the baseline fixed-effects model. Once we obtain the limit

distribution for this baseline case, the limit theory for more general versions of

the model with heterogeneous linear trends and common time effects follow in

an analogous manner. In section (ii) we add heterogeneous trends to the fixed-

effects model, and section (iii) considers the model with fixed-effects, trends,

and common-time effects.

(i) Fixed effects

In applied work, the researcher will almost always need to include

individual-specific constants in the regression. To handle this situation, we

5Kao and Chiang (2000) derive the sequential limit distribution (T fi 1, N fi 1) for panel
DOLS in a model with individual-specific effects. They do not consider the fixed the T fi 1 limit
theory with fixed N, nor do they allow for time trends or time-specific effects.
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begin by setting ki ¼ 0, ht ¼ 0 for all i and t in equation (1), which we

write as

yit ¼ ai þ c0xit þ u
y
it: ð5Þ

Assume that uyit is correlated with at most pi leads and lags of vit ¼ Dxit. To
control for this endogeneity, project uyit onto these pi leads and lags

uyit ¼
Xpi
s¼pi

d0i;svits þ uit ¼
Xpi
s¼pi

d0i;sDxits þ uit ¼ d0izit þ uit; ð6Þ

where di,s is a k · 1 vector of projection coefficients, di ¼ ðd0i;pi ; . . . ;
d0i;0; . . . ; d

0
i;piÞ

0
is a (2pi + 1)k-dimensional vector and zit ¼ ðDx0itpi ; . . . ;

Dx0it; . . . ;Dx
0
itþpiÞ

0
is a (2pi + 1)k-dimensional vector of leads and lags of the

first differences of the variables xit. The projection error uit is, by construction,

orthogonal to all leads and lags of vit. It follows from Assumption 1 that

because wy
it is independent across i we project u

y
it only onto leads and lags

of Dxit for individual i and not onto leads and lags of the other individuals
(Dxjt, j „ i).

Substituting the projection representation for uit in equation (6) into

equation (5) yields

yit ¼ ai þ c0xit þ d0izit þ uit: ð7Þ

The projection defines the new covariance stationary vector process, wit ¼
ðuit; v0itÞ

0
where for each i,

wit ¼ WiðLÞ�it; WiðLÞ ¼
Wuu;iðLÞ 00

0 Wvv;iðLÞ

� �
;

and wit obeys the functional central limit theorem

1ffiffiffiffi
T

p
X½Tr�
t¼1
wit!

D
Bi ¼ Wið1ÞW i;

where Bi ¼ ðBui;B0viÞ
0
, Bui and Bvi are independent, and

Xi ¼ E½Bið1ÞBið1Þ0� ¼
Wuu;ið1Þ2 00

0 Wvv;ið1ÞWvv;ið1Þ0
� �

¼ Xuu;i 00

0 Xvv;i

� �
:

Taking the time-series average of equation (7) gives

1

T

XT
t¼1
yit ¼ ai þ c0

1

T

XT
t¼1
xit þ d0i

1

T

XT
t¼1
zit þ

1

T

XT
t¼1
uit: ð8Þ
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Subtracting equation (8) from equation (7) eliminates ai and gives

~yyit ¼ c0~xxit þ d0i~zzit þ ~uuit; ð9Þ

where a ‘tilde’ denotes the deviation of an observation from its time-series

average,

~yyit ¼ yit 
1

T

XT
t¼1
yit;

~xxit ¼ xit 
1

T

XT
t¼1
xit;

~zzit ¼ zit 
1

T

XT
t¼1
zit;

~uuit ¼ uit 
1

T

XT
t¼1
uit:

To set up the estimation problem, let ~qq
it
be the 2kð1 þ

PN
i¼1 piÞ

dimensional vector whose first k elements are ~xxit, elements kð1þPi1
j¼1ð2pj þ 1ÞÞ þ 1 to kð1 þ

Pi
j¼1ð2pj þ 1ÞÞ are ~zzit and 0s elsewhere.

That is,

~qq
1t

¼ ð~xx01t ~zz01t 00 . . . 00Þ0

~qq
2t

¼ ð~xx02t 00 ~zz02t . . . 00Þ0

..

. ..
.

~qq
Nt

¼ ð~xx0Nt 00 00 . . . ~zz0NtÞ
0

:

Let the grand coefficient vector be b ¼ ðc0; d01; . . . ; d0N Þ
0
and the compact

form of the regression be ~yyit ¼ b0~qq
it
þ ~uuit. The panel DOLS estimator for the

fixed-effects model is bNT, where

ðb
NT

 bÞ ¼
XN
i¼1

XT
t¼1

~qq
it
~qq0
it

" #1 XN
i¼1

XT
t¼1

~qq
it
~uuit

" #
: ð10Þ

We exploit the fact that the limiting behaviour of the regression error ~uuit, is
identical to that of uit. Some algebra reveals that

1

T

XT
t¼1

~xxit~uuit ¼
1

T

XT
t¼1

~xxituit!
D ffiffiffiffiffiffiffiffiffi

Xuu;i
p Z

~BBvidWui where ~BBvi ¼ Bvi 
Z
Bvi:
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We also have

1ffiffiffiffi
T

p
XT
t¼1

~uuit ¼
1ffiffiffiffi
T

p
XT
t¼1
uit  ð1=T Þ 1ffiffiffiffi

T
p

XT
t¼1
uit!

D
Buið1Þ ¼

ffiffiffiffiffiffiffiffiffi
Xuu;i

p
Wuið1Þ;

so we are able to use estimated values of ~uuit to obtain a consistent estimate of
Xuu,i. The T fi 1 limit theory with fixed N for panel DOLS with individual-

specific fixed effects is given in

Proposition 1. (Fixed N, T fi 1 with fixed effects.) Let ~BBvi ¼ Bvi 
R
Bvi.

For the panel DOLS estimator (10), for fixed N as T fi 1,

a. T(cNT ) c) and
ffiffiffiffi
T

p
ðd̂di  diÞ are independent for each i.

b.
ffiffiffiffi
N

p
T ðc

NT
 cÞ!D M1

N mN , where MN ¼ 1
N

PN
i¼1

R
~BBvi~BB

0
vi, and mN ¼

1
N

PN
i¼1

ffiffiffiffiffiffiffiffiffi
Xuu;i

p R
~BBvidWui

� �
.

c. ½
ffiffiffiffi
N

p
TRðc

NT
 cÞ�0½RDNR0�1½

ffiffiffiffi
N

p
TRðc

NT
 cÞ�!D v2ðsÞ, where R is an

s · k restriction matrix, DN ¼ M1
N VNM1

N ; MN ¼ 1
N

PN
i¼1

R
~BBvi~BB

0
vi; and

VN ¼ 1
N

PN
i¼1 Xuu;i

R
~BBvi~BB

0
vi:

d. D̂DNT  DN !
p

0, where D̂DNT ¼ M1
NT V̂VNTM

1
NT , MNT ¼

1
N

PN
i¼1

1
T 2
PT
t¼1 ~xxit~xx

0
it

 �h i
; V̂VNT ¼ 1

N

PN
i¼1 X̂Xuu;i 1

T 2
PT
t¼1 ~xxit~xx

0
it

 �
, and X̂Xuu;i

is a consistent estimator of Xuu,i.

The asymptotic independence of T(cNT ) c) and
ffiffiffiffi
T

p
ðd̂di  diÞ as T fi 1

follows for the same reasons as in the single-equation environment and

because T(cNT ) c) converges in distribution to a mixed normal random
vector, the limiting chi-square distribution of the quadratic form in part (c) of

the proposition also follows by the standard argument. The asymptotic

covariance matrix DN can be consistently estimated by DNT and it follows that

under the null hypotheses Rc ¼ r, the Wald statistic

½
ffiffiffiffi
N

p
T ðRc

NT
 rÞ�0½RD̂DNTR

0�1½
ffiffiffiffi
N

p
T ðRc

NT
 rÞ�!D v2ðsÞ ð11Þ

as T fi 1 for any given N.

The sequential limit distribution of cNT is obtained by showing that
the sequence f

R
~BBvi~BB

0
vig

1
i¼1 obeys a law of large numbers for independent

but heterogeneously distributed observations and that the sequence

f
ffiffiffiffiffiffiffiffi
Xuui

p R
~BBvi dWuig1i¼1 obeys a central limit theorem for independent but

heterogeneously distributed observations. The sequential limit theory for panel

DOLS is given in Proposition 2.

Proposition 2. (Sequential limit distribution, fixed effects.) For the panel
DOLS estimator (10), as T fi 1 and then N fi 1,
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a. C
1=2
N

ffiffiffiffi
N

p
T ðc

NT
 cÞ
A Nð0; IkÞ; where CN ¼ ðC1=2

N ÞðC1=2
N Þ0 ¼

M
1
N VNM

1
N ; MN ¼ 1

6N

PN
i¼1 Xvv;i; and VN ¼ 1

6N

PN
i¼1 Xuu;iXvv;i:

b. D̂DNT  CN !
p

0, where D̂DNT is defined in Proposition 1(d).

Controlling for fixed effects results in a shrinkage of the sequential limit

asymptotic variance, compared to when there are no fixed effects. In the case

without fixed effects where ai ¼ 0 for all i, MN ¼ 1
2N

PN
i¼1Xvv;i and

VN ¼ 1
2N

PN
i¼1 Xuu;iXvv;i.

(ii) Fixed effects and heterogeneous trends

We now admit both individual-specific fixed effects and heterogeneous time

trends into the specification. Upon substitution of the projection representation

for the equilibrium error (6) into (1) (with ht ¼ 0 for all t) we have,

yit ¼ ai þ kit þ c0xit þ dizit þ uit: ð12Þ

The time-series average of equation (12) yields

1

T

XT
t¼1
yit ¼ ai þ ki

T þ 1
2

� �
þ c0

1

T

XT
t¼1
xit þ d0i

1

T

XT
t¼1
zit þ

1

T

XT
t¼1
uit; ð13Þ

where we use the fact that 1T
PT
t¼1 t ¼ ðT þ 1Þ=2. To control for the fixed-

effects subtract equation (13) from equation (12) to get

~yyit ¼ ki~tt þ c0~xxit þ d0i~zzit þ ~uuit; ð14Þ

where again we use a ‘tilde’ to denote the deviation of an observation from its

time-series average,

~yyit ¼ yit 
1

T

XT
t¼1
yit;

~xxit ¼ xit 
1

T

XT
t¼1
xit;

~zzit ¼ zit 
1

T

XT
t¼1
zit;

~uuit ¼ uit 
1

T

XT
t¼1
uit;

~tt ¼ t  T þ 1
2

:
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To set up panel DOLS, let kN ¼ (k1, k2,…, kN)¢ be the vector of trend-
slope coefficients, b ¼ ðc0; k0N ; d01; . . . ; d0N Þ

0
be the grand coefficient

vector, and define

~qq0
1t

¼ ð~xx01t ~tt 0 � � � 0 ~zz01t 00 � � � 00Þ0

~qq0
2t

¼ ð~xx02t 0 ~tt � � � 0 00 ~zz02t � � � 00Þ0

..

. ..
.

~qq0
Nt

¼ ð~xx0Nt 0 0 � � � ~tt 00 00 � � � ~zz0NtÞ
0

: ð15Þ

Then the panel DOLS estimator of b is:

b
NT

¼
XN
i¼1

XT
t¼1

~qqit~qq0it

" #1 XN
i¼1

XT
t¼1

~qq
it
~yyit

" #
: ð16Þ

For fixed N, as T fi 1,
ffiffiffiffi
T

p
ðd̂di  diÞ is independent of T(cNT ) c) and

T 3=2ðk̂kN  kN Þ for the standard reasons but T(cNT ) c) and T 3=2ðk̂kN  kN Þ
remain correlated. The T fi 1 limit theory with fixed N for the fixed-effects

model with trend is given in Proposition 3.

Proposition 3. (Fixed N, T fi 1, fixed effects and trends.) Let ~BBvi ¼
Bvi 

R
Bvi. For the panel DOLS estimator (16), for fixed N as T fi 1,

a.
ffiffiffiffi
T

p
ðd̂di  diÞ is independent of T(cNT ) c) and T 3=2ðk̂kN  kN Þ for each i.

b.
T ðc

NT
 cÞ

T 3=2ðk̂kN  kN Þ

� �
!D M1

N mN , where MN ¼ M11;N M0
21;N

M21;N M22;N

� �
;

M11;N ¼ 1
N

PN
i¼1

R
~BBvi~BB

0
vi;M22;N ¼ 1

12
IN ;

M0
21;N ¼ 1ffiffiffi

N
p

R
r~BBv1  1

2

R
~BBv1

� �
; . . . ; 1ffiffiffi

N
p

R
r~BBvN  1

2

R
~BBvN

� �h i
, and

mN¼
" 1ffiffiffi

N
p

PN
i¼1

ffiffiffiffiffiffiffiffiffi
Xuu;i

p R
~BBvidWuih ffiffiffiffiffiffiffiffiffiffi

Xuu;1
p R

rdWu1Wu1ð1Þ2

h i
;...;

ffiffiffiffiffiffiffiffiffiffiffi
Xuu;N

p R
rdWuNWuN ð1Þ2

h ii0
#
:

When T fi 1 then N fi 1, the panel DOLS estimator of the trend-slope
coefficients and the cointegration vector are independent which results in

considerable simplification. The sequential limit theory for panel DOLS in this

case is given in Proposition 4.

Proposition 4. (Sequential limits, fixed effects and trends.) For the panel
DOLS estimator (16), as T fi 1 then N fi 1,

a.
ffiffiffiffi
N

p
T ðc

NT
 cÞ and T 3=2ðk̂kN  kN Þ are independent.
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b. C
1=2
N

ffiffiffiffi
N

p
T ðc

NT
 cÞ
A Nð0; IkÞ, where CN ¼ ðC1=2

N ÞðC1=2
N Þ0 ¼ M

1
11;N �

V11;NM
1
11;N , M11;N ¼ 1

6N

PN
i¼1 Xvv;i; and V11;n ¼ 1

6N

PN
i¼1 Xuu;iXvv;i:

c. D̂DNT  CN !
p

0, where D̂DNT ¼ M1
NT V̂VNTM

1
NT , MNT ¼ 1

NT 2PN
i¼1

PT
t¼1 ~xxit~xx

0
it; V̂VNT ¼ 1

NT 2
PN
i¼1

PT
t¼1 X̂Xuui~xxit~xx

0
it; and X̂Xuu;i is a consistent

estimator of Xuu,i

Notice that the sequential limit distribution for
ffiffiffiffi
N

p
T ðc

NT
 cÞ is

identical to that obtained in Proposition 2 in the absence of trends.

Construction of a Wald test under the sequential limit theory can proceed as

in section (i).

(iii) Fixed effects, heterogeneous trends, and common time effects

The asymptotic distribution theory that we employ requires that observations

are independent across individuals but in applications, one typically

encounters some degree of CSD. In this section we take up the complete

model (1) which allows us to model a limited form of CSD in which the

equilibrium error for each individual is driven in part by ht.
Begin by substituting the projection representation for uyit into equation (1)

to get

yit ¼ ai þ kit þ ht þ c0xit þ d0izit þ uit: ð17Þ

Controlling for the common time effect requires an analysis of the cross-

sectional average of the observations. Because we admit heterogeneity in the

projection coefficients di across i, the resulting cross-sectional averages will
involve sums such as

PN
j¼1 d0jzjt which complicates estimation of the dj

coefficients. The estimation problem can be simplified by proceeding

sequentially and addressing the endogeneity correction separately from

cointegration vector estimation.

To do this, let yzit be the error from projecting each element of yit onto

nit ¼ ð1; t; z0itÞ
0
and xzit ¼ xit  Uinit be the vector of projection errors from

projecting each element of xit onto nit, where Ui is a (k + 2) · pi matrix of

projection coefficients. Substituting the projection representations for yit and

xit into equation (17) gives

yzit ¼ c0xzit þ ht þ uit: ð18Þ

We now work with equation (18) as for the purposes of estimating and

drawing inference about c it is equivalent to equation (17). Now take the

cross-sectional average of equation (18) to get
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1

N

XN
j¼1
yzjt ¼ c0

1

N

XN
j¼1
xzjt

" #
þ ht þ

1

N

XN
j¼1
ujt: ð19Þ

Subtracting equation (19) from equation (18) eliminates the common time

effect giving

yz�it ¼ c0xz�it þ u�it; ð20Þ

where an ‘asterisk’ denotes the deviation of an observation from its cross-

sectional average. That is,

yz�it ¼ yzit  1
N
PN
j¼1
yzjt;

xz�it ¼ xzit  1
N
PN
j¼1
xzjt;

u�it ¼ uit  1
N
PN
j¼1
ujt:

The panel DOLS estimator of c is

c
NT

¼
XN
i¼1

XT
t¼1
xz�it x

z�0
it

" #1 XN
i¼1

XT
t¼1
xz�it y

z�
it

" #
: ð21Þ

As in the case of the fixed-effects model with linear trends, the panel

DOLS estimator of the grand coefficient vector converges to a mixed normal

random vector but T(cNT ) c) and T 3=2ðk̂kN  kN Þ are asymptotically

correlated for fixed N as T fi 1. We omit a statement of the limit theory
for this case. As T fi 1 then N fi 1, however, T(cNT ) c) and

T 3=2ðk̂kN  kN Þ are independent and the limit theory for this case is given
in Proposition 5.

Proposition 5. (Sequential limit distribution.) For the panel DOLS estimator
(21), as T fi 1 then N fi 1,

a.
ffiffiffiffi
N

p
T ðc

NT
 cÞ and T 3=2ðk̂kN  kN Þ are independent.

b. C
1=2
N

ffiffiffiffi
N

p
T ðc

NT
 cÞ
A Nð0; IKÞ, where CN ¼ ðC1=2

N ÞðC1=2
N Þ0 ¼

M
1
11;NV11;NM

1
11;N ; M11;N ¼ 1

6N

PN
i¼1 Xvv;i; and V11;N ¼ 1

6N

PN
i¼1Xuu;iXvv;i:

c. D̂DNT  CN !
p

0 where D̂DNT ¼ M1
11;NT V̂V11;NTM

1
11;NT , M11;NT ¼

1
N

PN
i¼1

1
T 2
PT
t¼1 x

z�
it x

z�0
it

h i
, V̂V11;NT ¼ 1

N

PN
i¼1

ffiffiffiffiffiffiffiffiffi
X̂Xuu;i

q
1
T 2
PT
t¼1 x

z�
it x

z�0
it

h i
; and

X̂Xuu;i is a consistent estimator of Xuu,i.
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Notice that the limit distribution of Proposition 5 is identical to the

sequential limit distribution of Proposition 4. Controlling for fixed effects

again produces a shrinkage of the asymptotic variance, while controlling for

the common time effect requires taking the deviation from the cross-sectional

average. These cross-sectional transformations have no effect on the

sequential asymptotic variance of the estimator.

If the modifications to OLS are successful in removing the correlation

between the equilibrium error uyit and the leads and lags of Dxjt for j ¼ 1,…,N
but the time-specific effects do not fully account for CSD, then the residual

cross-sectional correlation in the projection error uit changes only the formula

for the asymptotic standard errors.6 This is a feasible estimation strategy for a

small to moderate N. But if there remains a correlation between the

equilibrium error and the leads and lags of other equation Dxjt, i „ j, then

panel DOLS exhibits the same sort of second-order asymptotic bias as

pooled OLS as discussed in section II. For small to moderate N, a feasible

solution to this problem is to include leads and lags of Dxjt, j ¼ 1,…,N in the
projection (6).

We close this section by noting that for large N, modelling CSD in panel

data is itself an active area of research and one that has shown itself to be a

thorny problem. What one seeks in this case is a simple parametric structure

that does an adequate job of capturing the long-run covariance structure. Bai

and Ng (2001), Moon and Perron (2002), and Phillips and Sul (2002) study

models in which the error terms in dynamic panel data regressions have a

factor structure, but the implications for such factor models have not been

studied in the panel cointegration context.

IV. Monte-Carlo experiments

In this section, we present some Monte-Carlo experiments to investigate some

small sample properties of panel DOLS and to compare them with single-

equation DOLS in the presence of individual fixed effects and CSD.7 Our data

generating process (DGP) includes two regressors in the cointegrating relation

and is given by

6In this case, the asymptotic variance of panel DOLS is consistently estimated by�PT
t¼1 XtX

0
t

�1�PT
t¼1 XtXuu;TX

0��PT
t¼1 XtX

0
t

�1
where Xt ¼ (x1t,…, xNt) and Xuu,T is a consistent

estimator of the long-run covariance matrix of uit, i ¼ 1,…,N.
7Kao and Chiang (2000) compared the small-sample performance of panel DOLS and panel fully

modified OLS with fixed effects in the case of a single regressor. They found that panel dynamic OLS
performed much better than panel fully modified OLS in removing finite sample bias so we do not
include panel fully modified OLS in the comparison.
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yit ¼ ai þ c1x1;it þ c2x2;it þ git;

Dx1;it ¼ ai þ v1;it;
Dx2;it ¼ v2;it:

Letting wit ¼ (git, v1,it, v2,it)0, �it ¼ (�1,it, �2,it, �3,it)
0, and eit ¼ (e1,it, e2,it, e3,it)

0,
the short-run dynamics are given by

wit ¼ Aiwit1 þ �it;

�it ¼
ffiffiffiffi
/

p
ht þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 /

p
eit;

where for j ¼ 1, 2, 3, i ¼ 1,…,N, ej;it 
i:i:d:Nð0;r2jiÞ; ht ¼ ðh1t; h2t; h3tÞ0,
hjt 
i:i:d:Nð0;r2hjÞ.
We designed the DGP to provide a connection to the empirical work on

money demand of the next section, where the regressors are real income

(which has a drift), and the nominal interest rate (which does not).

Accordingly, we induce a trend into the cointegrating relation through the

drift term ai for the first regressor x1,it and specify the second regressor x2,it to

be a driftless I(1) process. In addition, we model the equilibrium error ai + git,
to admit a more general form of CSD than the common time effect model

considered in the previous section.8 This single-factor model of the short-run

innovations is of the type considered by Phillips and Sul (2002). CSD in the

equilibrium errors is induced by h1t, while h2t and h3t induce cross-sectional
endogeneity between xj,kt and u

y
it, j „ i, k ¼ 1, 2. These features were not

explicitly accounted for in the theoretical analysis, but may be encountered in

empirical work. In the presence of heterogeneous CSD, subtracting off the

cross-sectional average does not completely eliminate CSD. Our interest here

is in evaluating the seriousness of the resulting distortions. The degree of CSD

is modulated by the size of /.
The true value of the cointegration vector is (c1, c2) ¼ (1.0, 0.1). For each

individual i, the values of ai, Ai, and rji are first obtained by a draw from

the uniform distribution then held fixed throughout the experiment. The

persistence in the short-run dynamics are controlled by varying the support of

the uniform distribution from which the elements of Ai are drawn. We

consider three levels of persistence and three alternative degrees of CSD.

Persistence levels can be low (A11,i 
 U[0.3,0.5]), medium (A11,i 
 U[0.5,0.7]), or

8In the common time effect specification, the cross-sectional correlation between individuals i
and j is identical for all i, j. This homogeneous CSD is obtained here by setting A11,i to be
identical across i. That allowing for heterogeneity in A11,i results in heterogeneous CSD can be
seen in the case of an AR(1) where A11,i ¼ qi and all other elements of Ai are set to 0. Then

it can be shown that Corrðgit; gjtÞ ¼ cij ¼ be
ij

ffiffiffiffiffiffiffiffiffi
1 q2i

p ffiffiffiffiffiffiffiffiffi
1 q2j

p
1 qiqj

, where bij ¼
E �1;it�1;jtð Þ

E �2
1;itð ÞE �2

1;jtð Þ
� �1

2

¼
/r2h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/r2h1 þð1/Þr2ið Þ /r2h1 þð1/Þr2jð Þ
p .
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high (A11,i 
 U[0.7,0.9]), and degrees of CSD are either none (/ ¼ 0), low

(/ ¼ 0.3) or high (/ ¼ 0.7). Assignment of the remaining parameter values are

determined by, A21,i 
 U[)0.05,0.05], A12,i 
 U[)0.05,0.05], A23,i 
 U[)0.05,0.05],

A22,i 
 U[0.0,0.4], A33,i 
 U[0.0,0.04], ai 
 U[23,53] · 10)3, r21i 
 U½1;33� � 103,

r22i 
 U½0:25;1:34� � 103, r23i 
 U½2:3;57�, and r2hj ¼ ð1=NÞ
PN
i¼1 r2ji. The

long-run variance Xuu,i is estimated by the prewhitened quadratic spectral

(QSPW) method suggested by Sul, Phillips and Choi (2002). Each experiment

consists of 5,000 random samples of T ¼ 40, 100, or 200 observations on

N ¼ 10 or 20 individuals. The number of leads and lags of Dxit included are
2 (T ¼ 40), 3 (T ¼ 100), and 4 (T ¼ 200). We organize the experiments

according to the following three cases.

Case 1. (No CSD, Variable Persistence). Setting / ¼ 0 yields no CSD.
Persistence levels are low, medium and high.

Case 2. (Homogeneous CSD and Persistence). Setting A11,i ¼ A11,j yields the
homogeneous CSD as in the common time effect specification. We consider high
and low CSD and low, medium and high levels of persistence.

Case 3. (Heterogeneous CSD and Persistence). Allowing A11,i „ A11,j yields
heterogeneous CSD. We consider high and low CSD and low, medium and high
levels of persistence.

We begin with the effective size of nominal 5% and 10% sized tests of the

hypothesis H0: c1 ¼ 1 and H0: c2 ¼ 0.1. To provide a point of comparison,

Table 1 displays the effective size of (single-equation) DOLS tests. Table 2

presents the panel DOLS size results for Case 1. Under low and medium

levels of persistence, the tests are reasonably sized. Size accuracy is seen to

TABLE 1

Effective size of DOLS tests

T Persistence

H0: c1 ¼ 1 H0: c2 ¼ 0.1

5% 10% 5% 10%

40 Low 0.097 0.152 0.093 0.148

Medium 0.118 0.179 0.114 0.174

High 0.179 0.241 0.175 0.239

100 Low 0.100 0.155 0.093 0.151

Medium 0.110 0.170 0.104 0.163

High 0.184 0.250 0.182 0.248

200 Low 0.067 0.128 0.067 0.124

Medium 0.071 0.132 0.074 0.127

High 0.117 0.181 0.114 0.180
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improve with increasing sample size both in the time series as well as in the

cross-sectional dimensions. Under high levels of persistence, the test for c1
remains reasonably sized but the test for c2 becomes slightly mis-sized. This
mis-sizing worsens somewhat as the cross-section increases (e.g. for T ¼ 100,

the 5% test has size of 16% for N ¼ 10 and 25% for N ¼ 20). In comparison

with DOLS, the test for c1 is better sized whereas the test for c2 is roughly
equivalent.

Table 3 reports the effective size of panel DOLS tests under Case 2. For a

low degree of CSD, the size of the test for c1 improves with persistence and is
accurate when the level of persistence is high.9 The length of the time series is

relatively unimportant. Similar results are obtained for the test on c2 under low
CSD. Under high CSD, there is some mis-sizing of the test on c1, which is
comparable with the size of the DOLS test. For the test on c2, size accuracy
improves with the size of the cross-section and overall size distortion is

modest.

Effective size performance of panel DOLS tests under Case 3, shown in

Table 4, is very similar to that under Case 2. Subtracting off the cross-sectional

average works reasonably well as a control for the heterogeneous CSD

considered here.

Table 5 reports quantiles of ĉc1 from DOLS and panel DOLS under Case 3.
Here, it is seen that dramatic precision gains over single-equation DOLS can

be attained in small samples. For T ¼ 40, N ¼ 10 under high persistence and

high CSD, the inter-95 percentile range for DOLS is ()0.304; 2.495) while for

TABLE 2

Effective size of panel DOLS tests. Case 1: No CSD, variable persistence

T Persistence

H0: c1 ¼ 1 H0: c2 ¼ 0.1

N ¼ 10 N ¼ 20 N ¼ 10 N ¼ 20

5% 10% 5% 10% 5% 10% 5% 10%

40 Low 0.092 0.154 0.087 0.142 0.096 0.156 0.082 0.142

Medium 0.076 0.133 0.065 0.126 0.103 0.169 0.104 0.167

High 0.056 0.098 0.039 0.074 0.110 0.180 0.155 0.237

100 Low 0.072 0.122 0.059 0.109 0.071 0.126 0.064 0.118

Medium 0.062 0.111 0.054 0.106 0.080 0.136 0.072 0.127

High 0.051 0.093 0.042 0.091 0.113 0.184 0.159 0.250

200 Low 0.060 0.105 0.060 0.110 0.058 0.113 0.064 0.115

Medium 0.059 0.102 0.058 0.108 0.062 0.121 0.067 0.117

High 0.045 0.097 0.044 0.085 0.090 0.167 0.147 0.228

9This is largely a feature of Sul, Phillips and Choi’s (2002) QSPW estimator of the long-run
variance which works well under high persistence.
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panel DOLS is (0.883; 1.152). Precision gains continue to accrue when

T ¼ 200. For N ¼ 10, under high persistence and high CSD, the panel DOLS

inter-95 percentile range of (0.979; 1.028) whereas for DOLS it is (0.89;

1.122). Precision advantages are also seen to accrue from enlarging the cross-

sectional dimension. Under high persistence and high CSD, T ¼ 40, the inter-

95 percentile range shrinks from (0.883; 1.152) for N ¼ 10 to (0.924; 1.102)

for N ¼ 20.

Table 6 displays analogous quantile information for ĉc2. Here, the benefits
from the cross-section dimension are largely obtained with N ¼ 10. For

T ¼ 40, under high persistence and CSD, the inter-95 percentile range of

panel DOLS is (0.096; 0.110), which is an improvement over the (0.054;

0.170) range for DOLS.

We summarize the Monte-Carlo results with four general observations.

First, for given T, the empirical size of the panel DOLS t-tests worsens slightly

when N is increased from 10 to 20. Secondly, size distortion, while not

particularly severe at T ¼ 40 is reasonably small at T ¼ 200. Thirdly,

subtracting the cross-sectional average to control for CSD works reasonably

TABLE 3

Effective size of panel DOLS tests. Case 2: homogeneous CSD

T CSD Persistence

H0: c1 ¼ 1 H0: c2 ¼ 0.1

N ¼ 10 N ¼ 20 N ¼ 10 N ¼ 20

5% 10% 5% 10% 5% 10% 5% 10%

40 Low Low 0.103 0.160 0.111 0.182 0.106 0.165 0.091 0.157

Medium 0.087 0.147 0.088 0.150 0.127 0.201 0.083 0.142

High 0.069 0.113 0.051 0.092 0.165 0.245 0.069 0.117

100 Low Low 0.067 0.128 0.079 0.136 0.073 0.129 0.065 0.117

Medium 0.063 0.118 0.073 0.124 0.084 0.143 0.059 0.113

High 0.050 0.094 0.053 0.098 0.140 0.227 0.067 0.129

200 Low Low 0.068 0.131 0.063 0.115 0.074 0.128 0.050 0.098

Medium 0.068 0.122 0.057 0.110 0.075 0.127 0.045 0.090

High 0.047 0.098 0.046 0.097 0.120 0.204 0.053 0.103

40 High Low 0.105 0.167 0.161 0.234 0.168 0.240 0.199 0.267

Medium 0.096 0.152 0.131 0.210 0.167 0.246 0.151 0.217

High 0.065 0.112 0.082 0.139 0.155 0.230 0.088 0.135

100 High Low 0.094 0.155 0.133 0.206 0.100 0.161 0.124 0.195

Medium 0.087 0.147 0.123 0.186 0.113 0.179 0.113 0.178

High 0.064 0.115 0.107 0.173 0.150 0.241 0.098 0.161

200 High Low 0.102 0.164 0.130 0.198 0.089 0.145 0.091 0.146

Medium 0.105 0.163 0.128 0.200 0.090 0.152 0.083 0.144

High 0.087 0.147 0.124 0.191 0.134 0.216 0.080 0.144
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well even in the presence of heterogenous CSD. Fourthly, panel DOLS is

much more precise than single-equation DOLS.

V. Long-run money demand

We now employ panel DOLS to estimate coefficients of the long-run M1

demand function. Economists have long been interested in obtaining precise

estimates of money demand for at least two reasons. First, knowing the

income elasticity of money demand helps in determining the rate of

monetary expansion that is consistent with long-run price level stability.

Secondly, knowing the interest elasticity of money demand aids in calculating

the area under the demand curve and to assess the welfare costs of long-run

inflation (Baily, 1956). Additionally, because a stable money-demand func-

tion is a building block of the IS-LM model, economists have historically

been interested in knowing how well this particular aspect of the model

performed. While this motive has become less important in the era of

dynamic general equilibrium models, Lucas (1988) shows that such a

TABLE 4

Effective size of panel DOLS tests. Case 3: heterogeneous CSD

T CSD Persistence

H0: c1 ¼ 1 H0: c2 ¼ 0.1

N ¼ 10 N ¼ 20 N ¼ 10 N ¼ 20

5% 10% 5% 10% 5% 10% 5% 10%

40 Low Low 0.104 0.161 0.101 0.166 0.098 0.159 0.091 0.156

Medium 0.083 0.134 0.082 0.140 0.109 0.172 0.096 0.155

High 0.059 0.104 0.050 0.085 0.131 0.198 0.124 0.198

100 Low Low 0.075 0.134 0.082 0.140 0.071 0.128 0.068 0.123

Medium 0.069 0.121 0.076 0.131 0.085 0.144 0.077 0.132

High 0.051 0.099 0.051 0.099 0.112 0.187 0.138 0.229

200 Low Low 0.042 0.092 0.061 0.113 0.040 0.088 0.055 0.105

Medium 0.040 0.082 0.057 0.112 0.046 0.088 0.056 0.104

High 0.040 0.076 0.042 0.091 0.066 0.131 0.110 0.190

40 High Low 0.114 0.172 0.147 0.217 0.152 0.221 0.206 0.283

Medium 0.094 0.142 0.118 0.190 0.147 0.215 0.167 0.234

High 0.058 0.098 0.053 0.094 0.142 0.213 0.089 0.147

100 High Low 0.098 0.165 0.138 0.202 0.098 0.165 0.137 0.207

Medium 0.088 0.141 0.131 0.199 0.108 0.173 0.131 0.191

High 0.061 0.110 0.082 0.138 0.146 0.225 0.095 0.159

200 High Low 0.090 0.150 0.128 0.199 0.068 0.119 0.102 0.164

Medium 0.088 0.147 0.145 0.207 0.074 0.131 0.102 0.166

High 0.070 0.124 0.119 0.190 0.108 0.188 0.087 0.145
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neoclassical model with a cash in advance constraint generates a standard

money demand function.

We follow Stock and Watson (1993), Ball (2001), and Hoffman et al.

(1995) and approach long-run money demand as a cointegrating relationship.

Our analysis suggests that instability exhibited by time-series estimates from

the literature do not reflect underlying shifts in behavioural relationships

but instead indicate inherent difficulties associated with estimation using

TABLE 5

Quantiles for first regressor slope (Case 3): panel DOLS and DOLS

CSD Persistence

DOLS (N ¼ 10) Panel DOLS (N ¼ 10) Panel DOLS (N ¼ 20)

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

T ¼ 40

None Low 0.460 0.999 1.512 0.952 1.001 1.048 0.976 1.000 1.025

Med 0.225 0.999 1.769 0.934 1.001 1.070 0.967 1.002 1.038

High )0.192 1.010 2.420 0.890 1.007 1.137 0.937 1.008 1.078

Low Low 0.456 0.999 1.529 0.951 1.000 1.052 0.973 1.000 1.029

Med 0.206 0.996 1.782 0.931 1.001 1.075 0.963 1.003 1.044

High )0.259 1.006 2.435 0.882 1.010 1.150 0.936 1.011 1.090

High Low 0.432 0.999 1.536 0.956 1.000 1.047 0.971 1.000 1.031

Med 0.181 0.996 1.783 0.936 1.001 1.073 0.960 1.003 1.049

High )0.304 1.004 2.495 0.883 1.011 1.152 0.924 1.012 1.102

T ¼ 100

None Low 0.906 1.000 1.094 0.988 1.000 1.012 0.994 1.000 1.006

Med 0.852 1.000 1.146 0.982 1.000 1.018 0.991 1.000 1.010

High 0.692 1.002 1.347 0.966 1.003 1.039 0.981 1.002 1.022

Low Low 0.904 1.000 1.095 0.985 1.000 1.016 0.991 1.000 1.009

Med 0.850 1.000 1.150 0.978 1.000 1.023 0.988 1.001 1.014

High 0.682 1.001 1.369 0.961 1.005 1.052 0.978 1.004 1.030

High Low 0.901 1.000 1.099 0.986 1.000 1.014 0.991 1.000 1.009

Med 0.847 0.999 1.154 0.978 1.000 1.022 0.987 1.001 1.015

High 0.666 1.000 1.378 0.957 1.005 1.056 0.974 1.004 1.036

T ¼ 200

None Low 0.970 1.000 1.029 0.996 1.000 1.004 0.998 1.000 1.002

Med 0.955 1.000 1.045 0.994 1.000 1.006 0.997 1.000 1.004

High 0.898 1.000 1.107 0.987 1.001 1.014 0.993 1.000 1.008

Low Low 0.970 1.000 1.030 0.993 1.000 1.007 0.996 1.000 1.004

Med 0.955 1.000 1.047 0.990 1.000 1.010 0.995 1.000 1.006

High 0.895 1.000 1.117 0.983 1.002 1.024 0.991 1.001 1.012

High Low 0.969 1.000 1.031 0.994 1.000 1.006 0.996 1.000 1.004

Med 0.952 1.000 1.048 0.990 1.000 1.010 0.994 1.000 1.007

High 0.890 1.001 1.122 0.979 1.002 1.028 0.987 1.002 1.018
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relatively short sample spans in environments with persistent short-run

dynamics. Combining observations across countries allows us to obtain

relatively sharp and stable estimates of money demand elasticities and the

panel cointegration approach seems well suited to take up King’s (1988)

suggestion to extend the money-demand analysis beyond the US. In his

words, ‘the results of such investigations would provide us with sharper

estimates of the long run values of Friedman’s (1956) ‘‘‘numerical constants

TABLE 6

Quantiles for second regressor slope (Case 3): panel DOLS and DOLS

CSD Persistence

DOLS (N ¼ 10) Panel DOLS (N ¼ 10) Panel DOLS (N ¼ 20)

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

T ¼ 40

None Low 0.072 0.100 0.129 0.098 0.100 0.102 0.099 0.100 0.101

Med 0.065 0.101 0.142 0.098 0.100 0.103 0.098 0.100 0.101

High 0.050 0.105 0.172 0.097 0.102 0.107 0.094 0.098 0.101

Low Low 0.075 0.100 0.127 0.098 0.100 0.102 0.099 0.100 0.101

Med 0.068 0.101 0.140 0.098 0.101 0.103 0.098 0.100 0.102

High 0.052 0.105 0.172 0.097 0.102 0.108 0.094 0.098 0.102

High Low 0.076 0.100 0.126 0.098 0.100 0.102 0.098 0.100 0.102

Med 0.069 0.101 0.139 0.097 0.101 0.104 0.097 0.100 0.103

High 0.054 0.105 0.170 0.096 0.103 0.110 0.092 0.098 0.104

T ¼ 100

None Low 0.093 0.100 0.107 0.099 0.100 0.101 0.100 0.100 0.100

Med 0.091 0.100 0.111 0.099 0.100 0.101 0.099 0.100 0.100

High 0.085 0.102 0.128 0.099 0.101 0.102 0.098 0.099 0.101

Low Low 0.094 0.100 0.106 0.099 0.100 0.101 0.100 0.100 0.100

Med 0.092 0.100 0.110 0.099 0.100 0.101 0.099 0.100 0.101

High 0.086 0.102 0.125 0.099 0.101 0.103 0.098 0.099 0.101

High Low 0.094 0.100 0.106 0.099 0.100 0.101 0.099 0.100 0.101

Med 0.092 0.100 0.110 0.099 0.100 0.101 0.099 0.100 0.101

High 0.087 0.102 0.124 0.099 0.101 0.104 0.097 0.099 0.101

T ¼ 200

None Low 0.097 0.100 0.103 0.100 0.100 0.100 0.100 0.100 0.100

Med 0.096 0.100 0.105 0.100 0.100 0.100 0.100 0.100 0.100

High 0.094 0.101 0.113 0.100 0.100 0.101 0.099 0.100 0.100

Low Low 0.102 0.100 0.098 0.100 0.100 0.100 0.100 0.100 0.100

Med 0.103 0.100 0.096 0.100 0.100 0.100 0.100 0.100 0.100

High 0.105 0.099 0.089 0.100 0.100 0.099 0.101 0.100 0.100

High Low 0.102 0.100 0.098 0.100 0.100 0.100 0.100 0.100 0.100

Med 0.103 0.100 0.096 0.100 0.100 0.099 0.100 0.100 0.100

High 0.105 0.099 0.090 0.101 0.099 0.098 0.101 0.100 0.099
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of monetary behavior’’’ when we approach the difficult problem of the short

run demand for money’’.

The equation that we estimate is,

ln
Mit
Pit

� �
¼ ai þ kit þ ht þ cy ln Yit þ crRit þ u

y
it ð22Þ

for i ¼ 1,… , 19, where Mit is an M1 measure of money, Pit is the price level,

Yit is real GDP, and Rit is a nominal short-term interest rate. Data definitions

and sources are available in the unpublished appendix. In addition to country

specific effects, ai, we allow for possibly heterogeneous linear trends and

common time effects. These trends are included to capture changes in the

financial technology that affects money demand independent of income and

the opportunity cost of holding money.

(i) Pre-testing: cointegration and homogeneity restrictions

Panel DOLS estimation of equation (22) requires that the equilibrium errors

are stationary and that the cointegrating vectors for each country must be

identical. To investigate the stationarity of the equilibrium errors, we employ

Pedroni’s (1999) panel-t test. This results in the rejection of the null

hypothesis of no cointegration at the 0.1% level whether heterogeneous linear

trends and common time effects are included or not.10

Next, we conduct a Wald test of the homogeneity restrictions on the

cointegrating vector. When trends are omitted from the regression, the evi-

dence against homogeneity is mixed. The asymptotic test rejects the restric-

tions in this case, but in some unreported Monte-Carlo experiments, we found

moderate size distortion in the Wald test for sample sizes of N ¼ 19 and

T ¼ 40. Using a size adjustment from these experiments, the homogeneity

restrictions on income is rejected at the 5% level but not for the interest rate

(P ¼ 0.30). However, when we impose homogeneity on the interest rate

slope, the test for slope homogeneity on income is not rejected (P ¼ 0.70).

When heterogeneous linear trends are included, the evidence supporting

homogeneity strengthens. Here, we obtain a P-value of 0.63 for the test of

homogeneity on the income coefficient and a P-value of 0.22 for the test

of homogeneity on the interest rate coefficient.

10We also confirmed these cointegration test results by using Im, Pesaran and Shin (1997) and
Maddala and Wu (1999) panel unit root tests under the assumption that the cointegrating vector is
known to be (1, )1.0,0.05). The justification for using these values is that 1.0 is a typical value of the
income elasticity estimated in the literature while a common estimate of the interest rate semi
elasticity )0.05.
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(ii) Comparison between single-equation and panel DOLS estimates

Our panel DOLS estimates use two leads and two lags of D ln Yit and DRit in
the regressions. Point estimates and asymptotic standard errors are reported in

Table 7.

Single-equation DOLS estimates are seen to display such cross-sectional

variability that they are difficult to interpret. In DOLS regressions without

trend, the income elasticities are all positive, ranging from 0.134 (Belgium) to

a whopping 2.64 (Norway), but the interest semi-elasticity has the wrong sign

for Belgium, France, Ireland, and Japan. When a trend is included in the

regression, income elasticity estimates are negative for Finland, Iceland,

Norway, and New Zealand, and interest semi-elasticity estimates are positive

for Finland, France, and Iceland. If we maintain an underlying belief that

the financial systems and transactions technologies across modern economies

are essentially similar, the cross-sectional variability in these estimates must

reflect the inherent difficulty of obtaining good estimates rather than evidence

of disparate economic behavior.

TABLE 7

Single-equation and panel dynamic OLS estimates of long-run money demand

Country

No trend With trend

ĉcy (s.e.) ĉcR (s.e.) ĉcy (s.e.) ĉcR (s.e.) Trend

Austria 0.901 (0.139) )0.009 (0.029) 1.552 (0.349) )0.037 (0.026) )0.001
Belgium 0.134 (0.218) 0.009 (0.039) 1.183 (0.444) )0.033 (0.026) 0.002

Denmark 1.460 (0.170) )0.043 (0.009) 0.684 (0.321) )0.036 (0.006) 0.009

Finland 1.019 (0.634) )0.006 (0.114) )0.740 (0.881) 0.009 (0.011) )0.005
France 0.677 (0.213) 0.010 (0.020) 0.842 (0.699) 0.004 (0.031) 0.003

Germany 1.548 (0.033) )0.019 (0.008) 1.691 (0.197) )0.023 (0.009) 0.003

Iceland 0.594 (0.161) )0.010 (0.005) )0.451 (1.093) )0.004 (0.008) 0.004

Ireland 0.507 (0.169) 0.022 (0.022) 1.670 (2.805) 0.015 (0.029) 0.005

Netherlands 1.112 (0.111) )0.045 (0.020) 0.309 (0.415) )0.011 (0.022) 0.003

Norway 2.641 (0.450) )0.160 (0.046) )0.676 (2.154) )0.092 (0.060) 0.013

Portugal 0.517 (0.136) )0.037 (0.017) 1.624 (0.379) )0.043 (0.011) 0.010

Spain 1.203 (0.091) )0.030 (0.008) 1.203 (0.190) )0.030 (0.009) 0.003

Switzerland 1.020 (0.208) )0.062 (0.021) 1.447 (0.482) )0.053 (0.021) 0.011

UK 1.738 (0.097) )0.089 (0.008) 2.128 (0.726) )0.089 (0.008) 0.016

Japan 0.889 (0.599) 0.009 (0.200) 1.798 (0.415) )0.076 (0.061) 0.016

Australia 0.926 (0.136) )0.043 (0.012) 0.068 (0.329) )0.048 (0.007) 0.002

New Zealand 1.349 (0.539) )0.076 (0.026) )1.233 (1.149) )0.084 (0.018) )0.001
Canada 1.245 (0.219) )0.057 (0.024) 2.420 (0.903) )0.078 (0.024) )0.013
US 0.428 (0.074) )0.035 (0.008) 1.022 (0.417) )0.039 (0.007) )0.001

Panel 0.860 (0.092) )0.020 (0.007) 1.079 (0.264) )0.022 (0.006) —

Panela 0.820 (0.105) )0.017 (0.005) 0.986 (0.336) )0.016 (0.005) —

Note: aControls for common time effect.
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Panel DOLS estimates are shown at the bottom of Table 7. When the panel

regression omits trends, we estimate 0.86 (asymptotic s.e. ¼ 0.09) and the

interest semi-elasticity to be )0.02 (asymptotic s.e. ¼ 0.01). When we include

heterogeneous trends, we estimate the income elasticity to be 1.08 (asymptotic

s.e. ¼ 0.26) and the interest semi-elasticity to be )0.02 (asymptotic

s.e. ¼ 0.01). Results obtained from controlling for CSD are very similar.

To further illustrate the problem of estimation instability in the time

dimension, we constructed recursive single-equation DOLS coefficient

estimates for the US, UK, France, and Japan and panel DOLS for all 19

countries. Recursive DOLS estimates from 1979 to 1995 for both the income

elasticity and interest semi-elasticity exhibit substantially more variability than

the recursive panel DOLS estimates and in several instances even change sign.

These results are also contained in the unpublished appendix.

VI. Conclusions

Heterogeneity and persistence in short-run dynamics can create substantial

variability in single-equation cointegration vector point estimates. The result is

that these estimators can be quite sensitive to the particular time span of the

observations as well as to the particular individual being studied. This small

sample fragility can be encountered in spite of the superconsistency of these

estimators.

In these environments, panel DOLS can provide much more precise

estimates. Panel DOLS is straightforward to compute and relevant test

statistics have standard asymptotic distributions. The asymptotic distributions

were found to provide reasonably close approximations to the exact sampling

distributions in small samples.

We applied the panel DOLS method to estimate the long-run money

demand function using a panel of 19 countries with annual data from 1957 to

1996. The estimates in which we have the most confidence are an income

elasticity near 1 and an interest rate semi-elasticity of )0.02.

Final Manuscript received: April 2003
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