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Cold Plasma in Medicine and
Healthcare: The New Frontier in Low
Temperature Plasma Applications
Mounir Laroussi*

Electrical and Computer Engineering Department, Old Dominion University, Norfolk, VA, United States

Low temperature plasmas that can be generated at atmospheric pressure and at

temperatures below 40◦C have in the past couple of decades opened up a new

frontier in plasma applications: biomedical applications. These plasma sources produce

agents, such as reactive species (radicals and non-radicals), charged particles, photons,

and electric fields, which have impactful biological effects. Investigators have been

busy elucidating the physical and biochemical mechanisms whereby low temperature

plasma affects biological cells on macroscopic and microscopic scales. A thorough

understanding of these mechanisms is bound to lead to the development of novel

plasma-based medical therapies. This mini review introduces the reader to this exciting

multidisciplinary field of research.
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INTRODUCTION

Plasma medicine is about using low temperature atmospheric pressure plasmas to generate
controllable amounts of specific chemically reactive species that are transported to react with
biological targets including cells and tissues. The remarkable achievement of this plasma
application is that it took only about 25 years to take it from initial discovery, to fundamental
scientific investigation stage, and finally to applications on actual patients. How did this happen in
a relatively short time? A brief answer to this question is that although the field started in a rather
modest and unexpected way, it did not take long for the plasma physics community to realize its
great potential and its revolutionary promise. This was accentuated by the recruitment of health
science experts (biochemists, microbiologists, etc.) who joined the various research endeavors and
greatly advanced the ongoing research. Up until the present the mechanisms of action of plasma on
cells and tissues are still not fully understood but the body of knowledge has been steadily growing
and our understanding has expanded significantly to include a relatively good grasp on the physical
and biochemical pathways whereby plasma impacts biological matter.

The field started in the mid-1990s by few proof of principle experiments which showed that
low temperature plasma (LTP) possesses efficient bactericidal property [1–5]. It was realized from
the very beginning that the reactive species generated by LTP, which include reactive oxygen species
(ROS) and reactive nitrogen species (RNS) played a pivotal role in the observed biological outcomes
[1, 6]. It also became quickly apparent that LTP can not only be used to inactivate pathogens, such
as bacteria, on abiotic surfaces but it can also be used to disinfect biological tissues and therefore
can be employed for wound healing. In due time these early bold ideas, backed by some preliminary
experimental data, resonated strongly within the LTP research community, which by then (around
2005) realized what these new, promising but not fully explored applications meant and joined
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this emerging research field in droves. Consequently, advances
and new milestones were reached at relatively “break neck”
speed, and by the beginning of the second decade of the 2000s
clinical trials on chronic wounds were conducted with some
success [7]. In addition small doses of LTP were found to
selectively kill cancer cells without harming healthy ones. This
opened up another research avenue sometimes referred to as
“plasma oncology.” Investigators from research labs around the
world reported promising in vitro and in vivo results on the
killing of various cancer cell lines (see review [8] and references
therein). The cell lines included those associated with leukemia,
carcinoma, breast cancer, brain cancer, prostate cancer, colorectal
cancer, etc. [8]. In addition, more recently, cold plasma was used
in Germany in limited preliminary trials as a palliative therapy for
head and neck cancer patients [9]. The above described various
efforts finally culminated in the US Food & Drug Administration
(FDA) approval of the first clinical trials in the USA in 2019. This
constitutes yet another major milestone for the efforts to develop
novel LTP-based cancer therapies.

In this mini review, descriptions of LTP sources used in
plasma medicine is first given, then some major medical
applications are briefly described.

COLD ATMOSPHERIC PRESSURE
PLASMA SOURCES

Two types of plasma discharges have been used extensively in
biomedical applications: The dielectric barrier discharge (DBD)
and the non-equilibrium atmospheric pressure plasma jet (N-
APPJ). Figure 1 illustrates two photographs showing a DBD
ignited in argon gas (left photo) and the plasma plume emanating
from a N-APPJ operated with helium (right photo).

Dielectric Barrier Discharge (DBD)
Dielectric Barrier Discharges are ideal for the generation of large
volume non-equilibrium atmospheric pressure diffuse plasma.
Extensive investigations allowed for a good understanding and
improvement of their operation [10–23]. DBDs use a dielectric
material, such as glass or alumina, to cover at least one of the
electrodes. The electrodes are driven by high AC voltages in
the kV range and at frequencies in the kHz. Plasmas generated
by DBDs have been used for ozone generation, for material

FIGURE 1 | Two sources of low temperature atmospheric pressure plasma: Dielectric Barrier Discharge in argon driven by repetitive short duration (ns - µs) high

voltage pulses (a); A micro-jet using helium as operating gas, generating a cold plasma plume about 2.5 cm in length (b).

surface modification, as flow control actuators, etc. DBDs most
recent domain of application has been in biomedicine after
their successful early use in the mid-1990s to inactivate bacteria
[1]. Today they are used in various biomedical applications
including wound healing and the destruction of cancer cells and
tumors [24–27].

Sinusoidal voltages with amplitudes in the kV range and
frequencies of few the kHz were originally used to power DBDs.
However, since the early 2000s it was found that repetitive high
voltage short pulses (ns - µs) offered a more efficient way to
enhance the chemistry of such discharges [28–30]. DBDs are
able to maintain the non-equilibrium state of the plasma due
surface charge accumulation on the dielectric surface as soon
as a discharge is ignited. This creates an electrical potential
that counteracts the externally applied voltage and results in a
self-limited pulsed current waveform.

The electron energy distribution function (EEDF)
defines/controls the chemistry in the plasma. Short repetitive
high voltage pulses allow for preferential heating of the electrons
population and therefore an increase of ionization and excitation
[29]. Pulses with widths less than the characteristic time
of the onset of the glow-to-arc transition maintain stable
non-equilibrium low temperature plasma [29, 30].

To extend the operating frequency range below the kHz few
methods were proposed. For example, Okazaki and co-workers
used a dielectric wire mesh electrode to generate a discharge at
a frequency of 50Hz [16]. Laroussi and co-workers used a high
resistivity layer/film to cover one of the electrodes in a device
they referred to as the Resistive Barrier Discharge (RBD) [31].
The RBD can be operated with low frequencies extending all
the way to DC. The film barrier usually has a resistivity of few
M�.cm. The high resistivity film plays the role of a distributed
resistive ballast which inhibits the discharge from localizing and
the current from reaching high values.

Non-equilibrium Atmospheric Pressure
Plasma Jets (N-APPJ)
Although plasma jets were previously employed for material
processing applications [32, 33] biotolerant plasma jets developed
specifically for plasma medicine have been in use only since
the mid-2000s [34, 35]. These jets can emit low temperature
plasma plumes in the surrounding air. Because they canmaintain
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temperatures below 40◦C, they can come in touch with soft
matter, including biological tissues, without causing thermal
damage. These plasma sources proved to be very useful for
various applications including biomedical applications [26, 34,
35]. Because the plasma propagates away from the high voltage
electrodes and into a region free from high voltage the plasma
does not cause electrical shock/damage to the target cells or
tissues. However, the plasma plume does exhibit a very high
instantaneous and local electric field at its tip. This field plays a
role in the propagation of the plasma plume and can also affect
the treated target.

Investigators discovered that the plasma plumes generated
by N-APPJs are not continuous volumes of plasma but discrete
plasma packets/bullets propagating at high velocities, up to
105 m/s [36, 37]. The mechanisms governing the generation
and propagation of these plasma bullets were reported by
both experimental and modeling investigations [38–49]. A
photoionization model was proposed by Lu and Laroussi who
first investigated the dynamics of the plasma bullet [37]. Further
investigations also showed that the high electrical field at the head
of the plume plays a role in the propagation process. The average
strength of this electric field was experimentally measured to be
in the 10–30 kV/cm range [50–52].

The low temperature plasma sources described above produce
chemically reactive species including reactive oxygen species
(ROS) and reactive nitrogen species (RNS), which are known
from redox biology to play important biological roles [53].
Other agents generated by these plasma sources are also
suspected to play active roles in biological applications. These
include charges particles (electrons and ions), UV and VUV
radiation, and electric fields. For example the electric field can
cause electroporation of cell membranes, allowing molecules
(including ROS and RNS) to enter the cells and cause damage
to the cell’s internal organelles (including mitochondria) and
macromolecules such as lipids, proteins, and DNA. To learn
more about the physics and design of LTP sources the reader is
referred to the following references [23, 27, 54–57].

APPLICATIONS OF COLD PLASMA IN
BIOLOGY AND MEDICINE

The early groundbreaking experiments using low temperature
atmospheric pressure plasma for biomedical applications were
conducted in a decade spanning from 1995 to 2004 [1–6, 58–
60]. The earliest experiments involved the use of dielectric
barrier discharge to inactivate bacteria on surfaces and in liquids
[1, 58] and to generate pulsed plasma in saline solutions for
surgical applications [61, 62]. Works on using cold plasma
for the disinfection of wounds, enhancement of proliferation
of fibroblasts, and cell detachment soon followed [25, 59, 60].
Eventually these seminal works attracted the interest of the
low temperature plasma research community and the field
witnessed a substantial growth in the years following 2005 and
until the present. Applications in wound healing, dentistry,
cancer treatment, etc. have since then been pursued in various
laboratories and research centers around the world leading to a

remarkable increase in the number of journal manuscripts on the
topic and to the publication of several books [63–66].

The ability of cold atmospheric plasma to inactivate bacteria
recently gained more relevance because modern society has been
facing several serious healthcare challenges. Amongst these are:
(1) Antibiotic resistant strains of bacteria such as Methicillin
Resistant Staphylococcus aureus (MRSA) and Clostridium
difficile (C-diff) are sources of hospital acquired infection
(HAI), which can be fatal to patients with a compromised
immune system; (2) Chronic wounds, such as diabetic ulcers,
do not heal easily or at all, and one of the problems is the
high level of infection caused by a spectrum of bacteria. The
inability of conventional methods to satisfactorily deal with these
problems necessitated the need for novel approaches based on
new technologies. Cold atmospheric plasma has been shown
to effectively inactivate bacteria such as MRSA and to greatly
reduce the bioburden in infected chronic wounds, making it a
very attractive technology that can be used to help overcome
the challenges listed above. In 2010, the first clinical trials on
the treatment of chronic wounds with cold atmospheric plasma
took place and yielded encouraging results [7]. Today there are
several plasma devices on the market which have been licensed
as medical instruments and which can be used in medicine,
including the treatment of various dermatological diseases.

LTP can be applied in two different ways. The first is what
is referred to as “direct” exposure. In this mode of application
the plasma comes in direct contact with the biological target and
therefore all plasma-produced agents act on the cells/tissues. The
second mode is what is referred to as “indirect” exposure. In this
case only the afterglow of the plasma is used or the plasma is
first used to activate a liquid medium then the plasma-activated
liquid is applied on top of cells/tissues. One of the advantages of
the latter is that the plasma activated liquid (PAL) can be stored
and used at a later time, giving a degree of flexibility that direct
exposure does not offer.

Direct Exposure
As mentioned earlier under direct exposure the biological target
is subjected to all plasma agents including charged particles,
photons, electric field, and reactive species. These agents act alone
and/or in synergy to produce certain biological outcomes. In the
case of bacteria inactivation, all the above agents were reported to
play a role. Lysing of vegetative cells as well spores were reported
after direct exposure to LTP, but cell death without lysis was
reported as well for gram-positive bacteria [67, 68].

The inactivation of bacteria by LTP has several applications
ranging from sterilization of heat sensitive medical tools, to
the destruction of biofilms, to disinfection of wounds, to
decontamination of liquids, food, and agricultural products.

Direct exposure has also been used in a non-lethal way to affect
eukaryotic cell functions, by modulating cell signaling pathways
[69], and in a lethal way for the destruction of cancer cells and
tumors [70–74]. Experiments using various cell lines have been
reported which showed that under a certain exposure dose LTP
can kill cancer cells in a selective manner [70–74]. Investigators
reported that LTP exposure leads to an increase in intracellular
ROS concentrations. Since cancer cells are under high oxidative
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stress, the increase in ROS leads to severe redox imbalance,
which can lead to one or more of the following: DNA damage,
mitochondrial dysfunction, caspase activation, advanced state of
oxidation of proteins, etc. Such acute stress ultimately leads to
cancer cells death.

Indirect Exposure
In this section we limit the discussion to the case of plasma
activated liquids (PAL). In this mode of exposure only long lived
chemical species that diffuse and solvate into the aqueous state
play a role. This eliminates the effects of photons, electric field,
short lived species, and heat. Liquids that have been used include
water to make plasma activated water (PAW) and biological
culture media to make plasma activated media (PAM). The
following discussion focuses on the use of PAM to destroy
cancer cells. Over the past few years investigators have reported
encouraging results on the use of PAM in vitro and in vivo
to kill cancer cells and reduce tumors [75–81]. The anticancer
characteristic of PAMhas been attributed to the long lived species
produced in the liquid phase after LTP exposure. These species
include hydrogen peroxide, H2O2, nitrite, NO

−
2 , nitrate, NO

−
3 ,

peroxynitrite, ONOO−, and organic radicals.
The making of PAM involves the exposure of a liquid medium

to an LTP source, most frequently the plasma plume of a plasma
jet, for a certain length of time. Media used include Eagle’s
Minimum Essential Medium (EMEM), Dulbecco’s Modified
Eagle Medium (DMEM), Ringer’s Lactate solution (RL), Roswell
Park Memorial Institute medium (RPMI), with additives such as
serum (e.g., bovine serum), glutamine, and antibiotics (e.g., mix
of Penicillin/Streptomycin). As an example of producing PAM,
a 24-well plate can be used where a few ml of fresh cell culture
media is added to each well. Each well can be treated by LTP
for a certain length of time, this way producing different PAMs
with different “strengths.” To illustrate the effects of PAM on
cancer cells the following work done at the author’s laboratory
is summarized [81].

In this experiment, to make PAM, 1ml of fresh cell culture
media (MEM) was added to each well of a 24 well plate. Each well
was exposed to the plume of the plasma pencil (a pulsed plasma
jet) for a designated time. After exposure, the media on top of
cells grown in a 96-well plate was replaced by 100 µl of PAM.
After PAM application, cells were stored at 37◦C in a humidified
incubator with 5% CO2. Media not exposed by LTP was used
for the control sample. The cancer cell line used was SCaBER
(ATCC R© HTB3TM) cell line from a urinary bladder tissue with
squamous cell carcinoma. Cell viability was quantified at different
times of incubations using The CellTiter 96 R© AQueous One
Solution Cell Proliferation Assay (MTS) (Promega, Madison, MI,
USA). To quantify the MTS assay results trypan blue exclusion
assay was used [81]. Figure 2 shows the results.

As can be seen in Figure 2, PAM that was created by longer
LTP treatment times causes a greater cell kill. PAM created
with an exposure time greater than 3min induces more than
90% cell reduction. However, for the 2min case, over time the
proliferation of live cells overtakes the destruction of cells and
therefore an increase in viability at 24 and 48 h was observed. To
investigate the role of the reactive species in the killing of SCaBER

FIGURE 2 | Viability of SCaBER cells after PAM treatment, using MTS assay.

Exposure time indicates the time the liquid media was exposed to plasma to

make PAM. Measurements were made after 12, 24, and 48 h of PAM

application. Data is based on three independent experiments using two

replications each. This figure is plotted based on data previously published in

Mohades et al. [81].

cells measurements of hydrogen peroxide, H2O2, produced in
PAM were made. It was found that the concentration of H2O2 in
PAM increased with exposure time and correlated well with the
reduction in cell viability of SCaBER [81]. This was in agreement
with works of various investigators which have shown the key
role H2O2 plays in the anticancer efficacy of PAM. Recently
Bauer proposed the hypothesis that H2O2 and nitrite lead to
the generation of singlet oxygen (1O2) which causes inactivation
of catalase [82]. Catalase, which is normally expressed on the
membrane of cancer cells, protects them from intercellular ROS/
RNS signaling. With enough inactivation of catalase an influx
of H2O2 via aquaporin occurs. Therefore the inactivation of
the protective catalase causes ROS mediated signals that lead to
apoptosis of malignant cells. Since healthy cells do not express
catalase on their surface they are subject to an influx of ROS such
as H2O2 or peroxynitrite. So if they are exposed to very high ROS
concentrations they also can be damaged. Therefore, the applied
dose of ROS/RNS has to be below a certain threshold to achieve
selective killing of cancer cells.

CONCLUSION

The application of low temperature atmospheric pressure
plasma in biomedicine opened up new frontiers in science and
technology. On a scientific level, new fundamental knowledge
(albeit still incomplete) regarding the interaction of plasma
with soft matter has been created. Before the mid-1990s
basic scientific understanding of the physical and biochemical
effects of plasma on cells and tissues was simply missing.
Today, 25 years later and after extensive and hectic scientific
investigations, our knowledge has greatly grown and many of
the mechanisms involved have been elucidated on the cellular
and sub-cellular levels. This allowed remarkable advances in the
quest of developing novel plasma-based therapies to overcome
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various healthcare challenges. The recent approval of the US
Food & Drug Administration of clinical trials using plasma
for cancer treatment is a critical milestone and a sign that
low temperature plasma may be on its way to be accepted
as a promising and exciting healthcare technology. To learn
more about the future directions of the field the reader is
referred to references [83, 84]. In addition, low temperature
plasma has obvious merits as a viable technology for space
medicine. As deep-space long-duration space travel becomes a

reality it is crucial to have available adequate methods to meet
medical emergencies in space. In this context plasma offers a
practical “energy-based” and “dry” technology that can replace
perishable drugs.
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