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A B S T R A C T

We present two matched sets of five dissipationless simulations each, including four presently

favoured minimal modifications to the standard cold dark matter (CDM) scenario. One

simulation suite, with a linear box size of 75 h
¹1 Mpc, is designed for high resolution and good

statistics on the group/poor cluster scale, and the other, with a box size of 300 h
¹1 Mpc, is

designed for good rich cluster statistics. All runs had 57 million cold particles, and models with

massive neutrinos (CHDM-2n) had an additional 113 million hot particles. We consider

separately models with massive neutrinos, tilt, curvature, and a non-zero cosmological

constant (L ; 3H
2
0QL) in addition to the standard CDM model. We find that the dark matter

in each of our tilted Q0 þ QL ¼ 1 (TLCDM) model with Q0 ¼ 0:4, our tilted Q0 ¼ 1 model

(TCDM), and our open L ¼ 0 (OCDM) model with Q0 ¼ 0:5 has too much small-scale power

by a factor of ,2, while CHDM-2n and SCDM are acceptable fits. In addition, we take

advantage of the large dynamic range in detectable halo masses afforded by the combination of

the two sets of simulations to test the Press–Schechter approximation. We find good fits at

cluster masses for dc;g ¼ 1:27–1.35 for a Gaussian filter and dc;t ¼ 1:57¹1:73 for a top hat

filter. However, when we adjust dc to obtain a good fit at cluster mass scales, we find that the

Press–Schechter model overpredicts the number density of haloes compared to the simula-

tions by a weakly cosmology-dependent factor of 1.5–2 at galaxy and group masses. It is

impossible to obtain a good fit over the entire range of masses simulated by adjusting dc within

reasonable bounds.

Key words: cosmic microwave background – cosmology: theory – dark matter – large-scale

structure of Universe.

1 I N T RO D U C T I O N

The COBE DMR detection of anisotropies in the cosmic microwave

background (CMB) (Smoot et al. 1992) made it very clear that

the ‘standard’ structure formation scenario of cold dark matter

(Blumenthal et al. 1984; Davis et al. 1985) cannot simultaneously

account for fluctuations on very large and very small scales. That

model made several very restrictive assumptions about cosmologi-

cal parameters – that space–time is homogenous, isotropic and

globally flat; that there is no cosmological constant; that fluctua-

tions from homogeneity are Gaussian-distributed and nearly scale-

independent at horizon crossing; that the Hubble parameter h ; H0/

(100 km s¹1 Mpc¹1) is 0.5; and that the number of free parameters is

minimized. The obvious fixes to the problem of excess small-scale

power (when normalizing power spectra to the COBE anisotropy)

are to make one of the following modifications to the model:

(i) tilt the primordial spectrum,

(ii) allow a non-zero cosmological constant but retain globally

flat geometry,

(iii) allow the universe to be open,

(iv) add hot dark matter (i.e. neutrinos with masses of a few eV),

or

(v) lower the Hubble parameter much further (h , 0:3¹0:4).

Each of these modifications adds only one free parameter to the

cosmology. In this paper, we consider the most viable models from

each class above except the last, and simulate them with an N-body

code in two suites, with equivalent initial conditions across all the
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models. We do not consider a ‘low-H0’ model (Bartlett et al. 1995)

because of increasingly solid observational evidence that h * 0:5.

Deciding on cosmological parameters is to some extent an

iterative process. Much can be done using the Press–Schechter

(1974) approximation, but the assumptions that go into it are not

necessarily realistic (for example, spherical symmetry – see Jain &

Bertschinger 1994 and Monaco 1995). Therefore, it is useful as a

first approximation to calculating the mass functions, and we use it

to perform an approximate cluster normalization, using guesses

about other cosmological parameters. We run a set of simulations

and use them to test the Press–Schechter approximation, and make

several preliminary comparisons to observational data. In a com-

panion paper (Gross et al., in preparation), we recalibrate the Press–

Schechter approximation and use it to derive refined estimates of

model normalization and Q0 from several different data sets, and

make more careful comparisons to cluster abundance. Subsequent

papers will use simulations based on the refined normalizations.

In Section 2.1, we describe our specific models from each class of

CDM-variant models and explain why we chose the parameters as

we did. In Section 2.2, we briefly describe the implementation of the

particle–mesh algorithm we used for this study. We explain our

halo-finding algorithm and the effect of mass resolution upon it in

Section 3 and report the simulation results in Section 4. Finally, in

Section 5, we present our conclusions.

2 S I M U L AT I O N S

2.1 Models

Given the long list of modifications to the cold dark matter (CDM)

scenario in the previous section, we could construct a model by

adjusting every parameter in order to fit all the available observational

data. However, in addition to being aesthetically displeasing, the

physical significance of such a model would be unclear. As a result,

we have tried to minimize the number of modifications to the

relatively simple standard cold dark matter (SCDM) scenario by

investigating each of the modifications mentioned above in a

separate model. The exceptions to this policy are that, in addition

to any one of modifications (ii)–(iv), we allow a small tilt, up to

n ¼ 0:9, in order to simultaneously fit the COBE and cluster data,

and we allow the Hubble parameter to be adjusted within reasonable

observational bounds according to the requirements of the model.

Larger tilts are not allowed because they tend to cause disagree-

ments with high-multipole cosmic microwave background data.

We explore the large parameter space by running a large suite of

linear calculations and comparing the output to appropriate obser-

vational constraints. Constraints that we consider in choosing model

parameters for more detailed non-linear analysis are as follows.

(i) The abundance of Abell clusters, as measured by X-ray

temperature profiles (White, Efstathiou & Frenk 1993; Biviano

et al. 1993, hereafter WEF93 and BGGMM93, respectively). We

assume that cluster masses may be underestimated by up to a factor

of two, motivated by results from cluster density mapping with

gravitational lensing (Squires et al. 1996, 1997; Miralda-Escudé &

Babul 1995; Wu & Fang 1996; Wu & Fang 1997, Fig. 1).

(ii) Microwave background anisotropies for , & 800 (Fig. 2) as

measured by several recent CMB detection experiments (Tegmark

1996; Netterfield et al. 1997; Scott et al. 1996; Platt et al. 1997;

Fig. 2).
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Figure 1. Expected mass functions for all models estimated from the Press–

Schechter approximation with a Gaussian filter, using dc;g ¼ 1:5 for the

model with massive neutrinos and dc;g ¼ 1:3 for all other models. The two

data points shown correspond to observational estimates of cluster abun-

dance (WEF93, BGGMM93). Note that cluster density mapping via

gravitational lensing (Squires et al. 1996; Squires et al. 1997; Miralda-

Escudé & Babul 1995; Wu & Fang 1997) may indicate that X-ray masses are

systematically low, and the masses can plausibly be raised by a factor of up

to two, which corresponds to the horizontal line on the right of each cluster

data point.

Figure 2. Model comparison to cosmic microwave background. All models

except SCDM are consistent with COBE four year data (Górski et al. 1996;

Górski, private communication). Circles, solid squares, open squares and

asterisks are the COBE four-year power spectrum (Tegmark 1996), Saska-

toon 1995 results (Netterfield et al. 1997), CAT detection (Scott et al. 1996)

and Python III results (Platt et al. 1997), respectively. Not shown are

systematic normalization errors of 14 and 20 per cent, for Saskatoon and

Python III, respectively. The curves are all calculated using the CMBFAST

program of Seljak & Zaldarriaga (1996). Cosmological parameters corre-

spond to models considered in this paper, except for SCDM. The normal-

ization is adjusted so that the low harmonics match the output of our linear

code. CMBFAST is capable of calculating larger multipoles than our linear

code. SCDM is shown here with Qb ¼ 0:1, since all the high-, features in the

CMB spectrum are dependent upon baryon interactions, but was actually

simulated with no baryons.
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(iii) ‘Bulk flow’ peculiar velocity measurements and resulting

constraints on the power spectrum (Dekel et al., in preparation;

Kolatt & Dekel 1997; Fig. 3). The linear estimates of these

parameters are shown in Table 1 and in Figs 1–4 for the models

we consider.

In most of the previous work with modified CDM models,

the most ‘extreme’ values of the model parameters have been

chosen (i.e. as far from SCDM as was considered observation-

ally plausible). For example, low-Q0 models typically have

values of Q0 , 0:2¹0:3. However, in every case, while solving

some of the problems with SCDM, this introduces new pro-

blems or conflicts with other observational constraints. Thus our

approach will be somewhat different. We use our previous

experience with linear and non-linear tests of CDM-variant

models, as well as the published results of others, to find

models that represent a ‘middle ground’ between SCDM and

the most extreme version of the particular class of model. In

this way, we hope to choose the ‘best’ rather than the most

extreme case, and to identify models that agree with the widest

possible range of observations.

For most models, we presume a baryon abundance of

Qb ¼ 0:025h
¹2, consistent with the Tytler, Fan & Burles (1996)

cosmic deuterium abundance measurement.1 Normalization is

accomplished by calculating low multipoles using an enhanced

version of the linear code from Holtzman (1989) and comparing to

the four-year COBE DMR anisotropy measurements (Górski et al.

1996; Górski, private communication).

For comparison to other studies, we also simulated the SCDM

model with bias b ¼ j
¹1
8 ¼ 1:5. That model is intended to approxi-

mately match observed cluster abundances at the cost of being

inconsistent with the COBE anisotropy measurements. For this

model, we presumed there were no baryons in the Universe, and

used the BBKS transfer function (Bardeen et al. 1986) used in

CDM-variant cosmological models – I 83
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Table 1. Model parameters and linear results for both simulation suites.

Model Agea
h

b
Q0 Qc Qb Qn QL n

c
N

d
n j

e
8 j̃

f
8 V

g

50 N
h
cl

observations 375 5 × 10¹6

1-j errors 85 2 × 10¹6

CHDM-2n 13.0 0.5 1.0 0.7 0.1 0.2 0.0 1.0 2 0.719 0.719 399 6 × 10¹6

OCDM 12.3 0.6 0.5 0.431 0.069 0. 0.0 1.0 0 0.773 0.581 254 3 × 10¹6

SCDM 13.0 0.5 1.0 1.0 0.0 0.0 0.0 1.0 0 0.667 0.667 192 2 × 10
¹6

TCDM 14.5 0.45 1.0 0.9 0.1 0.0 0.0 0.9 0 0.732 0.732 270 5 × 10¹6

TLCDM 14.5 0.6 0.4 0.365 0.035 0.0 0.6 0.9 0 0.878 0.572 335 2 × 10¹6

aTime since the big Bang in Gyr.
b
Presumed Hubble parameter, in units of 100 km s

¹1
Mpc

¹1
.

c‘Tilt’ of the primordial spectrum; PðkÞ ∞ k
n.

dNumber of massive neutrinos presumed. The equivalent mass of a neutrino is mn ¼
Qnh

2

Nn
× 92 eV.

erms mass fluctuation in a sphere of radius 8 h
¹1 Mpc.

f
j̃8 ; j8Q

0:46¹0:10Q0

0 for L ¼ 0 models, and j8Q
0:52¹0:13Q0

0 for QL þ Q0 ¼ 1 models. Eke et al. (1996) calculate

j̃8 ¼ 0:52 6 0:04 in order to fit cluster temperatures assuming b ; 〈KE〉dm=〈KE〉gas ¼ 1. However, new simulations

(Frenk et al. 1998) show that b < 1:17, corresponding to j̃8 ¼ 0:61 6 0:05.
grms velocity in a sphere of radius 50 h

¹1 Mpc (Dekel et al. 1997). Note that the observational value is for one particular

50 h
¹1

Mpc sphere around the Local Group, and the simulation values are the rms value for a distribution of randomly

placed spheres. These are not the same, so we cannot use the observations to rigorously define confidence limits for the

simulation quantities.
h
Estimated number density of clusters of mass > 6 × 10

14
h

¹1
M(, in h

3
Mpc

¹3
, from Press–Schechter theory with a

Gaussian window function. dc;g is 1.5 for CHDM models (Walter & Klypin 1996; Borgani et al. 1997b) and 1.3 for all other

models (Liddle et al. 1996, KPH96). Masses near the centre of the allowable range for cluster data (WEF93, BGGMM93)

are used. Note that uncertainties in the masses of measured clusters mean that the masses for which densities were measured

could shift coherently up to a factor of two above the reported value of 4:2 × 10
14

h
¹1

M(. This is a naive approach which we

use only for our first iteration of model parameters. We use more sophisticated methods in Gross et al. (in preparation).

1Burles & Tytler (1997, 1998) have very recently remeasured the deuterium

abundance and found it to be 20 per cent lower, 0:019 6 0:001. This makes a

very small change in the power spectrum, and the most significant effect is to

make agreement with high-, cosmic microwave background measurements

(Fig. 2) more difficult. The height of the first Doppler peak depends strongly

on Qb.

Figure 3. Linear power spectrum comparison to bulk-flow measurements.

The curves are all a magnification of Fig. 4, multiplied by f
2
ðQ0; QLÞ;

ðaḊ=ȧDÞ
2. The three data points are from Kolatt & Dekel (1997). f ðQ0; QLÞ

was calculated exactly, using equation (C.3.14) of Gross (1997) and its

analytic derivative.
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previous studies, that is,

PðkÞ ¼ Ak
½lnð1 þ 2:34qÞÿ

2

ð2:34qÞ2
½1 þ 3:89q þ ð16:1qÞ

2

þ ð5:46qÞ
3

þ ð6:71qÞ
4
ÿ
¹1=2

ð1Þ

with q ¼ kh
¹2 and A adjusted so that the rms fractional variance in

mass in spheres of radius 8 h
¹1 Mpc estimated using linear theory is

j8 ¼ 0:667.

The simplest way to solve the problem of excess power on small

scales is by ‘tilting’ the spectrum, that is, by changing the Ak factor

in equation (1) to Ak
n, with n < 1. However, the price paid is that

choosing n < 1 also reduces the amplitude of the first ‘Doppler

peak’ in the small-angle cosmic microwave background spectrum.

We find that n , 0:9 is the largest allowable tilt that is still

marginally consistent with the large-multipole cosmic microwave

background data. With n ¼ 0:9, when we COBE normalize the

model we find that it tends to overproduce clusters at M ¼ 6 ×
10

14
h

¹1
M( according to the Press–Schechter estimate, unless we

use a rather low value of the Hubble parameter, h ¼ 0:45. Although

this is not favoured by most of the current observational data, we

conclude that this choice of parameters constitutes the best com-

promise amongst the observational constraints that we have

imposed.

Another fix is to add a little hot dark matter, usually assumed to be

in the form of a massive neutrino. Previously studied versions of this

class of model typically postulate a single species of neutrino with

significant mass, and a fraction Qn ¼ 0:3 of the critical density in the

form of hot dark matter (HDM). This model was ruled out, based on

its inability to reproduce the observed abundances of damped

Lyman a systems (DLAS) at z , 3 (Kauffmann & Charlot 1994;

Klypin et al. 1995). Models with lower fractions of hot dark matter

(Qn ¼ 0:2) are more plausibly consistent with constraints from

DLAS (Klypin et al. 1995), but still have too much small-scale

power and thus overproduce clusters at z ¼ 0. However, as pointed

out by Primack et al. (1995; see also Pogosyan & Starobinsky

1995), if the hot dark matter is divided into two species of neutrino

with equal masses, the power on cluster scales is reduced by 20 per

cent without affecting smaller or larger scales. This lowers cluster

abundances without worsening potential early structure formation

problems (small-scale power) or compromising the COBE normal-

ization. We find reasonable agreement with observed cluster

abundances with Qn ¼ 0:2, Nn ¼ 2, h ¼ 0:50, and n ¼ 1; or alter-

natively, with a small tilt (n ¼ 0:9) and a higher Hubble parameter

(h ¼ 0:6). We chose the former, based on concerns about the age of

the Universe. However, we ran the simulations before the Hippar-

cos recalibration of the age of globular clusters (Reid 1997; Gratton

et al. 1998; Chaboyer et al. 1998). This constraint has now been

considerably weakened, and h ¼ 0:6 or even 0.65 would lead to

ages consistent with the present estimates.

The QL Þ 0 class of models has been well studied, typically with

Q0 ¼ 0:3 and h , 0:65¹0:7. However, analysis of earlier N-body

simulations has shown that when non-linear effects are included,

this model produces a power spectrum/correlation function with too

high an amplitude on small spatial scales compared to observations,

unless galaxies are strongly anti-biased with respect to the dark

matter (Klypin, Primack & Holtzman 1996, hereafter KPH96;

Jenkins et al. 1998). Ghigna et al. (1997) have also shown that the

void probability function for this model is in disagreement with

observations. Therefore we have chosen a model with a slightly

higher value of the matter density (Q0 ¼ 0:4) and a tilt (n ¼ 0:9) to

reduce small-scale power and correlations (TLCDM).

Many observers favour an open cosmology and a high Hubble

parameter, consistent with local density estimates and the Hubble

Key Project. The lowest reasonable value of Q0, given initial

Gaussian fluctuations as assumed in all CDM-variant models

considered here, is constrained to be above 0.3 at *4j confidence

(Nusser & Dekel 1993; cf. also Dekel & Rees 1994; Bernardeau

et al. 1995). We adopt Q0 ¼ 0:5 as a ‘reasonable’ value for open

CDM (OCDM), noting that even this relatively high Q0 leads to a

power spectrum lower than that indicated by the POTENT analysis

(Kolatt & Dekel 1997; see also Fig. 3). Our linear code is not

capable of determining low multipole cosmic microwave back-

ground fluctuations for OCDM, as it uses a plane wave expansion

that is only appropriate for flat cosmologies. Instead, we use fitting

functions for the normalization dHðQ0Þ and the transfer function

TðkÞ given by Liddle et al. (1996, hereafter LLRV96).2

Fig. 1 summarizes the expected mass functions on the group and

cluster mass scales, as estimated from the Press–Schechter approxi-

mation, with a Gaussian filter. Using the calibration with N-body

simulations from Borgani et al. (1997b), we use dc;g ¼ 1:5 for the

model with massive neutrinos and dc;g ¼ 1:3 for all other models, in

this figure (but cf. Table 3, below, for best-fitting dc;g and dc;t to our

simulation results). The observational cluster abundance estimates

plotted are in reasonable agreement with these mass functions,

especially if the mass estimates are low as indicated by some

gravitational lensing estimates.

In Fig. 2, we compare each model to several recent CMB

measurements, using the CMBFAST program of Seljak & Zaldarriaga

(1996). We also show the four most recently announced CMB

results on the figure. Not shown are systematic calibration errors of

14 per cent for Saskatoon and 20 per cent for Python III. Note that

the OCDM model is strongly inconsistent with Saskatoon points,

and our choice of Q0 ¼ 0:5 is at the 95 per cent confidence lower

limit for an open model (Lineweaver & Barbosa 1998). Also note

that the models with even the relatively mild tilt of n ¼ 0:9 are at

best in marginal agreement with the Saskatoon data around the first

Doppler peak.

Fig. 4 shows the linear power spectra at the present epoch. As one

might expect, all the spectra nearly cross at a wavenumber of a few

tenths h Mpc¹1, corresponding to cluster scales. Also, we show

some of the window functions used in the normalization procedure

described above.

In Fig. 3, we compare our models to the matter power spectrum

recently measured from bulk flows by Kolatt & Dekel (1997). We

only use the three data points that Kolatt & Dekel use for their own

statistical analysis, because for larger wavenumbers smoothing

lowers the power significantly. SCDM disagrees at about the 2.5j

level, also reflected in its low value of V50 in Table 1. OCDM and

TLCDM disagree because the value of P(,0:1 h Mpc¹1) is fixed by

comparing the observed density of clusters (WEF93, BGGMM93,

Borgani et al. 1997a) to the Press–Schechter prediction, and they

84 M. A. K. Gross et al.
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2After we ran this model, LLRV96 was superseded by Bunn & White (1997)

and Hu & White (1997). The j8 values in those papers agree to high

precision with LLRV96 if one lowers Qb from 0.025 to 0.015 h
¹2, which

Bunn & White (1997) favour anyway. However, the transfer function shapes

are somewhat different, and the LLRV96 normalization is to the COBE 2-yr

data, so the power on scales of a few hundred h
¹1

kpc may be up to 20 per

cent low compared to Bunn & White (1997) and Hu & White (1997). Using a

BBKS-style fit as all three papers do, rather than integrating the Boltzmann

equation directly, introduces an error of similar magnitude, even with the

improved shape parameter described in Hu & Sugiyama (1996, equation

D-29). We therefore neglect the difference between the Bunn & White

(1997) and LLRV96 spectra.
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have low values of f ðQ0; QLÞ ; Ḋa=Dȧ < Q
0:6
0 , where DðQ0; L; tÞ is

the linear growth factor and aðtÞ is the expansion parameter. The

combination of cluster abundances and bulk-flow power spectrum

measurements favours f , 1, for the currently favoured classes of

CDM variant models.

There is currently significantly controversy over the proper

normalization of models, and our OCDM and TLCDM normal-

izations are higher than the recent fits reported in Eke, Cole & Frenk

(1996), based on cluster X-ray temperature distributions (Henry &

Arnaud 1991),3 though they are consistent with the older analyses

of WEF93 and the new cluster velocity dispersion measurements of

Borgani et al. (1997a). Pen (1998) has reanalysed the Eke et al.

(1996) calculation, and he gets slightly higher low-Q0 normal-

izations of j8 ¼ 0:86 and 0.72 for our TLCDM and OCDM models,

respectively. These normalizations are close to those we have

chosen (Table 1).

2.2 Algorithm

A classic problem with gravitational simulations is the ‘overmerg-

ing’ problem, where small-scale structure in highly overdense

regions is not resolved. Part of the problem is physical – real

galaxies form much denser cores than dissipationless haloes can,

because the baryons can dissipate energy (but cf. Klypin, Gottlöber

& Kravtsov 1997a). Aside from that, numerical limitations can

make the problem vastly worse. There are two numerical effects

to consider: force resolution and sampling of initial conditions

and bound structures. Improving either of these requires vast

amounts of memory and processing time, so there is an inherent

trade-off.

Recently, the more popular approach has been to improve the

forces by using hybrid (Hockney & Eastwood 1988; Couchman

1991; Xu 1995, for example) or adaptive-mesh (Kravtsov, Klypin &

Khokhlov 1997, for example) force solvers, at the expense of either

poor sampling of initial fluctuations or small box sizes. We choose a

complementary approach, in which we try to balance the sampling

of density in a large box with force resolution. We still require a

large dynamic range in order both to sample small scales well and

simultaneously to simulate a large volume for comparison to red-

shift surveys. Since the two requirements imply an enormous

number of particles, computer time limitations force us to use the

fastest code available. We chose a standard particle-mesh (Hockney

& Eastwood 1988) algorithm, parallelized to run on a distributed-

memory message-passing system.4 This type of code produces

adequate forces at about 1.5 grid cells [Klypin, Nolthenius &

Primack 1997b (hereafter KNP97), appendix A], but we double

this distance to be conservative. So, we require that we have 33

times as many grid cells as particles, for the high-resolution suite.

We choose a grid cell size of 65 h
¹1 kpc, with Ng ¼ 11523 grid cells

and Np ¼ 384
3

¼ 57 million ‘cold’ particles. For the large-volume

case, we wish to follow the dynamics only of clusters of galaxies, so

we can afford to coarsen the density grid slightly. We find that a cell

size of 390 h
¹1

kpc is adequate for following the dynamics of

*1014
h

¹1 M( objects, and expect information about smaller

objects to come from the high-resolution simulations. The slight

coarsening of the density resulted in a substantial advantage in

running time.

Initial conditions were calculated using a parallelized Zel’dovich

(1970) approximation. For coldþhot dark matter (CHDM) models,

we started with a uniform grid of cold particles, and two neutrinos at

the position of every cold particle. Cold particles and neutrinos were

offset from the grid using separate coldþbaryon and hot power

spectra, and consistent velocities were derived from the offsets

using scale-dependent linear growth rates calculated by a refine-

ment of the Holtzman (1989) code. In addition, equal and opposite

random thermal velocities were chosen for each pair of neutrinos

from a redshifted relativistic Fermi–Dirac distribution (Klypin et al.

1993).

We adopted the form of the equations of motion used in Kates,

Kotok & Klypin (1991) generalized to arbitrary cosmology:

=
2
f ¼

3

2a
d ;

3

2a

dr

Qrc

; ð2Þ

dpi

da
¼ ¹ȧ=fðxiÞ; ð3Þ

and

dxi

da
¼

pi

a2ȧ
; ð4Þ

where ȧ is given by the Friedmann equation with time variable H0t,

ȧ ¼ a
¹1=2

���������������������������������������������

Qc þ Qn þ QLa3 þ Qka

q

: ð5Þ
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3
Note that Eke et al. (1996) discovered two compensating errors in the

Henry & Arnaud (1991) analysis: an arithmetical error of a factor of 4.2 and

a binning error of a factor of about 4 in the other direction. The errors have

also been noted in Viana & Liddle (1996).
4
Specifically, the Cornell Theory Centre SP2, but the code is portable to any

system supporting MPI, including heterogeneous workstation clusters and

most modern supercomputers.

Figure 4. Linear power spectra used in our simulation suites. Also shown are

two of the window functions used in normalizing the models: k
2
W

2
ðrkÞ with

r ¼ 8 h
¹1 Mpc for j

2
8 and W

2
ðrkÞ with r ¼ 50 h

¹1 Mpc for V
2
50. Here

WðxÞ ¼ 3½sinðxÞ ¹ x cosðxÞÿx
¹3. Also shown (for illustrative purposes

only) is the equivalent window function for approximate COBE normal-

ization using the pure Sachs–Wolfe effect, j
2
10ðdhkÞ=ð2pd

2
hk

2
Þ where j10ðxÞ is

the 10th order spherical Bessel function and dh is the horizon distance. The

version plotted has the amplitude raised by a factor of 100 for visibility and

uses dh ¼ 2c=H0 ¼ 6000 h
¹1

Mpc, which is appropriate for Q0 ¼ 1. For

OCDM, the horizon distance is 7470 h
¹1 Mpc and for TLCDM, it is

8810 h
¹1 Mpc, so the window function moves a small distance to smaller

k in those cases. A similar window function for cluster abundance doesn’t

exist because it doesn’t have the form of a convolution. In an extremely

rough sense, the scales are comparable to those sampled by j8.
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Time discretization was a standard ‘leapfrog’ scheme (cf. Hockney

& Eastwood 1988), with even steps in the expansion parameter a. To

reduce the expense of the simulations, the time-step was chosen

only to stabilize bound structures at the final time-step, rather then

keep all structures on the scale of the grid spacing stable. This is

only a problem for the cores of clusters, which have the highest

velocities. For clusters, we presume an upper bound of particle

velocities of 1200 km s
¹1

today and a minimum diameter of any

given bound structure equal to the linear cell size. Stability for such

an object requires that particles take at least one time-step to

traverse the object. So, the required condition is

Da ; ȧDt &
H0L

N1=3
g vmax

ð6Þ

independent of cosmology because the condition is evaluated at the

present epoch and H0L is chosen to be the same for all models.

Plugging in vmax ¼ 1200 km s¹1, H0L ¼ 7500 km s¹1 and Ng ¼

11523 gives Da & 0:005, or 200 time-steps for the high-resolution

suite. Such a low vmax will not model the interiors of clusters well,

since they are observed to have velocity dispersions larger than that,

but to remain bound to the cluster, particles have the much looser

requirement that they not traverse the whole cluster in one time-

step. As large cluster radii are up to about 50 grid cells, the effective

stability limit is 20 per cent of the speed of light inside a large

cluster, for the high-resolution suite, presuming that the cluster is

adequately modelled by an isothermal sphere. We checked that the

choice of time-step was adequate by running a 25 h
¹1 Mpc box

CHDM-2n simulation with 3843 grid cells (which has the same

65 h
¹1 kpc cell size as the high-resolution suite) for 200 time-steps

and for 300 time-steps. The resulting mass functions were not

significantly different. For the large-volume suite, clusters do not

cover nearly as many cells as in the high-resolution suite, and so the

velocity limit is much higher. Our choice of 150 time-steps

corresponds to a limiting speed of 5000 km s
¹1

if particles are

not to cross one cell in a time-step. The suite parameters are

summarized in Table 2.5

The Zel’dovich (1970) approximation is only valid when the rms

fluctuations are much less than 1. In practice, one picks a starting

time early enough so that linear theory brings the rms fluctuations

well below 1. The initial time was chosen so that the rms over-

density on the grid scale was drms & 0:2. This was z ¼ 30¹60,

depending on the model. Particle data and halo catalogues were

stored at four equally spaced intervals in a during execution. The

large-volume simulation suite used the same starting times as

the high-resolution suite even though they could have been started

somewhat later because of the poorer resolution. The extra

computation involved is about one time-step and is therefore

negligible.

Random numbers are necessary in order to model inflation-

generated Gaussian fluctuations and random phases in the density

field. Such randomness introduces highly significant variation from

simulation to simulation, commonly referred to as ‘cosmic vari-

ance’. Because we can only observe one universe, quantifying the

effect of cosmic variance is very important and is a separate issue

from variations between models due to different physics. In these

suites, we have separated the effects by picking a single random

number seed for each suite, checking that the largest 26 waves do

not have any fluctuations larger than a factor of 2, and rerunning one

model with a different seed. That is, within each suite, the random

numbers for each model within a suite are all the same, and large

wavelength fluctuations are restricted to a smaller range than

Gaussian statistics would permit, in an attempt to prevent rare

statistical flukes from compromising expensive simulations (as

happened in Klypin et al. 1993). This means the structures are

approximately in the same place, and when one also considers the

cluster abundance criterion discussed in Section 2.1 there is roughly

the same number, distribution and positions of 5 × 1014
h

¹1 M(

clusters in all the models in a given suite. Note that the models do

have different power spectra and fluctuation growth rates, so

distributions can differ for objects with different masses.

3 DA R K M AT T E R H A L O E S

3.1 Halo-finding algorithm

We identify dark matter haloes using a spherical overdensity

algorithm similar to that of KNP97, with some of the limitations

removed.

(i) We define candidate haloes as the centres of all density

maxima containing an overdensity greater than d ; dr=Q0rc ¼ 50.

A density maximum is defined as a cell the density of which is

greater than its six Cartesian neighbours. Just in case there are other

haloes hiding in those six neighbours, we also consider each of them

to be candidates. Note that the finite grid size (as in all other grid-

based halo finders, such as DENMAX, Gelb & Bertschinger 1994) will

introduce a minimum separation between haloes, which may cause

small haloes to be missed, which in turn will require a mass cut.

(ii) Each candidate halo then has the location of its centre set

iteratively to the centre of mass of all the particles inside a sphere of

diameter equal to the cell size (65 h
¹1 kpc in our high-resolution

case). Haloes are expected to have a minimum size of the order of

the grid size, so this procedure moves the candidate halo to the peak

of the density maximum. Of course, since we have defined more

86 M. A. K. Gross et al.
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5Though the implementation, and especially parallelization, of the two-

species particle mesh code described above is much less trivial than one

might suppose, discussion of the code has been omitted for space considera-

tions. The interested reader may find a detailed description of the code, its

implementation on the Cornell SP2, and several code tests in Gross (1997).

Table 2. Simulation parameters for both simulation suites.

Suite Box size Ncells Cell size N
a
cold M

b
cold Nsteps M

c
min f

d

h
¹1 Mpc h

¹1 kpc ðQc þ QbÞ h
¹1 M( Q0 h

¹1 M(

high res 75 11523 65 3843 2:09 × 109 200 3:4 × 1011 0.078

low res 300 768
3

390 384
3

1:34 × 10
11

150 7:3 × 10
13

0.043

a
Number of cold particles; for models with massive neutrinos, Nhot ¼ 2Ncold.

bMass of cold particles; for models with massive neutrinos, Mhot ¼ McoldQn=2ðQc þ QbÞ.
cHalo detection cut-off, from the restriction that haloes must be larger than the grid size.
d
Fractional error in mass for the smallest haloes identifiable.
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than one candidate for each detected maximum, some candidates

will converge on the same halo. The smaller mass object in a given

pair is removed if the distance between the centres of mass is less

than half the grid spacing.

(iii) We perform a central overdensity cut. All haloes that do not

enclose a mean overdensity sufficient for virialization according to

the spherical collapse model (see Gross 1997, appendix C, and

references therein) at the end of the centre-of-mass detection phase

are presumed not to be virialized objects and are discarded.

Typically, this reduces the number of haloes by a factor of 2–3,

though the number is model dependent.

(iv) We now estimate the radius at which the mean enclosed

overdensity d ; dr=Qrc falls to dvir, the virial radius of the halo in

spherical infall models.
6

For each halo, we count the number of

particles within five radii up to five grid cells (325 h
¹1 kpc in this

case) away from the centre, convert that to density, and interpolate

the radius at which d ¼ dvirðrvirÞ using power-law cubic splines. If

five radii is not large enough to enclose rvir, we search five more

radii, each twice as long as the original radii. This is repeated until

we enclose rvir.

(v) We define the mass of the halo as the mass enclosed in rvir.

The velocity is the mean velocity of all the particles within rvir.

(vi) In general, the largest haloes in a high-resolution run contain

much resolved but bound substructure. Because we search for the

d ¼ dvir radius, we detect the same regions of space dozens of times

for the largest haloes. To remove ‘double-counted’ haloes, the

haloes are searched in reverse order by mass to see if they enclose

the centres of any smaller haloes. If so, the smaller halo is discarded.

Note that the ordering is important because three-body intersections

would be non-deterministic otherwise, and throwing away haloes

that only intersect is too stringent.

One limitation of this algorithm is that it presumes all haloes are

spherically symmetric, which is demonstrably untrue. However, the

effect on the mass function is random, rather than systematic, and

finding the haloes with an algorithm generalized to ellipsoidal

distributions does not change the mass function significantly, even

though it changes the parameters of individual haloes. Because the

haloes have finite size, one cannot perform mass-weighted correla-

tion function analyses, for distances less than the largest halo radius

(about 2–3 h
¹1 Mpc in radius, typically).

The other limitation is the use of the density grid to identify halo

candidates. If one considers a worst-case identification in which a

large number of particles all collect in one corner of a grid cell, in

order to guarantee that all nearby haloes are identified, one must

draw a sphere which encloses the entire cell, of radius

rmin ¼
���

3
p

L=N
1=3
g ; ð7Þ

where L is the length of one side of the computational volume and

Ng is the number of grid cells. If haloes happen to be bigger than

that, then the last step of the halo catalogue generator makes it

unimportant that we couldn’t see nearby structure. Fortunately, halo

extent is trivially related to halo mass because we have defined both

where the mean overdensity is d ¼ dvir.

3.2 The effect of mass resolution

To what extent should you, the reader, trust the mass functions

presented in this paper? To answer that, one must consider

several effects. A typical feature in a mass function is that the

large-mass end becomes ‘wiggly’, usually blamed on the scarcity

of high-mass haloes combined with cosmic variance. There is a

related effect at somewhat smaller masses, since very large

haloes tend to have somewhat massive companions. For exam-

ple, in most models in our high-resolution suite, 5 × 1013
h

¹1 M(

objects are fairly rare, but it is common to see them as

companions for 1015
h

¹1 M( objects. So, the wiggles may

propagate down the mass function, and cosmic variance may

have a significant effect on more than just the highest mass

scales.

Cosmic variance fortunately leaves a signature, in that the mass

function is not smooth at high masses. However, it is quite

important to figure out the limiting factors at low mass, where

typical mass functions are quite smooth. What limits accuracy here

are the effects of finite sized grids and finite numbers of particles.

The effect of the finite sized grid in identifying maxima in the

final particle distribution was discussed above, and one must merely

translate the minimum radius of a halo rmin to a minimum mass.

Since the halo radius and mass are defined as enclosing a mean

overdensity of dvir, the mass Mvir of a halo of radius rvir is

Mvir ¼ ð1 þ dvirÞ
4p

3
Q0rcr

3
vir: ð8Þ

So, a very conservative mass cut is

Mmin ¼ ð1 þ dvirÞ
4p

3
Q0rc

ðL
���

3
p

Þ
3

Ng

: ð9Þ

Plugging in values for the high-resolution suite, the mass cut is

3:4 × 1011
Q0 h

¹1 M(. For simplicity, we make the same mass cut on

all models, corresponding to Q0 ¼ 1.

One might worry that the central density cut described in the

previous section could cut too many small haloes, because the fairly

long time-steps we use cause the density within the ‘half-mass’

radius to go down by about a factor of two if the time-step equals the

stability limit (Quinn et al. 1997). We perform the central over-

density cut at r ¼ L=2Ng, but the proximity restriction used in

deriving equation (9) requires that halo radii in the final catalogues

be at least
���

3
p

L=Ng. If halo profiles fall at least as fast as r
¹1

(whereas the Navarro, Frenk & White 1997 profile says it should be

much steeper than that near the virial radius), then the density fed

into the central overdensity cut should be at least a factor of

2
���

3
p

< 3:4 greater than the virial density. This more than offsets

the density smoothing due to time-stepping at the stability limit, so

we neglect the effect of time-steps in our mass resolution analysis.

Note that our time-steps are only near the stability limit for virial

radii near the detection limit – otherwise, a particle takes many

time-steps to cross a halo. Therefore, lowered densities due to long

time-steps are only a concern for the smallest detectable haloes.

One might also worry that the quality of the force law at scales

approaching the grid scale would also result in reduced central

density. At the 1.7 grid cells proximity cut-off, the point–mass

potential in our simulations is about 90 per cent of the correct GM=r

value. With such a force law, the virial theorem requires that the

density also be 10 per cent low, to maintain the same velocity

dispersion. Thus, some of the smallest haloes around the mass cut

will not make it into the catalogue. In practice, the density profiles

for the smallest haloes are considerably noisier than 10 per cent as a

result of asphericity and background particles, so we neglect the

effect of an oversoftened force law.

Particle discreteness may also affect the halo mass function,
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6Note that our definition of dvir is related to Eke et al. (1996) by 1 þ dvir ¼

DECF=Q. Our choice is appropriate for the density field calculations in an

N-body code.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
0
1
/1

/8
1
/1

0
5
8
2
7
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



because random fluctuations may affect the detection of some of the

smallest haloes. We consider here how much significance we need

to make the expected number of haloes missed fewer than the

number of haloes in the simulation. Because halo boundaries are

defined where the mean overdensity d is dvir and the mass of a

particle is

Mp ¼ Q0rc

L
3

Np

; ð10Þ

where Np is the number of cold particles in the simulation,7 the

number of particles inside a halo of mass Mvir in a simulation box of

size L is

Nvir ¼
MvirNp

Q0rcL
3

: ð11Þ

For counting N particles within r, the random variation in number is

j ¼
����

N
p

. Let us suppose there are Nh haloes above a given mass,

and we wish to detect them all. We presume that counting haloes is a

Gaussian process and state that the n-sigma uncertainty in the

detection of the haloes corresponds to incorrectly detecting or

missing a fraction erfc(n=
���

2
p

) of the haloes. We require detection

of all haloes, so the fraction missed should be less than 1=rhL
3,

where r is the number density of haloes above the mass cut-off, and

L
3 is the volume of the simulation box where haloes are identified.

Inverting, we need detections of
���

2
p

erfc¹1
ð1=rhL

3
Þ sigma. The

density rh should really come from the Press–Schechter approxi-

mation, given a desired mass cut-off, but the inverse complemen-

tary error function is extremely insensitive to the value of its

argument, once it becomes much less than one. As an example, for

rh ¼ 1 h
3

Mpc
¹3

(appropriate for a mass cut-off a little below

1011
h

¹1 M( for most models), we need to have at least 4.7j

detections of all haloes. Less significant detections mean it is likely

some of them have been missed by random fluctuations. This means

every halo must contain at least 23 particles. More generally,

Nmin ¼ 2 erfc¹1 1

rhL3

� �� �2

ð12Þ

for the rather liberal restriction that we only require detection of the

halo.

As an alternative cut-off criterion, requiring a 10 per cent or less

1j error in mass is a more stringent requirement, and every halo

must have at least 100 particles, since mass is determined by

counting particles within several radii. If one requires a fractional

error of f for a minimum halo mass of Mmin, one needs at least

Np ¼
Q0rcL

3

f 2Mmin

ð13Þ

particles in the simulation. The parameters used, and the effective f

they allow, are shown in Table 2. Fig. 5 shows that, with grid sizes

and mean interparticle spacings of the order of those used in our

suite, the effect of lowering either the grid size or the mean

interparticle spacing by a factor of two does not significantly

affect the mass function. For this test, we raised the threshold for

halo candidate identification from d ¼ 50 in one cell to d ¼ 70

because one isolated cold particle in the high Ng case gives

1 þ d ¼ 51:2.

88 M. A. K. Gross et al.
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Figure 5. Effect of raising the number of particles or the number of grid cells

by a factor of 8 in a very small CHDM-2n 10 h
¹1

Mpc simulation with

Ng ¼ 1283 and Np ¼ 3 × 643. The mass functions are not significantly

different. A somewhat low mass cut-off of 1011
h

¹1 M( has been applied.

The high-resolution suite has a linear cell size that is slightly smaller than the

Ng ¼ 128
3

runs shown in this figure.

Figure 6. Effect of grid size on mass functions. The curves represent very

small simulations of various sizes. The Press–Schechter model was tuned to

match the cluster-scale part of the mass function in the largest box. Note that

the envelope mirrors the Press–Schechter curve reasonably well, but each

individual mass function has a power-law index that is too shallow. Mass

functions are limited at the large-mass end by statistics – one simply runs out

of enough space to create objects in – and on the small-mass end by some

fraction of the haloes becoming as small as two grid cells, which means it is

not guaranteed that the halo can be resolved from its neighbours, particularly

if they are also small haloes. The vertical lines represent the lower limit in

mass for each run, above which all haloes can be detected.

7
For simplicity, we consider the significance of models with only one

particle mass. For CHDM-2n, a given mass will always be represented by

more particles than in SCDM. So, one can get a conservative estimate of the

significance by only considering the cold particles.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
0
1
/1

/8
1
/1

0
5
8
2
7
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



To explicitly test the effect of grid sizes on our mass functions, we

ran five small simulations of the CHDM-2n model with Ng ¼ 1923

grid cells and Np ¼ 3 × 643 particles, with various-sized boxes.

Though these simulations are too small to generate meaningful

mass functions on their own, collectively their upper envelope does

match the Press–Schechter formula reasonably well, for dc;g ¼ 1:2

with a Gaussian filter. Fig. 6 shows the five different mass functions.

Also shown are lower mass cuts, determined for every model using

equation (9). Above the mass cut-offs, every mass function agrees

with the one for the next smaller box. Well below the mass cut-offs,

the mass function slopes are not steep enough, but they agree with

the neighbouring curves for significant distances below the mass

cuts, so it may be reasonable to extrapolate the mass function

further. Every halo detected by the halo finder is represented in the

figure, and the locations of the lower mass cuts are indicated by

vertical lines. This test could conceivably overproduce clusters

because of the extremely poor force and mass resolutions in the

largest volume run – a cell width is about the size of an Abell radius.

This dc result does persist for much larger simulations, as discussed

below.

4 R E S U LT S

The connection between simulations and observations is still fairly

uncertain, and the least well-determined portion of it is the galaxy

identification procedure. It is therefore helpful to do as much

analysis as one can using quantities that are insensitive to the

details of galaxy formation. Currently, only bulk flow motions

(Kolatt & Dekel 1997) provide a meaningful matter power spec-

trum, but the large smoothing required means that the comparison is

best made to the linear power spectrum (see Fig. 3). When

investigating quantities derived from observations of galaxies (as

the vast majority of astronomical observations are), one is forced to

make assumptions based on expections about the nature of galaxy

bias, for example the usual expectation that galaxies are more

clustered than the dark matter. Fig. 7 shows non-linear real-space

dark matter power spectra for all our models, compared to the APM

real-space galaxy power spectrum (Baugh & Efstathiou 1994). The

OCDM model requires significant antibiasing and the LCDM

model requires even more. There is no evidence for such strong

antibiasing, and it is very difficult to explain physically, especially

on such large scales (cf. Yepes et al. 1997; Kauffmann, Nusser &

Steinmetz 1997). Additional arguments against strongly scale-

dependent antibiasing are given in Klypin et al. (1996, hereafter

KPH96).

The process of galaxy formation is not well understood, so one

could argue that perhaps there is some mechanism that would give

us strong antibiasing. We have created an extreme model for galaxy

formation designed to produce as much antibias as possible (cf.

KPH96). Everywhere in the density grid, if there is more than

2:1 × 109
h

¹1 M( in a grid cell, we presume one galaxy forms there.

That mass corresponds to slightly more than the mass due to one

isolated particle in the high-resolution SCDM and TCDM simula-

tions (which have the most massive particles in the suite). Such a

limit is necessary to prevent placing excess power in the voids due

to vestiges of the initial grid there. This is a highly unreasonable

model for galaxy formation, as it says that the density of

*2 × 1011
h

¹1 M( galaxies in the core of the Coma cluster should

be the same as in the local group, and this is clearly ruled out

observationally. However, even though there is significant antibias

on small scales, it is only visible at scales smaller than about

k ¼ 1 h Mpc¹1 (see Fig. 8), whereas antibiasing is needed on scales

larger than that in order for OCDM or TLCDM to be consistent with

the APM power spectrum. Note that a possible way out of the

antibiasing requirement is to note that the APM survey is incom-

plete in clustered regions, which will raise the ‘true’ power

spectrum above the APM measurement on small scales (Zabludoff,

private communication).

The APM power spectrum is not the only power spectrum that

has been measured. However, to compare to other measurements, it

is usually required to calculate model redshift space power spectra.

Going to redshift space significantly reduces power on scales of

interest, since typical dispersion velocities of 1000–2000 km s¹1 in

clusters correspond to a scatter of 10–20 h
¹1 Mpc in distance. In

performing this operation on particles, the power should be viewed

as a lower bound, because there may be significant velocity bias

(Carlberg, Couchman & Thomas 1990; Summers, Davis & Evrard

1995), meaning the power perhaps should not be supressed quite as

much, and galaxy formation will further raise the power. Fig. 9

shows the models’ redshift space power spectra, compared to the

combined CfA2 and SSRS2 redshift space power spectrum

(da Costa et al. 1994). Given our choices of model normalization

and cosmological parameters, the TLCDM matter power spectrum

is nicely consistent with the observed galaxy power spectrum, but

that leaves no room for galaxy formation or velocity bias effects. As

for the real-space non-linear power spectrum comparison (Fig. 7),

this requires significant antibiasing for TLCDM on scales of 0.3–

1 h Mpc¹1. Note that undersampling the velocity field will miss the

CDM-variant cosmological models – I 89
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Figure 7. Non-linear real-space dark matter power spectra, compared to the

APM real-space galaxy power spectrum (Baugh & Efstathiou 1994) of

galaxy number-count fluctuations. The simulation power spectra shown here

are a composite of the high- and low-resolution suites, where data from a

model’s high-resolution run are used at large k and low-resolution data are

used at small k. Two different high-resolution runs of the SCDM case are

shown as a guide to how large cosmic variance is. The power in the second

SCDM realization is 20–30 per cent lower than that in the first realization for

0:3 & k & 1 h Mpc
¹1

. The APM data are presumably biased with respect to

the matter power spectrum, and yet the OCDM, TCDM, and TLCDM cases

require the APM data to be significantly antibiased with respect to the dark

matter, with b
2

, 0:6 for OCDM and TCDM and b
2

, 0:5 for TLCDM at

k , 1 h Mpc
¹1

. If APM misses galaxies in clustered regions, that would give

a low-power spectrum on scales of k * 1 h Mpc¹1 (see text).
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large velocities by making the haloes physically larger, so it does

not make sense to perform redshift space comparisons on the large

volume suite.

The simplest halo-related quantity to investigate is the number

density of bound objects as a function of mass. Such ‘mass

functions’ and close relatives such as the X-ray temperature func-

tion (as in Eke et al. 1996, for example) are often estimated from the

Press–Schechter approximation instead of from simulations.

Though it has been checked against scale-free simulations

(Efstathiou et al. 1988; Bond et al. 1991; Lacey & Cole 1994)

and against specific SCDM, LCDM and CHDM models (Carlberg

& Couchman 1989; Jain & Bertschinger 1994; Klypin et al. 1995;

Walter & Klypin 1996; Bond & Myers 1996), previous studies have

focused only on a narrow range of masses, typically at the cluster

scale. With our large simulations, we can check the approximation

over four orders of magnitude in mass. The Press–Schechter

formula we use is Klypin et al. (1995), equations (1–2), evaluated

at z ¼ 0:

Nð> MÞ ¼

����

2

p

r

dc

am

Z ∞

r

eðr
0
Þ

j3ðr0Þ
exp

¹d
2
c

2j2ðr0Þ

� �

dr
0

r03
; ð14Þ

where

eðrÞ ¼
1

2p

Z ∞

0

k
3
PðkÞWðkrÞ

dWðkrÞ

dðkrÞ
dk; ð15Þ

j
2
ðrÞ ¼

1

2p2

Z ∞

0
k

2
PðkÞW

2
ðkrÞdk; ð16Þ

WðxÞ ¼

3

x3
½sinðxÞ ¹ x cosðxÞÿ top hat

e¹x2
=2 Gaussian

;

8

<

:

ð17Þ

r ¼
M

amrcQ0

� �1
3

ð18Þ

and am is 4p/3 for a top hat window function, and (2p)3=2 for a

Gaussian window function.

Fig. 10 shows the cumulative mass functions estimated from both

suites of simulations, and Table 3 shows the Press–Schechter

parameters used in that figure. Note that in the overlapping

region, the two sets of simulation mass functions are consistent,

and that the high resolution results are a significant factor of 1.5–2

below the Press–Schechter estimates for all models at the inter-

mediate mass of 1013
h

¹1 M( and below.

This result has been verified recently by other groups. Bryan &

Norman (1998) see a somewhat stronger discrepancy at 1014
h

¹1 M(,

using a spherical overdensity method, for cosmological parameters

very close to our CHDM-2n, OCDM and SCDM choices (though

with substantially larger grid cell sizes for OCDM and SCDM).

Somerville et al. (in preparation) also see an equivalent discrepancy

in the differential multiplicity function nðMÞ at z ¼ 0 in the tCDM

cosmology, for which the power spectrum is very similar to our

CHDM-2n. This result depends upon a completely independent

simulation (Jenkins et al. 1998) modelled using adaptive P3M, with

haloes identified using the ‘friends-of-friends’ method. The halo

mass function for the SCDM model from the Jenkins et al. (1998)

simulations is virtually identical to ours (G. Lemson, private

communication). Given these confirmations, we do not believe

90 M. A. K. Gross et al.
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Figure 8. Non-linear power spectra, presuming an extreme scale-dependent

biasing scheme. The density field has been set to ‘on’ at any cell containing

mass exceeding the largest particle mass in the 75 h
¹1 Mpc suite,

2:1 × 10
9

h
¹1

M(, and ‘off’ everywhere else. That mass cut is most likely

lower than anything that could make it into the CfA2 or APM catalogues,

except if one assumes an impossibly small mass-to-light ratio. The result of

such a bizarre galaxy identification scheme is a bias on large scales, due to

clearing out the void regions, and an antibias on small scales, due to

removing the high peaks in density. We do comparisons with the high-

resolution suite because the low-resolution suite particle mass is too high.

Figure 9. Redshift-space power spectrum, compared to the combined CfA2

and SSRS2 redshift-space power spectrum (da Costa et al. 1994). Notice

that, while LCDM is a good match to this power spectrum, there is no room

for galaxy formation or velocity bias.
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that the medium-mass discrepancy we see is an artefact of our

simulation method or halo finding algorithm.

As Fig. 11 shows, the intermediate and low-mass discrepancy

cannot be fixed by adjusting the value of dc, particularly at a mass of

,5 × 1012
h

¹1 M(, where the curves cross. Our values of dc;t and

dc;g are consistent with Borgani et al. (1997b), except we find that

the CHDM-2n dc values are not significantly different from the

other models. The dc;t values we find for the top hat case are

consistent with the spherical collapse model.

The simulation mass functions in Fig. 10 fall below the Press–

Schechter predictions for most of their range. For example, in the

SCDM high-resolution run, only 60 per cent of the particles are

within haloes with M > 3:4 × 1011
h

¹1 M( at z ¼ 0. The Press–

Schechter prediction is only very slightly larger, about 62 per

cent for dc;t ¼ 1:672 and 65 per cent for the spherical collapse

value dc;t ¼ 1:686. The mass deficit arising from the smaller

abundance of low-mass haloes in the simulations is almost

completely compensated for by a small excess of very large

clusters. The Press–Schechter approximation assumes that all the

mass must be in haloes of some size, and this analysis indicates

that a significant fraction of the mass of the universe should be

in small haloes. The Press–Schechter approximation indicates

that for SCDM, as much as 20 per cent of the mass is in haloes

as small as 109
h

¹1 M(, which is not identifiable in any present-

day cosmological simulation. The simulations show a significant

amount of matter that is not in collapsed objects. Most of the

mass lies in filaments connecting the clusters, many of which

have only a few identified haloes on them. It is conceivable that

much of this mass may be unresolved haloes, since any N-body

simulation must have a resolution and/or time-step limit below

which forces are ‘soft,’ resulting in disruption of structure

CDM-variant cosmological models – I 91
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Figure 10. Cumulative halo mass functions, with Press–Schechter fits. In

each panel, the relevant mass functions estimated from the two simulation

suites are shown by the full curves. Small mass cuts have been applied at

M ¼ 3:4 × 1011
h

¹1 M( and 2:2 × 1013
h

¹1 M(, for the large and small

volume simulations, respectively. Each panel also shows Gaussian

(dashed curves) and top hat (dotted curves) Press–Schechter mass functions,

with dc;t and dc;g adjusted to agree with the large-volume simulations at

5:5 × 1014
h

¹1 M(. The values of dc;t and dc;g used are given in Table 3. The

data points correspond to the observations of BGGMM93 and WEF93, as in

Fig. 1.

Figure 11. Press–Schechter mass functions for TLCDM. The high- and

low-density TLCDM mass functions from simulations are shown in the solid

curves. From top to bottom at M ¼ 1015
h

¹1 M(, the long-dashed curves

show Press–Schechter mass functions with Gaussian filters for dc;g ¼ 1:0,

1.2, and 1.4, and the short-dashed curves show top hat filters for dc;t ¼ 1:4,

1.6, and 1.8. Press–Schechter mass functions can be made to agree with our

simulations for masses above about 5 × 1013
h

¹1 M(, but not for masses

smaller than that.

Table 3. Press–Schechter fits to

simulation mass functions.

Model dc;t dc;g

CHDM-2n 1.571 1.273

OCDM 1.693 1.293

SCDM b ¼ 1:5 1.672 1.236

TCDM 1.630 1.252

TLCDM 1.732 1.355

dc;t and dc;g have been chosen to get

the same number density of clus-

ters with M > 5:5 × 1014
h

¹1 M(

as the large-volume simulation,

for each model.
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smaller than the limit. Such a mechanism must be present, since

filament haloes are necessarily not very big, but it is not clear

how much of the mass that can account for.

Our two low-Q0 models produce fewer clusters in simulations

than the other models (Fig. 10). If X-ray temperature cluster masses

are correct, this presents no problem for those models. However, if

the indications of larger cluster masses from gravitational lensing

are correct, the low-Q0 models require revision by using less tilt (in

the case of TLCDM) or a larger value of H0. The former would help

lessen the disagreement with high-multipole cosmic microwave

background measurements (Fig. 2), as a weaker tilt would raise the

first Doppler peak, but will lead to the need for even stronger

antibias to reconcile small-scale power with the APM observations.

If X-ray temperature masses are correct, our parameters for TCDM

and CHDM-2n produce too many clusters. For CHDM-2n, the

normalization used here was actually about 10 per cent higher

than the preferred four-year COBE normalization, so reducing the

normalization by this factor would probably be enough, though this

will exacerbate early structure formation problems. For TCDM, the

only options are either to increase the tilt, which is highly dis-

favoured by the small-angle cosmic microwave background data as

already noted, or to further reduce the Hubble parameter, which is

also strongly disfavoured by observations.

The statements above all take the COBE normalization as a fixed

constraint. Alternatively, we could turn the problem around and use

the clusters to determine normalizations and tilts, with H0 (and Q0

and QL) as given. This is explored further in Gross et al. (in

preparation).

We would now like to investigate statistics such as correlation

functions, void probability functions (Ghigna et al. 1997), shape

statistics (Davé et al. 1997), and other sophisticated statistics.

However, to compare these to observations, we need to know how

many galaxies form in each halo. Previous studies (KNP97;

Nolthenius, Klypin & Primack 1997; Ghigna et al. 1997, for

example) have used ad hoc ‘break-up’ prescriptions to assign

galaxies to haloes. We intend to populate our haloes with galaxies

using a more physically motivated approach (as in Kauffmann et al.

1997) based on semi-analytic models including simplified treat-

ments of gas processes, star formation, supernova feedback, and

galaxy–galaxy merging (Somerville 1997; Somerville & Primack

1998). As a result, we do not attempt to include any complicated

galaxy identification algorithms here.

For certain statistics, one can partially compensate for the

effect of overmerging by mass weighting. This approach is less

than ideal because it does not restore the small-scale spatial

information lost in the overmerging process. Mass weighting is

equivalent to presuming a halo contains a number of galaxies

proportional to its mass, and putting all the galaxies at the centre

of the halo. In effect, this clears out regions of space around the

centres of the largest haloes, equal to their radii, and therefore

loses information on scales smaller than the largest halo radius

(typically 2–3 h
¹1 Mpc). Since very massive haloes are rare objects

for physically interesting cosmological models, all mass weighted

statistics must be unduly influenced by small-number statistical

noise.

We calculate the mass-weighted autocorrelation function for

the high-resolution runs, and the results are shown in Fig. 12. In

this figure, a halo mass cut of M ¼ 3 × 1011
h

¹1 M( was used,

although the mass weighting makes it insensitive to the mass cut.

The mass weighting creates a spread in the correlation values

large enough to prevent the test from discriminating among

models. To within the spread visible in Fig. 12, all models are

roughly consistent with the Stromlo–APM autocorrelation func-

tion (Loveday et al. 1995). However, there are a few trends

visible in the figure. SCDM and TCDM are systematically lower

in amplitude than the other models, but the effect is not very

significant given the spread.

5 C O N C L U S I O N S

We have run two suites of simulations with 57 million cold particles

in boxes of 75 and 300 h
¹1 Mpc, with the goal of studying inter-

esting variants of the CDM family of cosmological models. In this

paper, we have made preliminary comparisons of the z ¼ 0 simula-

tion outputs to data for all models. In Smith et al. (1998), we used

the lower-resolution suite, plus some additional simulations, to

generalize the Peacock & Dodds (1994, 1996) procedure for

recovery of the linear power spectrum corresponding to a given

cosmological model from observational data. In Wechsler et al.

(1998), we showed that the most massive haloes at redshifts z , 3,

or objects that trace their distribution, can account for the observed

clustering of Lyman-break objects (Steidel et al. 1998) for all

cosmologies except SCDM. More detailed comparisons with

observations require assumptions about galaxy formation and will

be treated in subsequent work. Subject to the usual caveats about the

uncertainty of galaxy formation, we reach the following conclu-

sions in the present paper.

(i) Based on the results of KPH96, who found that LCDM

models with Q0 , 0:3 would require strong scale-dependent anti-

bias in order to be consistent with the APM power spectrum (Baugh

& Efstathiou 1994), we investigated a variant of the LCDM model

with Q0 ¼ 0:4 and a tilt of n ¼ 0:9. We find that this model still

requiresa large antibiasofb
2

; PAPMgal=Pdm , 0:5 at k ¼ 1 h Mpc¹1.

Even in a simple model in which galaxies are extremely antibiased

with respect to dark matter haloes, the problem persists on scales of

92 M. A. K. Gross et al.
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Figure 12. Halo mass-weighted correlation function. Only haloes with mass

above 3 × 10
11

h
¹1

M( are included, and all pairs are weighted by the

product of the two masses. Such a weighting is a simple countermeasure for

the overmerging problem. The error bars are the Stromlo–APM autocorre-

lation function (Loveday et al. 1995).
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r , 6h
¹1

Mpc, because this scale is larger than the size of individual

haloes. To get antibias on these scales, there would have to be many

‘barren’ haloes containing no galaxies. OCDM and TCDM are only

slightly better, still requiring a strong antibias of b
2

, 0:6. Other

models considered require a weaker antibias at that scale.

(ii) The TLCDM dark matter redshift-space power spectrum

agrees very well with the redshift-space galaxy power spectrum

from CfA2þSSRS2 (da Costa et al. 1994). This leaves no room for

the ‘positive’ bias expected in normal galaxy formation, or for velocity

biases. For comparison, OCDM and TCDM each have room for a

modest bias of b
2

, 1:2 at k ¼ 0:5 h Mpc¹1, and CHDM-2n and

SCDM each need b
2

, 1:5.

(iii) All models considered here are consistent with the

Stromlo–APM real-space correlation function (Loveday et al.

1995) on scales of 2–20 h
¹1 Mpc, largely as a result of a large

spread in the model estimates of the correlation function because of

mass weighting and small-number statistics for large-mass objects.

(iv) The Press–Schechter approximation fits the abundance of

cluster-mass haloes very well, with top hat dc;t ¼ 1:57¹1:73 and

Gaussian dc;g ¼ 1:27¹1:35. However, it overpredicts the number

density of galaxy and small group mass objects by a factor of ,2,

only weakly dependent on cosmology, and very weakly dependent

on dc. On mass scales of ,5 × 1012
h

¹1 M(, it is not possible to

compensate for the discrepancy by adjusting dc within reasonable

bounds.

In summary, we conclude that none of the models we have

investigated can be strongly ruled out by the kind of analysis

performed here. The CHDM-2n model gives the best overall

agreement with the linear and non-linear tests we have considered

here, assuming that galaxies are positively biased with respect to the

dark matter. Gawiser & Silk (1998) have shown that a similar

CHDM model with Qn ¼ 0:2 in Nn ¼ 1 neutrino species is a much

better fit to microwave background and galaxy distribution data

than any other popular cosmological model. Preliminary analysis

based on the dark matter alone has shown that the related CHDM-2n

model considered in this paper is plausibly consistent with high-

redshift observations of Lyman-break galaxies (Wechsler et al.

1998) and damped Lyman-a systems (Klypin et al. 1995), but it

remains to be seen whether this model will produce enough early

galaxy formation once a more realistic treatment of gas processes

and star formation is included. More detailed modelling of galaxy

formation will also be necessary to determine whether the small-

scale clustering properties of the low-Q0 models are indeed incon-

sistent with the observations. In any case we conclude that models

with Q0 , 0:5 are in better overall agreement with the observations

than the lower values (Q0 , 0:2¹0:3) usually considered (e.g.

Jenkins et al. 1998). A powerful constraint on Q0, the evolution of

cluster abundance with redshift, will be considered in a companion

paper (Gross et al., in preparation).
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