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A Collaborative Approach to In-Place Sensor

Calibration
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Abstract. Numerous factors contribute to errors in sensor measure-
ments. In order to be useful, any sensor device must be calibrated to
adjust its accuracy against the expected measurement scale. In large-
scale sensor networks, calibration will be an exceptionally difficult task
since sensor nodes are often not easily accessible and manual device-by-
device calibration is intractable. In this paper, we present a two-phase
post-deployment calibration technique for large-scale, dense sensor de-
ployments. In its first phase, the algorithm derives relative calibration
relationships between pairs of co-located sensors, while in the second
phase, it maximizes the consistency of the pair-wise calibration func-
tions among groups of sensor nodes. The key idea in the first phase is to
use temporal correlation of signals received at neighboring sensors when
the signals are highly correlated (i.e. sensors are observing the same
phenomenon) to derive the function relating their bias in amplitude. We
formulate the second phase as an optimization problem and present an
algorithm suitable for localized implementation. We evaluate the perfor-
mance of the first phase of the algorithm using empirical and simulated
data.

Key words: sensor calibration, distributed calibration, consistency maxi-
mization, sensor networks, distributed algorithms, in-network processing, cali-
bration routing

1 Introduction

The recent advent of sensor networks as enablers for completely new classes of
applications, has not only captured the imagination of many a scientist and en-
gineer in many a domain, but has also sparked the recognition of new classes
of problems for the developers of sensor network systems and technology. Data
inaccuracy and imprecision are two examples of inevitable challenges when deal-
ing with the measurement of physical phenomena. These errors must be dealt
with properly if sensor data are to be useful. Furthermore, these errors must
ultimately be dealt with in the network to enable collaborative signal process-
ing. Calibration traditionally refers to the process of correcting systematic errors
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(biases) in sensor readings. The term has also often been used in reference to the
procedure by which the raw outputs of sensors are mapped to standardized units.
Traditional single-sensor calibration often relies on providing a specific stimulus
with a known result, thus creating a direct mapping between sensor outputs
and expected values. Consequently, such calibration for a sensor is often sub-
ject to specific ranges and operating condition restrictions, which are reported
in the manufacturer specifications of the sensor. This type of calibration can be
performed at the factory, during the production stage, and/or manually in the
field. In addition to component level calibrations, sensors usually must be cali-
brated at the device level when used as part of a measurement system. Moreover,
re-calibration is usually required in order to ensure proper operation of a mea-
surement device, as ageing and other factors impact sensors and measurement
hardware over time.

However, with large scale sensor networks, manual, single-sensor calibration
schemes will not work well. In addition to the obvious scaling issues, the following
are examples of factors that will also hinder such methods:

– Limited access to the sensors in the field
– Complex dynamic environmental effects on the sensors
– Sensor drift (age, decay, damage, etc)
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Fig. 1. Distribution of the noise in measured values reported by three light sensors
measuring the same source

Consider the three histograms shown in figure 1 which correspond to the raw
outputs of three photovoltaic elements connected to an analog to digital con-
version circuit. Photovoltaic elements are small electronic devices that produce
a voltage at their output pins based on the amount of incident light on their
surface. This specific component is readily available in electronic supply stores
and is quite inexpensive. It produces roughly 500mV in an average well-lit office
space. The histograms correspond to the outputs of three individual sensors of
this same type, each measuring the same light source under controlled condi-
tions. The mean of the time-series data has been subtracted so that only the
noise component in the measurement remains. The horizontal axis represents
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raw, uncalibrated values and thus, does not have a standard unit associated
with it.

In the light-sensor example above, the errors in the measurements can be
classified into 2 major categories as abstracted in figure 2. The vertical axis
in the figure represents the probability and the horizontal axis represents the
amplitude of a sensor output (i.e. the reported value). Note that figure 2 is
only meant as an illustrative diagram and does not necessarily represent the
exact characteristics of any specific sensor device. The two major classification
of sensor errors are:
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Fig. 2. Sensor measurement error terminology

– Systematic Errors (Bias): The bias is an offset in the mean amplitude of
sensor readings x from the true value xtrue. The bias may depend on time,
the sensed phenomena, the environment, or other factors.

– Random Errors (Noise): This random component in the error may be due
to external events that influence sensor readings, hardware noise, or other
difficult-to-predict transient events. In some cases, the noise in measurements
may be modeled using a specific distribution (such as Gaussian).

Throughout our discussions, we assume that the output characteristics of
sensors are of this general type. For a given measurement (at a given time), the
error is the difference from the reported value of the sensor and the true value,
which we refer to as ground truth. The goal of calibration in general, and our
collaborative calibration in particular, is to determine and correct systematic

biases in sensor readings. In case of a light sensor, the bias can be due to the
sensor or supporting hardware, or external factors such as dust particles on the
protective lens of the sensor. In our subsequent discussions, when we refer to
sensor “readings” we assume that the measurement noise has been filtered out,
for example by using averaging over time, but that the systematic bias remains.
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The main challenge in detecting the systematic errors autonomously is the
lack of known stimuli against which sensor measurements can be calibrated. In
this paper, we present a collaborative calibration scheme that addresses this
problem. The scheme exploits the redundancies in sensor measurements under
dense deployment scenarios and dynamically and autonomously derives calibra-
tion functions relating the biases of pairs of sensors. This scheme is in essence
different than traditional calibration since it calibrates sensor outputs against
the outputs of other sensors, utilizing redundancy. To achieve true calibrated
results, one must have a reference point to the ground truth. In typical systems,
this can be achieved by manually calibrating a subset of the sensors in the sys-
tem, and allowing the calibration to adjust the remaining sensors based on the
calibrated subset. Clearly the final calibration accuracy with respect to the real
ground truth will also depend on the number and distribution of such reference
points. However, in this paper, we focus our attention on the relative calibration
errors between sensors.

1.1 Paper Organization

In the next section, we present the related work followed by the technical prelim-
inaries section including several assumptions and definitions used in subsequent
discussions. Section 4 contains the details of our two-phase calibration algorithm.
Phase 1 is the main highlight of this paper which proposes an algorithm for de-
riving calibration relationships between pairs of co-located sensors. In phase 2,
the goal is to improve the results of the first phase at a local level (including
several nodes) since errors in measurements and inaccuracies in results will often
yield inconsistent pair-wise relationships between different sensors. Results using
both measured and simulated data are presented and discussed in section 5.2.

2 Related Work

The topic of sensor calibration is as old as sensors themselves. It is impractical
to list all of the work that has been done in this area over centuries of human
science. Thus, we focus on calibration techniques proposed for sensor networks

In [1] authors address calibration of transmission power in the context of
a signal strength based localization system. Even though a radio transceiver is
not usually considered a sensor per se, the technique described in that paper
can, potentially, be applied to more traditional sensors. The approach described
in [1] formulates signal strength calibration as a global optimization problem
and as written was not intended for distributed on-line deployment. Sensor
fault-tolerance is an issue that is closely related to sensor calibration. In [2]
the author suggests a methodology for the design of a fault-tolerant sensor. The
author advocates increasing the reliability of a virtual sensor through the use of
appropriate models of the phenomenon and replication of physical sensors. Our
approach is similar to [2] in that it assumes particular models for sensor failures
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and phenomena. However, we focus on calibration of a network of physically
distributed sensors as opposed to the fault-tolerance of a single sensor.

A significant amount of calibration research work has been done in the con-
text of array signal processing[3]. This research focuses on acoustic and radio
signals. Receiver equalization is defined as the calibration of the frequency re-
sponse of a device. Issues such as time synchronization also come up in practice.
Our approach is similar to blind equalization; it does not rely on known calibra-
tion sources. However, unlike blind equalization, our method does not assume
any large-scale propagation models. Our method only requires understanding
of the sensed phenomenon at a small scale, because sensors are assumed to be
densely deployed.

The field of robotics has also contributed to in-place sensor calibration. Some
of these calibration techniques take advantage of intrinsic sensor mobility. In [4],
the authors suggest an approach to calibrating the perceived map of the world
based on the data received from an inaccurate odometric sensor. Even though
their work is drastically different for ours in its applications, the overall philoso-
phy of the approaches is similar. The authors of [4] propose to derive the initial
map of the world (a set of calibration functions in our case) based on the current
information from a sensor. The inconsistencies of this map are later “relaxed”
through a global optimization procedure.

3 Technical Preliminaries

We make the following assumptions about our target sensor systems

– Phenomenon
• Known and limited spatial frequency (Nyquist)
• High temporal frequency

– Sensors
• Dense deployment: This indicates that we have multiple neighboring

sensors sensing the same phenomenon and that calibration partitions do
not occur.

• Sensing is slow and has no drift within a calibration epoch with respect
to the calibration process.

• No angle-dependent gains in sensor measurements.
• Due to time-synchronized nature of our calibration process, we assume

there is no hysteresis or delay in sensor response.

Throughout this paper, we use the set S to denote the set of sensor nodes
being considered. We denote the measurement reported by sensor si ∈ S at time
instance t as si(t). We assume all reported measurements are real valued scalars.

Definition: A calibration function (CF), denoted as Fi,j(x) is a real-valued
function mapping the output x of sensor si to sensor sj . For the sake of simplic-
ity, we often omit the parameter x. Each function Fi,j can also have an associated
confidence weight 0 ≤ wi,j ≤ 1.
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Definition: A calibration matrix (CM), denoted as F, is a 2 dimensional |S|×|S|
matrix such that each element Fi,j ∈ F is the calibration function mapping the
output of sensors si ∈ S to sj ∈ S.

4 Calibration Algorithm

4.1 Overview

Our calibration algorithm consists of two phases. In its first phase, the algo-
rithm derives relative calibration relationships between pairs of co-located sen-
sors, while in the second phase, it maximizes the consistency of the pair-wise
functions among groups of sensor nodes. The key idea in the first phase is to use
temporal correlation of signals received at neighboring sensors when the signals
are highly correlated (i.e. sensors are observing the same phenomenon) to derive
the function relating their bias in amplitude. We formulate the second phase as
an optimization problem.

4.2 Phase 1: Pair-Wise Calibration Functions

In the first phase of our algorithm we rely on a pairwise approach because of its
scaling properties. This phase of the algorithm will perform well for any number
and densities of sensors under the assumptions stated in section (sect. 3). Since
all the computation here is based on only local data, scalability is unbounded.
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Fig. 3. Time-series data produced by a pair of uncalibrated sensors. Y -axis represents
sensor values, X-axis depicts time at which a sample was taken.

Our algorithm consists of the following steps:

1. Collect time-series data in a synchronized manner.
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Fig. 4. Scatter plot of time synchronized signals. A data point on this plot is pair
of data values taken by the two sensors at exactly the same instant in time. Y -axis
corresponds to a value reported by the first sensor; X-axis corresponds to the value
reported the second sensor.

2. Weight each potential data point.
3. Filter out irrelevant data points.
4. Fit a calibration function to the filtered data set.

Time synchronization of sampling is critical because we use temporal cor-
relation to detect periods of time when sensors are observing the same event.
A pair of values collected at exactly the same time by two sensors, i and j,
represents a potential data point of a calibration function Fi,j between these sen-
sors. It is potential because it may correspond to the same external stimulus.
Fig. 3 shows two raw data streams aligned in time. If this pair of sensors had
been observing the same phenomenon over the course of the whole experiment,
we would be able to establish a relationship between them by fitting a line1

through points on a scatter plot, Fig. 4. Uncorrelated events make it impossible
to establish a relation from this data directly. For this reason, our algorithm
filters out data points corresponding to periods of time when sensors observed
uncorrelated phenomena.

We use linear correlation to identify periods of time when co-located sensors
observe the same phenomena. Our sensor devices exhibited linear behavior in the
range of data values collected in the experiments2. High sensor density allows us
to assume that neighboring sensors are likely to observe the same amplitude of
the phenomenon. Fig. 5 shows a sliding window correlation of the same two sen-
sors as a function of window offset. The size of the correlation window depends
on the temporal frequency of the phenomenon. If correlated events come and go

1 In general, a relationship between sensors can be represented by an arbitrary func-
tion. However, a line seems to be a good approximation for the class of sensor that
we have used.

2 The ratio of the variances of the linear fit to a quadratic fit was around 2, whereas
the ratios of quadratic to cubic and cubic to the forth power fit were close to 1
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Fig. 5. Sliding window correlation of raw data as a function window time. Y -axis
corresponds to the correlation value; X-axis corresponds to the window offset(time).

very quickly, large window size will fail to identify short periods of correlation.
Small windows, on the other hand, may render the results of correlation insignif-
icant from the statistical point of view. In our experiments we had the luxury
of controlling the rate of change of the phenomenon; therefore, the window size
was based on the known duration of correlation periods. A systematic method
for deriving the correlation window size for different sensing applications is an
open problem and is a subject of future work.

Based on the result of the sliding window correlation we establish weights of
all potential data points. Initially weights of all potential data points are set to
zero. Then, for all positions of a sliding window that produce a positive corre-
lation coefficient we evaluate all potential data points included. If a point had
positively contributed to the correlation of the current window, we increment its
weight by the correlation coefficient of the window. The result of this procedure
can be visualized as a 3D version of the scatter plot (see Fig. 6), where the height
of each point determines its final weight.

The above heuristic provides means to rank potential data points according
to their relevance to the relationship between the sensors. This allows us to filter
out irrelevant points by picking potential data points with top ranks3, the top

set. The level of confidence in Fi,j derived from this set can be related to the
distribution of ranks in the top set. Choosing an appropriate size of the top
set is not straight forward. Small set size may result in large error in the final
relationship, due to filtering out of relevant data points. Large sets, on the other
hand, are bound to contain more irrelevant data points, and thus may be noisy.
In this study we have picked an arbitrary set size of 20 points. A systematic
method for deriving a set size that maximizes “correctness” of the relationship
is a subject of the future work.

3 Direct thresholding may also be used. However, in some cases, the procedure may
fail to establish the relationship due to the lack of potential data points above the
threshold.
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Fig. 6. 3D scatter plot. (x, y) value of each point of a surface corresponds to two sensor
values taken at the same time. z-value of each point corresponds to the weight of the
point derived through sliding window correlation.

After we have computed the top set, we proceed to fitting the calibration
function, Fi,j . This procedure is similar to in-factory sensor calibration, but the
stimuli are unknown. The nature of the calibration function depends on the
type of sensors used4. For example, if the linear error in substrate doping in
a semiconductor sensor are known to result in second order changes to sensor
sensitivity, the calibration function for sensors of this type is very likely to be
quadratic. For the purposes of this study we have assumed a linear calibration
function. The result of fitting a line to the top set is shown in Fig. 7.5

4.3 Phase 2: Localized Consistency Maximization

Due to errors, the pair-wise calibration functions Fi,j between pair of different
nodes si and sj , derived in the first phase of the algorithm, will not be globally
consistent. More specifically, traversing the CFs along different paths will yield
different calibrated results for a given node. In order to illustrate this problem,
consider the calibration graph (CG) depicted in figure 8. A CG in essence is the
graphical representation of a calibration matrix. Each vertex in the CG repre-
sents a sensor node and each edge represents the corresponding CF Fi,j . The
figure shows two possible calibration cycles C1 and C2 for the node s1. For the

4 If the difference in coupling of sensor to the environment needs to be accounted for,
the relationship function should include corresponding terms.

5 The pair-wise calibration algorithm described here does not limit the choice of cal-
ibration relationship. However, the use of linear correlation assumes that the inter-
sensor relationship can be approximated by a linear transformation within the cor-
relation window. In cases where this is not acceptable, it may be possible to use
Spearman (rank) correlation instead of linear correlation.
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Fig. 7. Filtered scatter plot. It contains only the points believed to be relevant to the
calibration relationship.
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Fig. 8. An example of a calibration graph (CG)

sake of simplicity, we only show the CFs in one direction and omit the reverse
mappings in the figure.

For a measured sensor value s1:

C1 : s′
1

= F5,1(F3,5(F2,3(F1,2(s1)))) (1)

C2 : s′′
1

= F5,1(F4,5(F2,4(F1,2(s1)))) (2)

and in general, due to errors, s1 6= s′
1
6= s′′

1

Our goal here is, given a calibration matrix F, to compute a new calibration
matrix F’ such that consistency is maximized. In order to formally discuss this
problem, we must first establish our definition of consistency followed by an ob-
jective function which quantifies the consistency for F.
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As mentioned above, traversing different paths in the CG can result in incon-
sistent calibrated values for a node. Furthermore, the number of such paths in a
CG will often grow exponentially with the size of the CG. We should also note
here that for linear calibration functions, traversing two consecutive edges of the
CG results in a quadratic relationship, while for quadratic calibration functions,
traversing two consecutive edges will result in a 4th-degree polynomial. It is easy
to see that even for relatively simple calibration functions in low order polyno-
mial form, even short CG path traversals results in very high-degree polynomials
quickly. For example, consider the following CF:

Fi,j(x) = ai,j · x + bi,j (3)

Traversing a path from nodes s1 to s2 to s3 we have:

F2,3(F1,2(x)) = a2,3 · (a1,2 · x + b1,2) + b2,3 (4)

= a2,3 · a1,2 · x + a2,3 · b1,2 + b2,3 (5)

which is quadratic in terms of the coefficients ai,j and bi,j . However, we make
two observations:

1) Since calibration relationships are inherently derived using local informa-
tion, we should focus more on achieving consistency at a local level, i.e. consider
paths in the CG of relatively short lengths.

2) Since each path in the CG is comprised of traversing CFs with different
confidence levels, we should expect higher consistency levels from higher confi-
dence traversals.

Definition: The calibration-matrix consistency objective function CMCOF
for a calibration matrix F, denoted as Γ (F), is a real-valued function such that
if α1 = Γ (F1) and α2 = Γ (F2), then F1 is more consistent than F2 if and only
if α1 > α2.

The exact choice of the appropriate CMCOF depends in large part on the
nature and types of errors of the sensors, the environment, and also on how the
sensor results will be used. We have relied on the standard L1, L2, and L∞ norms
of the discrepancies resulting from different paths in the CG as candidates for
experimentation. However, the exact choice of a CMCOF function will depend
on the application at hand, as well as analysis of experimental data from sensors
under real-life conditions. The data from our experiments which have been of
relatively small size with a small number of nodes, have not provided convincing
indications for us regarding which function performs better. In general, in a
laboratory setting, creating experiments which can truly capture the full effects
of the real errors on sensors is in itself a difficult undertaking.
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4.4 Consistency Optimization Algorithm

Solving the non-linear programming problem which results by trying to maxi-
mize a general CMCOF, directly, under the constraints of given pairwise relation
functions is computationally intractable. In the next subsection we present our
heuristic-based algorithm that attempts to improve the consistency of the cal-
ibration functions on a local scale, subject to the computational and storage
limitations of typical sensor nodes. In addition, in order to be practical, our
goal has been to create an algorithm which lends itself well to localized and
distributed implementation in sensor networks.

The algorithm generates a set of data-point values for each sensor based on
the derived calibration functions in phase 1. Each value is obtained by picking
a starting value, and calculating the weighted averages of the result produced
by traversing different paths in the CG. The weights correspond to combined
confidence levels of each traversal and is obtained by multiplying the confidence
values along each segment of a path. Thus, higher confidence traversals have a
higher weight in the averaging process. The resulting data-points are used to
derive a new pair-wise calibration matrix.

Enumerate calibration paths P given the CM F
Step 1: Pick a random starting value x

For every node si ∈ S, s′i = 0 and countsi
= 0

For every path pi ∈ P {
sprev = first node in pi

CurrentV alue = x, α = 1
While cycle not done {

scurr = next node in pi

CurrentV alue = Fsprev ,scurr (CurrentV alue)
α = α x the confidence of Fsprev ,scurr

s′curr = s′curr + α · CurrentV alue
countscurr + +
sprev = scurr

}
}
For every node si ∈ S, s′i = s′i/countsi

Repeat step 1 n times to get n "data points" for each sensor

Step 2: Compute new CM F′ using the data-points

Fig. 9. Pseudo-code for localized calibration matrix consistency optimiztion

The algorithm is presented as pseudo-code in figure 9. The initial part of the
algorithm enumerates the calibration paths which will be used in the rest of the
algorithm. A user specified parameter is used to indicate the maximum length of
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paths which we consider. We enumerate the paths by exhaustively searching the
CG graph using breadth-first-search, starting from each node. We discard paths
whose confidence levels are below a user-specified threshold. Note that due to the
sparsity of the F matrix, and these threshold values, the number of paths that
are enumerated can be kept to manageable levels (dictated by available memory,
speed of processing, and allotted runtime), given the strict resource constraints
of the sensor nodes.

After the data points (n) have been generated by the averaging process, the
calibration matrix F is recalculated by fitting pairwise relationship functions
based on the new data points, similar to the corresponding step in phase 1.

5 Experiments

We ran our algorithms on temperature data collected using a set of uncali-
brated sensors. Because an important contributor to sensor error may be the
differences in electronics supporting the sensing components, we used a COTS
wireless sensor node system as our experimental uncalibrated sensor node. Co-
located calibrated sensor components directly wired to a data aquisition system
were used to collect ground truth data. The experimental setup and results are
described below.

5.1 Experimental setup

We chose to use real wireless sensor nodes (MICA motes [5]) to collect the raw
data from uncalibrated sensors. This decision is motivated by our plans to run
distributed versions of our algorithms on these nodes in future deployments. The
heart of the mote is an Atmel [6] ATMEGA103L micro-controller. This chip has
a builtin analog to digital converter and can be connected to a resistive sensor
through a voltage divider. We have used a YSI44006 [7] precision thermistor to
perform our measurements. This is a very stable sensor, but it is not factory
calibrated. The observed calibration error was as high as 10%. The ATMEGA
103L is also equipped with 4KB of EEPROM, which we used to store data
collected during the experiments.

In order to verify the quality of the calibration algorithms, we collected the
ground truth measurements using an industrial quality data acquisition sys-
tem(DAQ) from National Instruments [8]. We used the SCXI-1001 chassis with
SCXI-1102 module for analog input. Type J thermocouples were used as tem-
perature sensors.

Since the pair-wise algorithm (sect. 4.2) uses temporal correlation of the
sensed data, we had to synchronize all sampling. In order to synchronize motes
among themselves, we implemented the Reference Broadcast Synchronization
algorithm [9]. We also implemented time routing to make sampling requests
more robust to packet loss and enable synchronized sampling across multiple
broadcast domains. We synchronized mote sampling with the DAQ by using one
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of the DAQ’s input channels to trigger the sampling. This channel was controlled
by flipping a GPIO pin on the mote.

The experiment was conducted on a flat surface of a table indoors. Separation
between the mote’s thermistor and the DAQ’s ground truth sensor was less then
5mm for all sensor nodes. 9 sensor nodes were placed on the flat surface in a 3×3
square grid. Each square of this grid had dimensions of 5cm×5cm. The ambient
temperature in the lab during the experiment was approximately 26◦ Celsius.
The sampling rate was set to 2 samples/sec.

We used a commercial hand-held hair dryer as a heat source. This heat source
was positioned 10-20cm above the surface of the table. During the experiment
the nozzle of the hair dryer was directed towards the sensors. In order to create
temperature variations we moved the heat source over the sensor grid in a ran-
dom fashion at a velocity no greater than 1cm/sec. We limited the velocity of
heat source to avoid undersampling.

5.2 Experimental Results

After collecting the data as described above, we analyzed it in the following way.
We derived the relationships between all uncalibrated sensor using the pairwise
algorithm described in Sect. 4.2. We also mapped each uncalibrated sensor onto
its corresponding ground truth sensor6. In order to verify the quality of the
calibration relationships we calculated the difference between a value derived
though direct translation and a value derived through the ground truth.

The result of the above procedure is shown in Fig. 10. The vertical axis corre-
sponds to percentage of the conversions. The horizontal axis corresponds to the
difference between a value derived directly through the calibration relationship
and a value derived through the ground truth sensor. In our experiment 0 80%
of the translations were off by less than 5◦C.

5.3 Discussion and Future Work

While this scheme requires significant development and study before it will be-
come deployable in the field, the results are promising. The distribution of cali-
bration error is such that in 70% of the cases we were able to derive calibration
relationships for the sensors with less 5◦C. It is important to note that our
algorithm does not make any assumptions about initial sensor calibration.

However, more than 10% of all translations were greater than 10◦C. We have
identified several potential sources of error, each of which will be investigated in
future work:

– A possible reason for these errors is undersampling of the phenomenon. The
velocity of the heat source may have been too high at times resulting in
undersampling of the signal and associated aliasing. This, in turn, would
have resulted in additional, possibly correlated, noise in the scatter diagram.

6 For the purposes for this study we neglected the difference among the calibrated
sensors since we measured it previously to be less than 1.0◦C.
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Fig. 10. Calibration error CDFs for two experiments. Y -axis is a fraction(percentage)
of inter-sensor translations. X-axis is a error in the translation in degrees C.

– Another source of error may come from our inability to determine the correct
ground truth value. In particular, type J thermocouples have much higher
mass than precision thermistors; therefore, thermocouples have slower re-
sponse to changes in temperature. This may have invalidated ground truth
data collected during the periods of high variability of the phenomenon.

As mentioned above, a systematic method for deriving the correlation window
as well as choosing an appropriate size of the ”top” set in the correlation process
are subjects of future research. In addition, our future work also aims to address
the applicability of these techniques to higher frequency phenomena such as light,
acoustic, and seismic, where our assumption about neighboring sensors sensing
the same phenomena and no angle-dependent gains may not hold. In such cases,
we believe insights about the nature of the phenomena, the environment, and
sensor response characteristics will help in building the appropriate calibration
models.

Development of evaluation metrics for calibration quality is another impor-
tant issue. Different applications may have different requirements. For example,
an isotherm finding application may not be concerned with the RMS calibra-
tion error. For this application one can define a utility function in terms of the
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overlap between the isotherm based on the ground truth data and a measured
isotherm. We are currently developing this and other methods for calibration
quality evaluation.

6 Conclusions

We presented a method that can be used to address the difficult problem of
sensor calibration in large-scale autonomous sensor networks. The scheme relies
on redundancy in senor measurements due to overdeployment, and assumptions
about the nature of the phenomena being sensed, to derive functions relating
the output discrepancies (biases) of neighboring sensors. Due to inaccuracies and
processing based on purely local information, the pairwise relationship functions
will be inconsistent in the network. In the second phase, new pairwise rela-
tionships are derived by a heuristic method that is designed to increase the
consistency in the system. Early experimental results indicate that the pairwise
relative calibration scheme is promising. However, significant experimentation
with relatively larger scale sensor networks are required to determine the true
performance, especially for the second phase of the algorithm.
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