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IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
{rohitk,hildrum,sujay,drajan,jlwolf,klwu,hcma,bgedik}@us.ibm.com

Abstract. In this paper, we describe an optimization scheme for fus-
ing compile-time operators into reasonably-sized run-time software units
called processing elements (PEs). Such PEs are the basic deployable
units in System S, a highly scalable distributed stream processing mid-
dleware system. Finding a high quality fusion significantly benefits the
performance of streaming jobs. In order to maximize throughput, our
solution approach attempts to minimize the processing cost associated
with inter-PE stream traffic while simultaneously balancing load across
the processing hosts. Our algorithm computes a hierarchical partition-
ing of the operator graph based on a minimum-ratio cut subroutine. We
also incorporate several fusion constraints in order to support real-world
System S jobs. We experimentally compare our algorithm with several
other reasonable alternative schemes, highlighting the effectiveness of our
approach.

Keywords: stream processing, operator fusion, graph partitioning,
optimization, scheduling.

1 Introduction

We live in an increasingly data-intensive age. By some estimates [1], roughly
15 petabytes of new data are generated every day. It is becoming an ever more
mission critical goal for corporations and other organizations to process, ana-
lyze and make real-time operational decisions based on immense quantities of
data being dynamically generated at high rates. Distributed systems built to
handle such requirements, called stream processing systems, are now becoming
extremely important. Such systems have been extensively studied in academic
settings [2, 3, 4, 5, 6, 7, 8], and are also being implemented in industrial envi-
ronments [9, 10]. The authors of this paper are involved in one such stream
processing project, known as System S [11,12,13,14,15,16,17,18,19,20], which
is highly scalable distributed computer system middleware designed to support
complex analytical processing. It has been evolving for the past six years.

1.1 Operator Graphs and the Fusion Problem

Application development in System S is facilitated by the spade development
environment. Among other things, spade defines a programming model based on
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type-generic streaming operators, as well as a stream-centric language to compose
these operators into parameterizable, distributed stream processing applications.
In this model, depicted in Figure 1(a), an application is organized as a data flow
graph consisting of operators at the nodes connected by directed edges called
streams which carry data from the source to destination operators. Examples of
streaming operators include functors (such as projections, windowed aggregators,
filters), stream punctuation markers, and windowed joins. spade also allows
flexible integration of complex user-defined constructs into the application.

(a) Operator-level Data Flow Graph (b) PE-level Data Flow Graph

Fig. 1. Operators, PEs and Data Flow Graphs

The operator-level graph of Figure 1(a) represents a logical view of the appli-
cation. When the application is executed on a System S cluster, these operators
must be distributed onto the compute nodes for execution. From the point of
view of the Operating System (OS) on a node, the unit of execution is a process.
One of the main tasks of the spade compiler is to convert the logical operator-
level data flow graph into a set of executables that can be run on the cluster
nodes. A System S application executable is called a processing element (PE),
which serves as a container for one or more operators, and maps to a process
at the OS level. Coalescing several operators into a single PE is called fusion
(described in detail in [13]). A compiled spade-generated application becomes
a physical data flow graph consisting of PEs with data streams flowing between
them. This is depicted in Figure 1(b), with the shaded regions representing PEs.
One can think of the PEs as essentially supernodes in the original operator data
flow graph.

When data is sent on a stream between two operators in the same PE, the
spade compiler converts it into a function call invocation of the “downstream”
operator by the “upstream” operator. Sending data on streams between PEs
is performed by inter-process communication, such as TCP sockets. Thus, only
the inter-PE (physical) streams remain as edges in the PE-level graph. As a
result of this transformation, passing data on an intra-PE stream has almost no
processing cost compared to an inter-PE stream, which requires inter-process
communication.
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The goal of this paper is to tackle the fusion problem: how to map a logi-
cal operator-level graph into an optimal physical PE-level graph. A good fusion
algorithm is critical to enable high-performance distributed stream processing
applications that can be flexibly deployed on heterogenous hardware. But there
are tradeoffs involved. To see this, consider the two extreme solutions to the op-
erator fusion problem. On one end of the spectrum, suppose all operators were
fused into a single PE. This solution eliminates all communication cost because
all downstream operators are invoked via function calls. However, the resulting
PE is a single process which is limited to one node, and does not exploit the
available hardware parallelism of multiple nodes. On the other end of the spec-
trum, suppose no operators were fused, each operator corresponding to its own
PE. If the PEs were well distributed on the nodes, they would exploit the avail-
able hardware resources. However, they would incur significant communication
cost. The ideal solution would be someplace in between, so that fusion is used
to reduce communication cost while providing flexibility to exploit the available
compute capacity across multiple nodes. Our experiments show that relative to
the unfused case, a good fusion algorithm allows the application to achieve over
3 times higher throughput on the same set of resources.

1.2 Our Contributions

In this paper, we describe cola, a profile-driven fusion optimizer, which oper-
ates as part of the spade compilation process. cola supports an environment
with heterogeneous hosts, while allowing the user to specify a variety of impor-
tant real-world constraints about the fusion. Its input is information about an
application being compiled by spade, along with some attributes of a set of
representative System S hosts. We say cola is profile-driven since it relies on
application information in the form of performance metrics indicating the CPU
demands of the operators and data rates of each stream.

Although we use the phrase fusion, cola works from the top down rather than
from the bottom up. Starting with all operators fused together into a single PE,
the cola algorithm iteratively splits “large” PEs into two separate “smaller”
PEs by solving a specially formulated graph partitioning scheme. Then a PE
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Fig. 2. Iterative graph partitioning in cola



COLA: Optimizing Stream Processing Applications via Graph Partitioning 311

scheduler, serving as a compile time surrogate for the run time scheduler, hypo-
thetically assigns the resulting PEs to potential hosts in an attempt to balance
the load. If the combined solution to the graph partitiong and PE scheduling
problems is not satisfactory, an oracle chooses one of the current PEs to split
next, and the process iterates. Finally, the best solution found is chosen as cola

output, and the fused PEs are compiled. Several sample cola iterations are
shown in the format of a binary tree in Figure 2. At the root of the tree all
operators are in one PE. The PEs created by solving the first graph partitioning
problem are shown at depth 2. The oracle then picks one of these PEs to par-
tition further (in this example, the first), and these PEs are shown at depth 3.
And so the process continues. At the end of the last iteration the leaf nodes of
the binary tree (shown shaded) represent the output cola PEs.

In this paper, we describe two variants of cola. The first version, called Basic
cola, generates a set of partitions that minimizes the communication cost, while
ensuring that the fused PEs will still “fit” within the CPU capacities of the
available nodes. While this basic version is not as sophisticated as the second
version, it does illuminate several key ideas and components of the overall design.
It also suffices for many applications. The second version is called Advanced
cola. In addition to the goals of Basic cola, it (a) attempts to balance the
load across the nodes, and (b) enables the user to restrict the fusion via a set
of real-world constraints on the operators and PEs. We support six different
types of constraints, three of which are resource matching (an operator requires
a host with specific attributes such as CPU type), PE exlocation (operators
cannot be fused together), and host colocation (operators must go on the same
host). We retain and enhance the graph partitioning scheme used for Basic cola,
and introduce an integer programming formulation and solver to handle the PE
scheduling problem in a more precise manner. The basic operator fusion problem
has been tackled [13] using a greedy heuristic. We will show in this paper that
cola can provide a significant improvement over this heuristic. No other work
to our knowledge has attempted to address the full version of the fusion problem
with additional constraints.

Note that although cola does consider the actual target system during its op-
eration, it is not the same as the System S runtime scheduler called soda [18].
When an application (job) is actually executed on the system, it is soda that
manages the job. In particular, soda provides functionality such as admission
control (based on available resources), as well as load-balancing the cluster
among multiple jobs and dynamically adapting to changing load conditions. For
its evaluation purposes, cola, which is invoked only at compile time, includes a
simpler PE placement mechanism that mimics the full soda algorithm.

Our contributions in this paper include the following.

– A new scheme for fusing spade operators into nearly optimal PEs in System

S, appropriate for general, heterogeneous processing host environments, and
working synergistically with the scheduler.

– Support within the scheme for a wide variety of additional real-world con-
straints.
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– A new and practical generalization of a classic graph partitioning problem,
and a novel solution scheme.

– An effective compile-time PE scheduler which mimics the soda System S

run-time scheduler.
– Experimental evidence suggesting that the cola scheme has a major impact

on the performance of System S.

The remainder of this paper is organized as follows. Section 2 describes the Basic
cola problem formulation and the solution approach. In Section 3, we describe
the formulation and solution strategy for Advanced cola. Experiments showing
the performance of the Basic cola variant are described in Section 4. (The
infrastructure to support the constraints is not yet available in System S, so
we defer experiments involving the Advanced cola scheme for now.) Finally, in
Section 5 we give conclusions and list future work.

2 Basic COLA

2.1 Problem Formulation

Consider a directed graph G = (V, E) in which the vertices V represent the
spade operators and the directed edges E represent the streams flowing between
the operators. Assume that we are given operator costs wv ≥ 0 for v ∈ V that
represent the CPU costs of the corresponding operators, and communication
costs we ≥ 0 for e ∈ E that represent the CPU costs due to sending and receiving
tuples associated with the corresponding streams. (We will measure all CPU
costs in terms of millions of instructions per second, or mips .) This input data
is computed in spade via the use of efficient profiling methodology [13]. For a
subset S ⊆ V , let δ(S) denote the set of edges with exactly one end-point in S.
Let the size of a subset S ⊆ V be defined as

size(S) =
∑
v∈S

wv +
∑

e∈δ(S)

we. (1)

Intuitively speaking, size(S) denotes the total CPU utilization that a PE consist-
ing of the subset of operators S would incur. Recall that the streams contained
completely inside a PE are converted into function calls during compilation
and incur negligible CPU cost. For two sets S and T , we denote the set differ-
ence (set of elements of S that are not elements of T ) by S � T . To simplify
the notation, we denote w(S) =

∑
v∈S wv and w(δ(S)) =

∑
e∈δ(S) we. Thus,

size(S) = w(S) + w(δ(S)).
Assume that we are also given a list of hosts H = {h1, . . . , hk} with their

CPU speed capacities B1, . . . , Bk, also in mips . The cola fusion optimization
problem can be stated as follows: find a fusion of the operators into PEs and an
assignment of the PEs to hosts such that the total CPU cost of a host is at most
its capacity and the total communication cost across the PEs is minimized. More
formally, the problem is to partition V into PEs S = {S1, . . . , St} and compute
an assignment function π : S → H such that
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(i). for any hi ∈ H, we have
∑

S∈S:π(S)=hi
size(S) ≤ Bi, and

(ii).
∑

S∈S w(δ(S)) is minimized.

Expression (i) describes scheduling feasibility: The assigned operators must fit
on the hosts. Recall that in this Basic cola variant we do not require that the
load be balanced well, just acceptably. The expression (ii) measures the total
communication cost across the PEs. Technically, it is twice the total commu-
nication cost across the PEs, since each edge going between different PEs is
counted coming and going. This multiplicative factor does not, of course, affect
the graph partitioning optimization in any way. This problem can be shown to
be NP-hard by a reduction from the balanced cut problem [21].

As an application developer, one is primarily interested in maximizing the
amount of data that is processed by the job. This can be measured as the ag-
gregate data rate at the source (input) operators of the job, and is commonly
referred to as ingest rate or throughput. Since this metric is hard to model as a
function of the operator fusion, cola attempts to minimize the total inter-PE
communication as a surrogate.

2.2 Solution Approach

1. Run Pre-processor
2. Use PE scheduler to compute an LPT schedule
3. Repeat until the schedule is feasible:

(a) Use Oracle to identify PE p to split next
(b) Use Graph Partitioner to split p into two PEs
(c) Use PE scheduler to compute an LPT schedule

4. Run Post-processor

The pseudocode of the Basic cola algorithm is given above. We will go into
the key components in more detail below, but we first describe a high-level view
of the scheme. To begin with, a pre-processor is used to “glue” certain adjacent
operators together provided doing so would not affect the optimality of the final
PE solution. Once these operators are identified we will simply revise the problem
definition and treat the glued operators from then on as super operators. Then
the main body of the scheme begins. At any point, the cola algorithm maintains
a current partitioning S = {S1, . . . , St} of the given graph into PEs. Initially, it
places all the operators into a single PE, so that t = 1 and S1 = V . The PE
scheduler then finds an assignment π of PEs to hosts. Next, cola checks to see
if expression (i) is satisfied. If not, the oracle picks the next PE to split, the
graph partitioner performs the split, attempting to minimize expression (ii), and
the process iterates. At some point the PE assignments should become feasible.
(For ease of exposition we will not discuss the handling of pathological cases,
for example, one in which a single operator is too large to schedule.) Finally, a
post-processor is employed in an effort to improve the solution slightly before
the PEs are output.
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Pre-processor. The pre-processor performs certain immediate fusions of adja-
cent operators into super operators, motivated by the following lemma. Essen-
tially, the lemma proves that if, for any vertex v, the communication cost of one
its edges (say, e = (u, v)) is larger than the sum of the operator cost of the vertex
and the communication costs of all its other incident edges, then the edge e can
be collapsed by fusing vertices u and v. Thus, the pre-processor fuses adjacent
operators by collapsing edges with sufficiently large communication costs.

Lemma 1. Consider a directed edge e = (u, v) ∈ E from operator u to v and
suppose we ≥ min{wu + w(δ({u}) � {e}), wv + w(δ({v}) � {e})} holds. There
exists an optimum solution in which u and v belong to the same PE. Here, for
two sets X and Y , X �Y denotes the set with the elements from X that are not
in Y .

Proof. Consider any feasible solution in which u and v belong to distinct PEs S1
and S2 respectively. It is enough to show how to modify this solution so that u
and v belong to the same PE without increasing its cost or violating its feasibility.
Assume without loss of generality that we ≥ wu + w(δ({u})�{e}). In this case,
we move u from S1 to S2. That is, we let S′

1 ← S1�{u} and S′
2 ← S2∪{u}. It is

easy to see that size(S′
1) ≤ size(S1)−wu +w(δ({u})�{e})−we ≤ size(S1) and

size(S′
2) ≤ size(S2) + wu + w(δ({u}) � {e})− we ≤ size(S2). Furthermore, the

new objective value is at most the old objective value plus w(δ({u})�{e})−we ≤
0. Thus the proof is complete.

The pre-processor iteratively fuses pairs of operators {u, v} for which the condi-
tion in the above lemma holds. Once we fuse {u, v} into a super operator U , we
update its weight as wU = wu +wv and the weight of the edges incident to U as
wUx =

∑
x∈V �{u,v}(wux + wvx) and wxU =

∑
x∈V �{u,v}(wxu + wxv). The super

operators are simply treated operators in the following iterations. Our exper-
iments show that this pre-processing step, while employed rather rarely, helps
improve the quality of the final solution.

The resulting graph with all (super and other) operators placed in a single
PE is then employed in the first iteration of the main body of the scheme.

PE Scheduler. Given a current set of PEs S = {S1, . . . , St}, the role of the
scheduler in the Basic cola scheme is to determine if these PEs can be feasibly
scheduled on the given hosts H. That is, it tries to find an assignment function π :
S → H such that expression (i) is satisfied. To find a relatively good assignment
quickly we borrow and modify for our needs the well-known Longest Processing
Time first (LPT) scheduling scheme [22]. The LPT scheme enjoys several near-
optimality properties [22] and is simple to implement. As its name hints, LPT
processes the PEs in order of decreasing size. The intuition is that by doing
so this greedy scheme will dispense with the largest PEs in the beginning, and
then “recover” the load balance by dealing with the smallest PEs in the end. So
we order the PEs by size, and reindex so that size(S1) ≥ · · · ≥ size(St). LPT
initializes the “current used capacity” B′

i of each host hi to be B′
i ← 0. At any

point, it processes the next PE, say Si, and assigns it to a host, say hj , that
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would have the minimum resulting utilization if assigned there. More formally,
it assigns Si to a host π(Si) = hj such that

hj = argminhk∈H
B′

k + size(Si)
Bk

.

It then updates the current used capacity of host hj by setting B′
j ← B′

j +
size(Si). So at each stage the current used capacity is simply the sum of the
sizes of the PEs assigned to it. The tentative assignment is feasible if, after
the last iteration,

∑
S∈S:π(S)=hj

size(S) = B′
j ≤ Bj holds for all hj ∈ H. If the

assignment is feasible, cola outputs that the current PEs and passes the control
to the post-processor. Otherwise, cola must split another PE. This involves the
oracle and the graph partitioner.

Oracle. The oracle decides the next PE to split, and it is very simple. It sim-
ply returns that PE with more than one operator which has the largest size.
A reasonable alternative would be to split the largest size multi-operator PE
assigned to the most over-utilized host. Splitting large PEs is obviously an in-
tuitively good strategy. As a side benefit it will tend to minimize the number of
calls to the graph partitioner, helpful because each such call adds to the overall
communication cost.

Graph Partitioner. The graph partitioner is the central component of the
cola algorithm. Given a PE S, its role is to determine how to split it into two
non-empty PEs, say S1 and S2. It bases its decision on two objectives:

1. to minimize the communication cost between the resulting PEs S1 and S2,
and

2. to avoid highly unbalanced splits such that size(S1) is either very large or
very small as compared to size(S2).

To achieve this, we use the following well-studied problem, called the minimum-
ratio cut or sparsest cut problem. Given a graph H = (VH , EH) with vertex-
weights wv ≥ 0 and edge-weights we ≥ 0, find a cut (S1, S2) where S2 = VH �S1
such that the following ratio, also called the sparsity, is minimized:

w(δ(S1))
min{w(S1), w(S2)}

. (2)

This objective minimizes the weight of the cut w(δ(S1)) while favoring the “bal-
anced” cuts for which min{w(S1), w(S2)} is large.

Since the sparsest cut problem is NP-hard [23], we use an algorithm of Leighton
and Rao [24] to find an approximate solution. We choose their algorithm since
it is efficient to implement and provably finds a cut with sparsity within a fac-
tor that is logarithmic in the number of operators of the optimum sparsity. We
outline their approach here. They first set up a linear programming (LP) formu-
lation of the sparsest cut problem as follows. One can think of the graph H as
a flow network where vertices are sources and sinks and the edges e ∈ EH are
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“pipes” that have flow capacity we. The LP encodes the following flow problem.
Route a demand of wu ·wv between each pair of vertices u, v ∈ VH , possibly split
along several paths, and minimize the maximum “congestion” on any edge. In
other words, minimize maxe∈EH fe/we, where fe denotes the flow sent on edge
e ∈ E. Intuitively, a cut (S1, S2) with a small ratio (2) will have edges with high
congestion, since the capacity w(δ(S1)) of the cut is small compared to the total
demand w(S1) · w(S2) that needs to be routed across the cut. The cut is then
identified from the fractional solution of the LP using the above intuition. We
omit the details from here and refer the reader to Leighton and Rao [24].

Because finding the solution to the LP can be slow even with the best lin-
ear solver packages, we implement this step with a well-known combinatorial
algorithm [25] that approximates the solution to the multicommodity flow LP.

Post-processor. The post-processor performs certain “greedy” PE merges in
order to improve the solution quality without violating the property that the
partitioning has a feasible assignment to hosts. The idea is to partly correct for
the possibly less than perfect ordering of the graph partitioning iterations. It
first determines if a pair of PEs, say Si and Sj , can be merged, as follows. It
tentatively merges Si and Sj into a single PE Si∪Sj . If the resulting partitioning
has a feasible host-assignment using the LPT scheme, it marks this pair of PEs as
“mergeable”. It then greedily merges that pair of mergeable PEs which gives the
maximum reduction in the total communication cost. This process is repeated
until there are no pairs that can be merged, and the resulting PEs are the output
of the Basic cola scheme.

3 Advanced COLA

In order to make cola useful for a wide variety of scenarios, it should allow
the user to guide or constrain the fusion process. This version supports six such
types of constraints, and it also considers a more complex objective function.

3.1 User-Defined Fusion Constraints

We have incorporated the following six types of constraints, and for each we offer
motivating examples.

1. Resource matching: An operator may be allowed to be assigned to only a
subset of the hosts. The rationale here is that some operators may need a
resource or a performance capability not present on all hosts.

2. PE colocation: Two operators may be required to be fused into the same
PE. Motivation includes the sharing of some per-process resource, such as a
JVM instance or some other language-binding runtime.

3. Host colocation: Two operators may be required to be assigned to the same
host. Clearly, PE colocation implies host colocation, but the reverse need
not be true. As motivation, two operators may wish to share a host license,
local files, or have shared memory segments.
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4. PE exlocation: Two operators may be required to be fused into separate PEs.
This may allow some work to continue if a PE crashes.

5. Host exlocation: Two operators may be required to be assigned to separate
hosts. In this case, host exlocation implies PE exlocation, but not the re-
verse. Motivation for host exlocation includes a common per-process resource
requirement for which a single host would be insufficient.

6. High availability: In order to support the notion of hot standbys a subgraph
of the overall operator data flow graph may be identically replicated several
times. See Figure 3(a), where there are three subgraph replicas. The con-
straint requires that the fused PEs respect this subgraph in the sense that
they are either entirely contained within a single replica or do not inter-
sect with any replicas. Figures 3(b) and 3(c) present two feasible PE fusion
solutions; each shaded subsection corresponds to a PE. High availability con-
straints must also ensure that any PE contained within one replica will not
be assigned to the same host as a PE contained within another replica. Ad-
ditionally, one may optionally insist that the PEs within one replica have the
identical structures as those within the other replicas. An example of PEs
chosen with this isomorphic condition turned on is shown in Figure 3(b). An
example of PEs chosen with the isomorphic condition switched off is shown
in Figure 3(c). In either case, there are implied host exlocation constraints
for all pairs of differently shaded PEs. The motivation for all of this is, as the
name implies, high availability: If the work in one replica cannot be done,
perhaps because of a host failure, there will likely be immediate backups
available on disjoint hosts.

(a) HA Sections (b) Isomorphic HA PEs

(c) Non-Isomorphic HA PEs

Fig. 3. High Availability
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One could also think of two additional constraints, called PE dedication and
host dedication. PE dedication would mean that an operator must be its own
PE. Host dedication would mean that an operator must be its own PE and
assigned alone on a host. Thus, host dedication implies PE dedication. Both
these constraints can be easily incorporated via a small change to the cola pre-
processor and the addition of PE exlocation and host exlocation constraints. As
a result, we do not treat these as separate constraints in COLA, even though we
could expose them as constraints to the user.

3.2 Problem Formulation

The two somewhat competing goals are to ensure that

(iii). the maximum utilization U = maxhi∈H
∑

S∈S:π(S)=hi
size(S)/Bi is mini-

mized, and
(iv). the overall communication cost C =

∑
S∈S w(δ(S)) is minimized.

Assuming the maximum utilization in expression (iii) is less than or equal to
1, which we will require, this expression is simply a more quantifiable version
of the scheduling feasibility condition employed in the Basic cola scheme. As
before we will omit a discussion of how we handle pathological cases in which
this scheduling feasibility is not possible.

We will handle both goals simultaneously by minimizing an arbitrary user-
defined function f(U, C) of U and C. This function can (and typically will) be
as simple as a weighted average of the two metrics. It represents the tradeoff of
the scheduling flexibility measured in expression (iii) with the efficiency measure
in expression (iv).

Our final solution will obey:

– the six types of constraints, namely resource matching, PE colocation, host
colocation, PE exlocation, host exlocation and high availability.

– the scheduling feasibility constraint.

We will call a solution which meets the six types of constraints valid, regardless
of whether the solution satisfies the scheduling feasibility constraint. A valid
solution which also satisfies the scheduling constraint will be known as feasible,
as is standard.

3.3 Solution Approach

The pseudocode for the Advanced cola scheme is given in Figure 4. First we
give a high-level overview of our approach. We build upon the algorithm for Basic
cola, though we must add and modify many steps. There is a pre-processor, as
before. It is augmented to resolve the PE colocation constraints. It also partially
handles the HA constraints. Depending on whether or not HA constraints exist
there may be multiple PEs rather than a single PE by the end of the pre-
processing stage.
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– Run Pre-processor
– Phase 1. Repeat

• Compute the communication cost c of the current partitioning
• If PE exlocation constraints are satisfied, go to Phase 2
• Use Oracle for phase 1 to find a PE p to split next
• Use Graph Partitioner for phase 1 to split p into two PEs

– Phase 2. Repeat
• Use PE scheduler to compute a schedule with utilization u
• If the schedule is valid, go to Phase 3
• Use Oracle for phase 2 to find a PE p to split next
• Use Graph Partitioner for phase 2 to split p into two PEs
• Compute the communication cost c of the current partitioning

– Phase 3. Repeat
• Let s ← f(u, c)
• If the schedule is feasible, go to Phase 4
• Use Oracle for phase 3 to find a PE p to split next
• Use Graph Partitioner for phase 3 to split p into two PEs
• Compute the communication cost c of the current partitioning
• Use PE scheduler to compute a schedule with utilization u

– Phase 4. Repeat
• Use Oracle for phase 4 to find a PE p to split next
• Use Graph Partitioner for phase 4 to split p into two PEs
• Compute the communication cost C of the current partitioning
• If C > (1 + T )c, go to Post-processor
• Use PE scheduler to compute a schedule with utilization U
• Let S ← f(U, C)
• s ← min{s, S}

– Run Post-processor

Fig. 4. Advanced cola Pseudocode

In the main body of our algorithm we solve the problem iteratively, as we
did in the basic scheme. In each iteration we employ, as needed, a PE scheduler,
an oracle to determine which PE to split next, and a graph partitioner to split
that PE. However, the main body of the Advanced cola scheme is composed of
four successive phases of the iterative process. These phases are similar to each
other, but not quite identical. During phase 1 the PE exlocation constraints are
resolved. During phase 2 the host colocation, host exlocation and high availability
constraints are resolved, which means that the solution at this point will be valid.
Alternatively, cola will have shown that there is no valid solution, because the
graph partitioner will have split the operator flow graph all the way down into
singleton operators without reaching validity. The user will be notified of this,
and cola will terminate. An important property of validity is that it will persist
as we continue the graph partitioning process. (To see this, consider a single split
of a PE in a valid solution, and consider the scheduling assignment in which the
two new PEs are assigned to their previous host, and all other PEs are assigned
to their previous hosts as well. This assignment also satisfies the six types of



320 R. Khandekar et al.

constraints. A corollary of this persistence property is that the existence of a valid
solution can be determined by employing our iterative partitioning scheme.) In
the normal case that a valid solution exists, the scheme continues. During phase
3 the scheduling feasibility constraints will be resolved. This means that we do
have a feasible solution to the cola problem. Denote the utilization at the end
of phase 3 by u, and the overall communication cost by c. We can compute
the objective function as s = f(u, c). Note that the overall communication cost
is monotonic: It increases with every new graph partitioning. We continue the
iterative process past this point, into phase 4, and at each stage we will compute
a new utilization U and a new overall communication cost C. Now scheduling
feasibility does not necessarily persist as we split PEs, because the sizes of the
PEs increase. The new solution is likely to be scheduling feasible, because of the
the increased sizes should be counterbalanced by increased scheduling flexibilty.
If the solution is scheduling feasible, that is, if U ≤ 1, we check to see if S =
f(U, C) < s. If so, we replace s by S, and we have found an improved solution.
When do we stop the iterative process? The answer is that we will constrain the
overall communication cost to be within a multiplicative user-input threshold
T of the cost c of our first feasible solution: C ≤ (1 + T )c. We stop when this
condition fails, or when we have reached the bottom of the binary tree, so that
all PEs are single operators. The value of T determines how much the algorithm
is willing to compromise on overall communication cost in an attempt to find
more scheduling flexible solutions. For instance, if T = 1, then the algorithm will
continue to find more scheduling flexible solutions until the communication cost
of the current solution (C) is twice the cost of the first feasible solution (c). On
the other hand, if T = 0, then the algorithm skips phase 4 completely. Finally
there is a post-processor to greedily improve the solution.

Figure 5 shows the four iterative phases of the Advanced cola scheme. At
the end of each phase we are further down the binary tree. The final solution,
denoted in the figure with stars, occurs at some point in the tree between the
end of phases 3 and 4.

LEGEND

Phase 1
Phase 2
Phase 3

Phase 4
Optimum

Fig. 5. Iterative Algorithmic Phases
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Pre-processor. The pre-processor fuses unconstrained adjacent operators ac-
cording to the conditions of Lemma 1. It also fuses PE colocated operators. And
it separates HA replicas into separate PEs. So there will be one PE for each
HA replica, plus potentially a catchall PE for all operators not part of any HA
replicas. Recall Figure 3(a). If the isomorphic condition is turned on we will also
replace each relevant operator cost with the average values of the corresponding
operators across all the replicas. Similarly, we will replace each relevant com-
munication cost with the average values of the corresponding streams across all
the replicas. These values will probably be close in any case, but the reason for
doing this is overall robustness, as will become clear below in the description of
the graph partitioner. Finally, we will mark each relevant pair of PE replicas as
host-exlocated, and continue to the main body of the scheme.

PE Scheduler. The component of the Basic cola scheme that changes most
relative to that of the basic algorithm is the PE scheduler. It is not needed in
phase 1, but is used in phases 2 through 4. The LPT algorithm of the Basic cola

scheme is very fast, the complexity typically being dominated by the reordering
of the PEs. It is an effective and robust scheme in the absense of additional con-
straints. LPT can certainly be adapted easily to handle resource matching, host
colocation and host exlocation. But it will produce far lower quality solutions in
a scenario with many such constraints, because it is a one-pass greedy scheme.
We therefore formulate and solve the problem as a more computationally expen-
sive integer program (IP). Specifically we define decision variable xp,h to be 1 if
PE p is assigned to host h, and 0 otherwise. Let Rp denote the set of resource
matched hosts for PE p. Host colocation defines an equivalence relation which
we denote by ≡HC . Host exlocation does not determine an equivalence relation,
but we define the set HE to be the set of pairs (p1, p2) of exlocated PEs. We
then solve the following:

Minimize max
h

∑
p

size(Sp) · xp,h/Bh (3)

subject to xp,h = 0 if h /∈ Rp, (4)
xp1,h = xp2,h ∀ h, if p1 ≡HC p2, (5)

xp1,h + xp2,h ≤ 1 ∀ h, if (p1, p2) ∈ HE, (6)∑
h

xp,h = 1 ∀ p, (7)

xp,h ∈ {0, 1} ∀ p, h. (8)

The objective function 3 measures the maximum utilization of any host. Con-
straint 4 enforces the resource matching constraints. Constraint 5 enforces the
host colocation constraints. Constraint 6 enforces the host exlocation constraints.
Constraint 7 ensures that each PE is assigned to one host. Finally, constraint 8
ensures that the decision variables are binary.
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Oracle. In phase 1 the oracle will return any PE which fails to meet a PE
exlocation constraint. This means there are at least two operators in the PE
which are supposed to be PE exlocated. The choice is otherwise irrelevant, since
all such constraints will need to be satisfied by the end of the phase. In phases
2 through 4 the oracle is identical to that of the Basic cola scheme.

Graph Partitioner. Here there are two differences from Basic cola. One is
specific to all four phases, and relates to the HA constraints with isomorphic
condition on. The other is relevant, as before, only to phase 1.

– If the isomorphic condition is on and the graph partitioner splits a PE that is
part of one replica the scheme will force this solution immediately on all the
other replicas. Since we have chosen averages it does not matter which replica
is chosen to be split first. Furthermore, the graph partitioning solution should
be relatively close to optimal for all replicas. If the isomorphic condition is
off each replica can be split independently.

– The graph partitioner approach in phase 1 is again slightly modified. We wish
to encourage the PE exlocated operators to be split by the graph partitioning
process. So we add additional demand between all such operator pairs, which
makes them more likely to be split, and solve the revised graph partitioning
problem as before.

Post-Processor. The postprocessor in the Advanced cola scheme is identical
to that of the basic scheme.

4 COLA Experiments

To evaluate how cola performs in practice, we use a job called vwap that runs
on System S. The job vwap [26] represents a financial markets scenario in
which a stream of real-time quotes is processed to detect bargains and trading
opportunities. Figure 6 shows the directed graph G corresponding to this job,
as well as a typical operator fusion computed by cola. The boxes correspond
to PEs and the numbers in the boxes correspond to the sizes of PEs in terms
of CPU fractions. (Figure 6(b) is an enlarged view of a portion of Figure 6(a).)
This job consists of 200 operators and 283 arcs.
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The experiments discussed in this paper were performed using a System S

deployment on a cluster consisting of IBM BladeCenters running Linux 2.6.9.
We employed between 4 and 7 blades, each having dual-CPU, dual-core 3.2GHz
Intel Xeon processors with 4GB of RAM. The blades are in the same rack, and
are inter-connected using a high-speed 20GB/s backplane. These homogeneous
blades were reserved for these experiments. Thus, no other processes were allowed
to use the blade resources.

The cola fusion strategy was compared against two alternative fusion
strategies:

– none: No fusion. Thus each operator lies in a distinct PE.
– fint: This fint fusion strategy, proposed in [13], also takes the operator

and communication costs as input. It employs a bottom-up rather than a
top-down approach to compute a fusion. It initially places all operators into
distinct PEs and iteratively fuses them into larger PEs till some criteria is
met.

Another natural fusion strategy is to fuse all operators into a single PE. However
this typically results in a highly computationally intensive PE yielding very low
throughput values. It is therefore not evaluated further in our experiments.

We evaluate a given fusion alternative by job throughput. This is a measure of
how much data (in Mbps) is processed by the job. It is intended to be a measure
of the job’s “effective capacity”. Each vwap experiment is characterized by the
fusion strategy employed and the number of blades used.

Both the cola or fint fusion strategies require operator and communications
costs as input. The good news is that System S incorporates efficient profiling
methodology [13]. But there is bad news as well. Specifically, to use the profiling
mode in an application run, we need to choose an operator fusion. To create an
operator fusion, on the other hand, we need the profiling data. This is a chicken
and egg problem. Since the none fusion strategy does not require operator or
communication costs as input, we first run this fusion in the profiling mode.
However, the none fusion is observed to yield low throughput values and hence
only moderately useful profiling data. So we employ an iterative approach, as
follows: Using the none profiling data, we compute the fusion, referred to as
iteration 1, again in profiling mode. Then, using the new profiling data, we
compute the fusion again, this time using the new profiling data. This becomes
iteration 2, and we continue in this manner. This iterative approach is used for
both fint and cola fusions.

Furthermore, we adopt one additional heuristic in the iterative process. Since
the early fusions yield lower throughputs, we compensate for this in cola as
follows. In iteration 1, we scale the CPU capacities Bi of the hosts by a factor
γ < 1. In the experiments described below, we set γ = 0.5 in iteration 1. Then
we gradually increase γ from 0.5 to 1.0 by 0.1 through 6 subsequent iterations,
since we expect to obtain more and more accurate estimates on the operator and
communication costs.

Figure 7 demonstrates the benefit of multiple iterations, particularly for cola.
Fortunately, only a few seem to be required. The cola fusion strategy shows
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FINT COLA

NONE 1 1 972154.76 972154.76 972154.76

1 2.71 2.39 2634894.87 2323042.99 972154.76

2 2.87 3.4 2785272.67 3301139.07 972154.76

3 2.44 3.14 2376396.66 3051976.87 972154.76

4 2.82 2.86 2740871.6 2776850.38 972154.76

5 2.58 3.23 2509748.67 3137018.12 972154.76

6 2.5 3.18 2431260.12 3087061.61 972154.76
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Fig. 7. Profiling iterations for fint and cola on 5 blades. The y-axis represents the
relative throughput of the runs, scaled so that the throughput of none run is 1.

Table 1. Theoretical Comparison of fint and cola

vwap1 none fint cola

Blades Cut size PE size Cut size PE size Cut size PE size
4 0.3792 0.3218 0.0661 0.5353 0.0332 0.4990
5 0.3703 0.2980 0.0441 0.5476 0.0587 0.4676
6 0.7236 0.8169 0.2698 0.8169 0.1998 0.7560
7 0.6833 0.6697 0.2492 0.6697 0.1860 0.6666

vwap2 none fint cola

Blades Cut size PE size Cut size PE size Cut size PE size
4 0.3544 0.3677 0.0618 0.4185 0.0618 0.4185
5 0.5740 0.6030 0.2577 0.6030 0.1530 0.5547
6 0.5571 0.5764 0.3367 0.5764 0.1552 0.5294
7 0.5888 0.5813 0.2600 0.5813 0.1587 0.5813

a significant increase in the throughput in the first two iterations. We typically
see that cola reaches its maximum throughput value quickly.

In Table 1, we show how cola compares to fint and none in terms of both
cut size and maximum PE size. We study two versions of the vwap job: vwap1
consists of 200 operators and 283 arcs, while vwap2 consists of 217 operators
and 315 arcs. The cut size is the measure of the total cost of sending traffic
between PEs. The larger the cut size, the more CPU cycles are being devoted
to sending data. The intuition is that a high quality fusion has a low cut size
without making any PEs too big to fit on a processor. We can see that the cut
sizes for cola are signifcantly lower than the cut sizes for fint, and cola often
maintains a maximum PE size which is smaller than that of fint.
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Table 2. Throughput Values for vwap Runs with fint and cola

vwap1 none fint cola

blades 1st 1st-local Max 1st 1st-local Max
4 99.4 (1) 273 (2.75) 295 (2.96) 295 (2.96) 284 (2.86) 286 (2.88) 303 (3.05)
5 97.2 (1) 263 (2.71) 279 (2.87) 279 (2.87) 232 (2.39) 330 (3.40) 330 (3.40)
6 189 (1) 286 (1.51) 286 (1.51) 293 (1.55) 280 (1.48) 379 (2.00) 391 (2.06)
7 179 (1) 268 (1.50) 322 (1.80) 336 (1.88) 267 (1.50) 349 (1.95) 363 (2.03)

vwap2 none fint cola

blades 1st 1st-local Max 1st 1st-local Max
4 92.6 (1) 212 (2.29) 212 (2.29) 212 (2.29) 187 (2.02) 237 (2.56) 249 (2.69)
5 150 (1) 219 (1.47) 219 (1.47) 258 (1.73) 229 (1.53) 332 (2.22) 332 (2.22)
6 146 (1) 227 (1.55) 260 (1.78) 260 (1.78) 238 (1.63) 346 (2.37) 346 (2.37)
7 154 (1) 226 (1.46) 369 (2.39) 369 (2.39) 253 (1.64) 362 (2.35) 362 (2.35)

Next we discuss throughput, our prime practical metric. Table 2 presents the
throughput values for none and various iterations of fint, and cola. Since
the throughput values from different iterations can be quite different, a natural
question to ask is which iteration one should finally chose. To this end, we
evaluate several different choices: the first iteration (1st); the first iteration that
achieves a local maximum throughput (1st-local); and the iteration (among the
first few) that achieves the overall maximum throughput (Max).

We again study two versions, vwap1 and vwap2, as described above. The
rows represent distinct sets of experiments run on different number of reserved
blades given in the first column. For each such set of experiments, 6 iterations
were used for each of fint and cola. The throughput values are truncated to
three significant digits. The numbers in parentheses represent the relative gain
over the none fusion, i.e., throughput values scaled so that the throughput of
the none fusion is 1.

The throughput values of both fint and cola are significantly higher than
those of none, while the throughput values of cola for 1st-local and Max are
usually higher than those of fint.

5 Conclusions and Future Work

In this paper we have described and solved an important operator fusion prob-
lem which arises naturally in System S. Our scheme works in heterogeneous
processor environments, and supports a wide variety of real-world constraints.
We believe that the cola scheme is mathematically novel and interesting. Ini-
tial experiments support the value of our approach to the spade operator fusion
problem. We list some future enhancements.

– As may be seen in Table 2, for example, adding more hosts to the cola

problem does not necessarily improve performance. We are thinking about
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approaches in which cola might automatically choose fewer hosts than those
offered to it. This issue is easier in the case of the basic scheme with homo-
geneous hosts.

– The function f(U, C) used by the Advanced cola scheme could be a weighted
average of U and C. But we have not described how to pick these weights.
We believe the appropriate weights could be learned by examining the effects
of alternative choices on throughput.

– It appears to be useful to have the Advanced cola scheme quickly decide
if the six types of real-world constraints allow a feasible solution or not.
(This would allow a user to modify inconsistent constraints and resubmit.)
Our current scheme provides an answer this feasibility question, but not
necessarily in the fastest timeframe. We plan to modify our approach to
better handle this issue.

– We currently consider processing hosts as single units. But in today’s envi-
ronment they are often composed of several multi-core processors. Our LPT
and IP PE scheduling scheme does not consider this processor hierarchy at
present. We believe both schemes can be enhanced to do so, and we will be
experimenting to see if such an approach is valuable.
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