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Abstract

With the emerging branch of incorporating factual knowledge into pre-trained language models

such as BERT, most existing models consider shallow, static, and separately pre-trained entity

embeddings, which limits the performance gains of these models. Few works explore the poten-

tial of deep contextualized knowledge representation when injecting knowledge. In this paper,

we propose the Contextualized Language and Knowledge Embedding (CoLAKE), which jointly

learns contextualized representation for both language and knowledge with the extended MLM

objective. Instead of injecting only entity embeddings, CoLAKE extracts the knowledge context

of an entity from large-scale knowledge bases. To handle the heterogeneity of knowledge con-

text and language context, we integrate them in a unified data structure, word-knowledge graph

(WK graph). CoLAKE is pre-trained on large-scale WK graphs with the modified Transformer

encoder. We conduct experiments on knowledge-driven tasks, knowledge probing tasks, and

language understanding tasks. Experimental results show that CoLAKE outperforms previous

counterparts on most of the tasks. Besides, CoLAKE achieves surprisingly high performance

on our synthetic task called word-knowledge graph completion, which shows the superiority of

simultaneously contextualizing language and knowledge representation.1

1 Introduction

Deep contextualized language models pre-trained on large-scale unlabeled corpora have achieved signif-

icant improvement on a wide range of NLP tasks (Peters et al., 2018; Devlin et al., 2019; Yang et al.,

2019). However, they are shown to have difficulty capturing factual knowledge (Logan et al., 2019).

Recently, there is a growing interest in combining pre-trained language models (PLMs) with structured

knowledge. A popular approach is to inject pre-trained entity embeddings into PLMs to better capture

factual knowledge, such as ERNIE (Zhang et al., 2019) and KnowBERT (Peters et al., 2019). The

shortcomings of these models can be summarized as follows: (1) The entity embeddings are separately

pre-trained with some knowledge embedding (KE) models (e.g., TransE (Bordes et al., 2013)), and

fixed during training PLMs. Thus they are not real joint models to learn the knowledge embedding and

language embedding simultaneously. (2) The previous models only take entity embeddings to enhance

PLMs, which are hard to fully capture the rich contextual information of an entity in the knowledge graph

(KG). Thus their performance gains are limited by the quality of pre-trained entity embeddings. (3) The

pre-trained entity embeddings are static and need to be re-trained when the KG is slightly changed.

In this paper, we propose the Contextualized Language And Knowledge Embedding (CoLAKE),

which jointly learns language representation and knowledge representation in a common representation

space. Different from the previous models, CoLAKE dynamically represents an entity according to its

knowledge context and language context. For each entity, CoLAKE considers a sub-graph surrounding

∗Work done during internship at Amazon Shanghai AI Lab.
†Corresponding author.

1Our code is available at https://github.com/txsun1997/CoLAKE.
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(1)   Harry Potter points his wand at Lord Voldemort.
(2)  “You have Lily’s hazel eyes”, he told Harry Potter.
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Figure 1: (a) When injecting knowledge, CoLAKE considers the knowledge context about the entity

while previous semi-contextualized joint models only consider a single entity embedding. By contextu-

alizing the entity, CoLAKE is able to directly access (Harry Potter, enemy of, Lord Voldemort)

to help understand sentence (1) and access (Harry Potter, mother, Lily Poter) to help under-

stand sentence (2). (b) The word-knowledge graph (WK graph) is a unified structure to represent both

language context and knowledge context, which is composed of two parts: the fully-connected word

graph and knowledge sub-graphs extracted from large KGs.

it as its knowledge context that contains the facts (triplets) about the entity. In this way, CoLAKE can

dynamically access different facts as background knowledge to help understand the current text. As

shown in Figure 1(a), to understand different sentences, CoLAKE can utilize different facts about the

linked entity Harry Potter. The knowledge context of Harry Potter is a sub-graph containing

the triplets about it. According to whether or not to utilize entities’ knowledge context, our proposed

CoLAKE can be distinguished from previous models, which we call semi-contextualized joint models

since they only contextualize language representation.

To deal with the heterogeneous structure of language and KG, we build a graph to integrate them into

a unified data structure, called word-knowledge graph (WK graph). Most recent successful PLMs use

Transformer architecture (Vaswani et al., 2017), which treats input sequences as fully-connected word

graphs. WK graph is knowledge-augmented word graph. Using entities mentioned in the sentence, we

extract sub-graphs centered on those mentioned entities from KGs. Then we mosaic such sub-graphs

and the word graph in a unified heterogeneous graph, i.e. WK graph. An instance of the WK graph can

be found in Figure 1(b). The constructed WK graph is fed into CoLAKE along with its adjacency matrix

to control the information flow to reflect the graph structure. CoLAKE is based on the Transformer

encoder, with the embedding layer and the encoder layers slightly modified to adapt to input in the form

of WK graph. Besides, we extend the masked language model (MLM) objective (Devlin et al., 2019) to

the whole input graph. That is, apply the same masking strategy to word, entity, and relation nodes and

training the model to predict the masked nodes based on the rest of the graph.

We evaluate CoLAKE on several knowledge-required tasks and GLUE (Wang et al., 2019a). Ex-

perimental results demonstrate that CoLAKE outperforms previous semi-contextualized counterparts on

most of the tasks. To explore potential applications of CoLAKE, we design a synthetic task called word-

knowledge graph completion. Our evaluation on this task shows that CoLAKE outperforms several KE

models by a large margin, in transductive setting and inductive setting.

In summary, CoLAKE can be characterized in three-fold: (1) CoLAKE learns contextualized lan-

guage representation and contextualized knowledge representation simultaneously with the extended

MLM objective. (2) CoLAKE adopts the WK graph to integrate the heterogeneous input for language

and knowledge. (3) CoLAKE is essentially a pre-trained graph neural network (GNN), thereby being

structure-aware and easy to extend.
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2 Related Work

Language Representation Learning. The past decade has witnessed the great success of pre-trained

language representation. Initially, word representation pre-trained using multi-task objectives (Collobert

and Weston, 2008) or co-occurrence statistics (Mikolov et al., 2013; Pennington et al., 2014) are static

and non-contextual. Recently, contextualized word representation pre-trained on large-scale unlabeled

corpora with deep neural networks has dominated across a wide range of NLP tasks (Peters et al., 2018;

Devlin et al., 2019; Yang et al., 2019; Qiu et al., 2020).

Knowledge Representation Learning. Knowledge Representation Learning (KRL) is also termed as

Knowledge Embedding (KE), which is to map entities and relations into low-dimensional continuous

vectors. Most existing methods use triplets as training samples to learn static, non-contextual embed-

dings for entities and relations (Bordes et al., 2013; Yang et al., 2015; Lin et al., 2015). Recent ad-

vances focusing on contextualized representation, which use subgraphs or paths as training samples,

have achieved new state-of-the-art results on KG tasks (Wang et al., 2019b; Wang et al., 2020a).

Joint Language and Knowledge Models. Due to the mutual information existing in language and

KGs, joint models often benefit both sides. Besides, tasks such as entity linking also require entity em-

beddings that are compatible with word embeddings. Combining the success of Mikolov et al. (2013)

and Bordes et al. (2013), Wang et al. (2014) jointly learn embeddings for language and KG. Targeting

mention-entity matching in entity linking, Yamada et al. (2016), Ganea and Hofmann (2017) also pro-

posed joint methods to map entities and words into the same vector space. Inspired by the recent success

of contextualized language representation, much effort has been devoted to injecting entity embeddings

into PLMs (Zhang et al., 2019; Peters et al., 2019). Despite their success, the knowledge gains are lim-

ited by the expressivity of their used pre-trained entity embeddings, which is static and inflexible. In

contrast, KEPLER (Wang et al., 2019c) aims to benefit both sides so jointly learn language model and

knowledge embedding. However, KEPLER does not directly learn embeddings for each entity but learns

to generate entity embeddings with PLMs from entity descriptions. Besides, none of these work exploits

the potential of contextualized knowledge representation, which makes them different from our proposed

CoLAKE. A brief comparison can be found in Table 1. CoLAKE is conceptually similar to K-BERT (Liu

et al., 2020) and BERT-MK (He et al., 2019). CoLAKE differs from K-BERT in that, instead of injecting

triplets during fine-tuning, CoLAKE jointly learns embeddings for entities and relations during pre-

training LMs. Besides, CoLAKE places language and knowledge representation learning into a unified

pre-training task, masked language model, which makes it more concise than BERT-MK. In addition,

CoLAKE is a general-purpose joint model while BERT-MK mainly focuses on medical domain.

Joint Models
Language Knowledge

Objective Contextualized? Objective Contextualized?

Non-contextual
Wang et al. (2014) Skip-Gram ✗ TransE ✗

Yamada et al. (2016) Skip-Gram ✗ Skip-Gram ✗

Semi-contextualized
ERNIE (Zhang et al., 2019) MLM ✓ TransE∗

✗

KnowBERT (Peters et al., 2019) MLM ✓ - ✗

KEPLER (Wang et al., 2019c) MLM ✓ TransE ✗

Contextualized CoLAKE (Ours) MLM ✓ MLM ✓

Table 1: Comparison of several joint models based on whether the representation is contextualized. ∗The

entity embeddings are fixed during pre-training ERNIE. KnowBERT does not have restrictions on the

entity embeddings. For ERNIE and KnowBERT, we omit the next sentence prediction (NSP) objective.

3 CoLAKE

CoLAKE jointly learns contextualized representation for language and knowledge by pre-training on

structured, unlabeled word-knowledge graphs (WK graphs). We first introduce how to construct such

WK graphs, then we describe the model architecture and the implementation details.
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Figure 2: Illustration of WK graph construction. The WK graph is an undirected heterogeneous graph.

The numbers marked on graph nodes indicate the position index introduced in Section 3.2.

3.1 Graph Construction

Typically, language embedding models take sequences as input while knowledge embedding (KE) mod-

els take triplets or knowledge sub-graphs as input. Recent successful PLMs take Transformer (Vaswani

et al., 2017) as their backbone architecture, which actually processes sequences as fully-connected word

graphs. Thus, graph is a common data structure to represent language and knowledge. In this section,

we show how to integrate word graph and knowledge sub-graphs into the unified WK graph.

We first tokenize a sentence into a sequence of tokens and fully connect them as a word graph. Then

we recognize the mentions in the sentence and use an entity linker to find the corresponding entities in a

certain KG. The mention nodes are then replaced by their linked entities, which are called anchor nodes.

By this replacement, the model is encouraged to map the injected entities and mention words near one

another in the vector space. Centered on the anchor nodes {ei}i, we can extract their knowledge contexts

{{ei, rij , eij}j}i to form sub-graphs, in which relations are also transformed into graph nodes. The

extracted sub-graphs and the word graph are then concatenated with anchor nodes to obtain the WK

graph. Figure 2 shows the process of constructing a WK graph. In practice, for each anchor node we

randomly select up to 15 neighboring relations and entities to construct a sub-graph to be injected into

the WK graph. We only consider triplets in which anchor node is head (subject) instead of tail (object).

In the WK graph, entities are unique but relations are allowed to repeat.

3.2 Model Architecture

The constructed WK graphs are then fed into the Transformer (Vaswani et al., 2017) encoder. We modify

the embedding and encoder layers of vanilla Transformer to adapt to input in the form of WK graph.

Embedding Layer. The input embedding is the sum of token embedding, type embedding, and position

embedding. For token embedding, we maintain three lookup tables for words, entities, and relations

respectively. For word embedding, we follow RoBERTa (Liu et al., 2019) which uses Byte-Pair Encoding

(BPE) (Sennrich et al., 2016) to transform sequence into subwords units to handle the large vocabulary.

In contrast, we directly learn embeddings for each unique entity and relation as common knowledge

embedding methods do. The token embeddings are obtained by concatenating word, entity, and relation

embeddings, which are of the same dimensionality. There are different types of nodes so the WK graph

is heterogeneous. To handle this, we simply use type embedding to indicate the node types, i.e. word,

entity, and relation. For position embedding, we need to assign each injected entity and relation a position

index. Inspired by Liu et al. (2020), we adopt the soft-position index which allows repeated position

indices and keeps tokens in the same triplet continuous. Figure 2 shows an intuitive example of how to

assign position index to graph nodes.
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[CLS] points his at [SEP] mother spouse

Masked Multi-Head Self-Attention & FFN (x N)

MLP

wand Lily_Potter

Transformer
Encoder

Output

ENT

3

+

+

Lord

Voldemort
[MASK]

[MASK]
Lord

Voldemort
[MASK]

Ginny

Weasley

[MASK]
Lord

Voldemort [MASK]
Ginny

Weasley

REL

2

+

+

MLP

enemy of

MLP

[MASK]

[MASK]

[MASK]

Word Graph (with mention words replaced) Knowledge Graph

Harry

Potter
[MASK]

Ginny

Weasley

Harry

Potter

Harry

Potter

Figure 3: Overall architecture of CoLAKE. In this case, three triplets, (Harry Potter, mother,

Lily Potter), (Harry Potter, spouse, Ginny Weasley), and (Harry Potter, enemy of,

Lord Voldemort) are injected into the raw sequence. The model is asked to predict the masked

word wand, the masked entity Lily Potter, and the masked relation enemy of.

Masked Transformer Encoder. We use masked multi-head self-attention to control the information

flow to reflect the structure of WK graph. Given the representation of graph nodes X ∈ R
n×d, where n is

the number of nodes and d is the dimension for each node, the representation after masked self-attention

is obtained by

Q,K,V = XWQ,XWK ,XWV , (1)

A =
QK⊤

√
dk

, (2)

Attn(Q,K,V) = Softmax(A+M)V, (3)

where WQ,WK ,WV ∈ R
d×dk are learnable parameters. M ∈ R

n×n is the mask matrix given by

Mij =

{

0 if xi and xj are connected,

− inf if xi and xj are disconnected.
(4)

With the masked Transformer encoder, each node can only gather information from its 1-hop neighbor

at each layer. Masked Transformer encoder works similar to GAT (Velickovic et al., 2018).

3.3 Pre-Training Objective

The Masked Language Model (MLM) objective is to randomly mask some of tokens from the input and

train the model to predict the original vocabulary id of the masked tokens based on their contexts. In this

section, we extend the MLM from word sequences to WK graphs.

In particular, we mask 15% of graph nodes at random. When a node is masked, we replace it with (1)

the [MASK] token 80% of time, (2) a randomly sampled node with the same type as the original node

10% of time, (3) the unchanged node 10% of time. As different types of nodes are masked, we encourage

CoLAKE to learn different aspects of capabilities:

• Masking word nodes. When words are masked, the objective is similar to traditional MLM. The

difference is, CoLAKE can predict masked words based on not only the context words but also the

entities and relations in the WK graph. Masking words helps CoLAKE learn linguistic knowledge.
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• Masking entity nodes. If the masked entity is an anchor node, the objective, which is to predict the

anchor node based on its context, helps to align the representation spaces of language and knowl-

edge. Take the instance in Figure 1(b), the embedding of entity Harry Potter will be learned to

be similar to its textual form, Harry Potter. If the masked entity is not an anchor node, the MLM

objective is similar to that used in semantic matching-based KE methods such as ConvE (Dettmers

et al., 2018) and CoKE (Wang et al., 2019b), which enables CoLAKE to learn a large number of

entity embeddings. Masking entity nodes helps CoLAKE (a) map words and entities into a common

representation space, and (b) learn contextualized representation for entities.

• Masking relation nodes. If the masked relation is between two unique anchor nodes, the objective

is similar to distantly supervised relation extraction (Craven and Kumlien, 1999), which requires

the model to classify the relationship between two entities mentioned in the text. Otherwise, the

objective is to predict the relationship between its two neighboring entities, which is similar to

traditional KE methods. Masking relation nodes helps CoLAKE (a) learn to do relation extraction,

and (b) learn contextualized representation for relations.

However, the pre-training task of predicting masked anchor nodes could be trivial because the model

is easy to accomplish this task only based on the knowledge context instead of the language context,

which is more varied than knowledge context. To mitigate this, we discard neighbors of anchor nodes in

50% of time during pre-training.

3.4 Model Training

CoLAKE is trained with cross-entropy loss. We use three classification heads to predict three types of

nodes. In practice, however, the large number of entities brings challenges to training and predicting.

Mixed CPU-GPU Training. Due to the large number of entities in KG, training the whole model in

GPU is intractable. To handle this, we asynchronously update entity embeddings in CPU memory while

keeping the rest of our model updated in GPU. In particular, we store and update entity embeddings

in CPU memory which is shared among multiple trainer processes. During pre-training, the trainer

processes read the entity embeddings from the shared CPU memory and write the gradients back to CPU.

Our implementation is based on the distributed key-value store (KVStore) from Zheng et al. (2020).

Negative Sampling. Applying the Softmax function to the huge number of entities is very time-

consuming. CoLAKE uses negative sampling to conduct prediction for each entity over one positive

entity and k(k ≪ n) negative entities instead of all n entities in KG. Following Mikolov et al. (2013),

we sample negative entities from the 3/4 powered entity frequency distribution.

4 Experiments

In this section, we present the details of pre-training and fine-tuning CoLAKE, and its experimental

results on knowledge-driven tasks, knowledge probing tasks, and language understanding tasks.

4.1 Pre-Training Data and Implementation Details

CoLAKE uses English Wikipedia (2020/03/01)2 as pre-training data and uses WikiExtractor3 to process

the downloaded Wikipedia dump. We use Wikipedia anchors to align text to Wikidata5M (Wang et

al., 2019c), which is a newly proposed large-scale KG containing 21M fact triplets. We construct WK

graphs as training samples and filter out graph samples without entity nodes and relation nodes. Finally,

CoLAKE pre-trained the Transformer encoder along with 3,085,345 entity embeddings and 822 relation

embeddings on 26M training samples.

The Transformer encoder of CoLAKE is initialized with RoBERTaBASE (Liu et al., 2019). We use

the implementation from HuggingFace’s Transformer (Wolf et al., 2019). The entity embeddings and

relation embeddings are initialized with the average of the RoBERTaBASE BPE embeddings of entity

2https://dumps.wikimedia.org/enwiki/
3https://github.com/attardi/wikiextractor
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and relation aliases provided by Wang et al. (2019c). AdamW with β1 = 0.9, β2 = 0.98 is used in

pre-training. We train CoLAKE with the batch size of 2048 and the learning rate of 1e-4 for 1 epoch. For

each anchor node, we sample k = 200 negative entities. CoLAKE is trained on 8 32G NVIDIA V100

GPUs for 38 hours.

4.2 Knowledge-Driven Tasks

We first fine-tune and evaluate CoLAKE on knowledge-driven tasks. To annotate entities in the sentence,

we use TAGME (Ferragina and Scaiella, 2010) to link mentions to entities in KGs. Instead of replacing

the textual mention with its symbolic entity, we follow Pörner et al. (2019) and concatenate the two

forms of tokens, e.g. Jean Mara ##is Jean Marais. Concretely, we conduct experiments on two

knowledge-driven tasks: entity typing and relation extraction.

Entity Typing. The entity typing task is to classify the semantic type of a given entity mention based

on its surface form and context. We add two special tokens, [ENT] and [/ENT], before and after the

entity mentions to be classified and use the final representation of the [CLS] token as the feature to

conduct classification4. We evaluate CoLAKE on Open Entity (Choi et al., 2018). To compare with

ERNIE, KnowBERT, and KEPLER, we adopt the same experiment setting which considers nine general

types. To be consistent with previous work, we adopt micro precision, recall, and F1 score as evaluation

metrics. The experimental results are shown in Table 2.

Relation Extraction. The relation extraction task is to classify the relationship between two entities

mentioned in a given sentence. During fine-tuning, we add four special tokens, [HD], [/HD], [TL]

and [/TL] to identify the head entity and the tail entity. Also, we use the final representation of the

[CLS] token as the feature to be fed into the classifier. We evaluate CoLAKE on FewRel (Han et al.,

2018) that is rearranged by Zhang et al. (2019). Since FewRel is built with Wikidata, we discard triplets

in the FewRel test set from pre-training data to avoid information leakage. Following previous work, we

report macro precision, recall and F1 score on FewRel. The experimental results can be found in Table 2.

Model
Open Entity FewRel

P R F P R F

BERT (Devlin et al., 2019) 76.4 71.0 73.6 85.0 85.1 84.9
RoBERTa (Liu et al., 2019) 77.4 73.6 75.4 85.4 85.4 85.3
ERNIE (Zhang et al., 2019) 78.4 72.9 75.6 88.5 88.4 88.3
KnowBERT (Peters et al., 2019) 78.6 73.7 76.1 - - -
KEPLER (Wang et al., 2019c) 77.8 74.6 76.2 - - -
E-BERT (Pörner et al., 2019) - - - 88.6 88.5 88.5

CoLAKE (Ours) 77.0 75.7 76.4 90.6 90.6 90.5

Table 2: Experimental results on Open Entity and FewRel.

4.3 Knowledge Probing

LAMA (LAnguage Model Analysis) probe (Petroni et al., 2019) aims to measure factual knowledge

stored in language models via cloze-style statement like: Dante was born in [MASK]. Subsequently,

a more ”factual” subset of LAMA, LAMA-UHN (Pörner et al., 2019), is constructed by filtering out

easy-to-answer samples. We evaluate CoLAKE on these two probes and report the mean precision at

one (P@1) macro-averaged over relations.

For fair comparision, we use the intersection of the vocabularies for all considered models and con-

struct a common vocabulary of ∼18K case-sensitive tokens. In this experiment, considered models

include ELMo (Peters et al., 2018), ELMo5.5B (Peters et al., 2018), BERTBASE (Devlin et al., 2019),

RoBERTaBASE (Liu et al., 2019), and K-Adapter (Wang et al., 2020b).

The results of LAMA and LAMA-UHN are shown in Table 3. It is worth noticing that BERT out-

performs RoBERTa by a large margin. Wang et al. (2020b) reported the same phenomenon in their

4In the implementation of RoBERTa, the [CLS] token is replaced with <s>.
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Corpus
Pre-trained Models

ELMo ELMo5.5B BERT RoBERTa CoLAKE K-Adapter∗

LAMA-Google-RE 2.2 3.1 11.4 5.3 9.5 7.0
LAMA-UHN-Google-RE 2.3 2.7 5.7 2.2 4.9 3.7

LAMA-T-REx 0.2 0.3 32.5 24.7 28.8 29.1
LAMA-UHN-T-REx 0.2 0.2 23.3 17.0 20.4 23.0

Table 3: P@1 on LAMA and LAMA-UHN. ∗K-Adapter is based on RoBERTaLARGE while other

Transformer-based LMs are of BASE size. Besides, K-Adapter uses a subset of T-REx as its training

data, which may contribute to its superiority over CoLAKE on LAMA-T-REx and LAMA-UHN-T-REx.

paper. We conjecture that the main reason behind this is the larger and byte-level BPE vocabulary used

by RoBERTa. Though, CoLAKE outperforms its baseline, RoBERTaBASE, by a significant margin.

Besides, CoLAKE even improves over the LARGE size of model, K-Adapter, by 2.5% and 1.2% on

LAMA-Google-RE and LAMA-UHN-Google-RE respectively.

4.4 Language Understanding Tasks

We also evaluate CoLAKE on the General Language Understanding Evaluation (GLUE) (Wang et al.,

2019a), which provides a collection of diverse NLU tasks. Since these tasks require little factual knowl-

edge, we attempt to explore whether CoLAKE degenerates the performance on these NLU tasks.

The experimental results on GLUE dev set are shown in Table 4. CoLAKE is slightly degraded from

RoBERTa but improves over KEPLER by 1.4% on average. We conclude that CoLAKE is able to si-

multaneously model text and knowledge via the heterogeneous WK graph. In summary, our experiments

demonstrate that CoLAKE significantly improves the performance on knowledge-required tasks and at

the same time achieves comparable results on language understanding tasks.

Model MNLI (m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE AVG.

RoBERTa 87.5 / 87.3 91.9 92.8 94.8 63.6 91.2 90.2 78.7 86.4
KEPLER 87.2 / 86.5 91.5 92.4 94.4 62.3 89.4 89.3 70.8 84.9
CoLAKE 87.4 / 87.2 92.0 92.4 94.6 63.4 90.8 90.9 77.9 86.3

Table 4: GLUE results on dev set. Both of KEPLER and CoLAKE are initialized with RoBERTaBASE.

4.5 Word-Knowledge Graph Completion

Note that CoLAKE is essentially a GNN pre-trained on large-scale WK graphs, which makes it structure-

aware and easy to generalize to unseen entities.

To probe CoLAKE’s capability of modeling both structural and semantic features, we design a task

named word-knowledge graph completion. In particular, we use the FewRel test set to construct two

experimental settings: transductive setting and inductive setting. In both settings, each sample provides

a triplet (h, r, t) and a sentence that expresses the triplet. The considered models are required to predict

the relation r. For each sample in transductive setting, the two entities, h and t, and their relation r

are seen in training phase. But the triplet (h, r, t) has not appeared in the training data. We collect 10K

samples from the FewRel test set to construct the transductive setting. For each sample in inductive

setting, at least one entity is unseen during training. This setting requires the model to be inductive so

that it can generalize to unseen entities. We collect 1K samples from the FewRel test set to construct

the inductive setting. We directly evaluate CoLAKE in the two settings without further training on the

FewRel training set. The forms of word-knowledge graph are depicted in Figure 4. For inductive setting,

we encourage CoLAKE to infer the unseen entity by aggregating messages from its neighbors.

We take several well-known models for link prediction as our baselines5. For transductive setting, we

compare CoLAKE with four widely-used models, i.e. TransE (Bordes et al., 2013), DistMult (Yang et

5We did not compare with KEPLER (Wang et al., 2019c) since the authors did not release their data split and model yet.
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Harry

Potter
Lord

Voldemort

[MASK]

[CLS] points his wand at [SEP]
Lord

Voldemort

[MASK]

[MASK]

mother

Lily

Potter

Ginny

Weasley

spouse

(a) Transductive setting. (b) Inductive setting.

Figure 4: Illustration of the input word-knowledge graph for transductive setting and inductive setting.

In transductive setting, Harry Potter and Lord Voldemort are seen during training. In inductive

setting, Harry Potter is unknown but its neighboring entities are seen in training data.

al., 2015), ComplEx (Trouillon et al., 2016), and RotatE (Sun et al., 2019). We use DGL-KE (Zheng et

al., 2020) to train the four baseline models on Wikidata5M6. For inductive setting, we take DKRL (Xie

et al., 2016) as our baseline. As shown in Table 5, CoLAKE outperforms other models by a large margin

thanks to its capability of simultaneously utilizing structural knowledge and rich text semantics while

traditional KE models can only handle structural knowledge. Besides, the inductive ability of CoLAKE

is more realistic. Unlike DKRL and KEPLER, which generate entity embeddings from descriptions,

CoLAKE generates entity embeddings based on their neighbors.

Model MR ↓ MRR HITS@1 HITS@3 HITS@10

Transductive setting

TransE (Bordes et al., 2013) 15.97 67.30 60.28 70.96 79.75
DistMult (Yang et al., 2015) 27.09 60.56 48.66 69.69 79.61
ComplEx (Trouillon et al., 2016) 26.73 61.09 49.80 70.64 79.78
RotatE (Sun et al., 2019) 30.36 70.90 64.74 74.89 81.05
CoLAKE 2.03 82.48 72.14 92.19 98.58

Inductive setting

DKRL (Xie et al., 2016) 168.21 8.18 5.03 7.28 14.13
CoLAKE 31.01 28.10 15.69 30.28 58.05

Table 5: The experimental results on word-knowledge graph completion task.

5 Conclusion

In this paper, we propose CoLAKE to jointly learn contextualized representation for language and

knowledge. We integrate the language context and knowledge context in a unified data structure, word-

knowledge graph. The experimental results show the effectiveness of CoLAKE on knowledge-required

tasks. Besides, to explore the potential application of the WK graph, we design a task named WK graph

completion, which shows that CoLAKE is essentially a powerful GNN that is structure-aware and in-

ductive. The surprisingly high performance on WK graph completion inspires the potential applications

of WK graph, for example, (a) CoLAKE may help to denoise distantly annotated samples of relation

extraction (Craven and Kumlien, 1999; Mintz et al., 2009), (b) CoLAKE can be used to measure the

quality of graph-to-text templates (Davison et al., 2019; Bouraoui et al., 2020) due to its capability of

preserving the original graph structure. We leave these applications as future work.
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