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Abstract— Cultural heritage sites are precious and fragile
resources that hold significant historical, esthetic, and social
values in our society. However, the increasing frequency and
severity of natural and man-made disasters constantly strike the
cultural heritage sites with significant damages. In this article,
we focus on a cultural heritage damage assessment (CHDA)
problem where the goal is to accurately locate the damaged
area of a cultural heritage site using the imagery data posted on
social media during a disaster event by exploring the collective
strengths of both AI and human intelligence from crowdsourcing
systems. Unlike other infrastructure-based solutions, social media
platforms provide a more pervasive and scalable solution to
acquire timely cultural heritage damage information during
disaster events. Our work is motivated by the limitation of
current Al solutions that fail to accurately model the complex
cultural heritage damage due to the lack of essential human
cultural knowledge to differentiate various damage types and
identify the actual causes of the damage. Two critical technical
challenges exist in solving our problem: 1) it is challenging
to effectively detect the problematic cultural heritage damage
estimation of Al in the absence of ground truth labels and 2) it
is nontrivial to acquire accurate cultural background knowledge
from the potentially unreliable crowd workers to effectively
address the failure cases of Al To address the above-mentioned
challenges, we develop CollabLearn, an uncertainty-aware crowd-
Al collaborative assessment system that explicitly explores the
human intelligence from crowdsourcing systems to identify and
fix Al failure cases and boost the damage assessment accuracy in
CHDA applications. The evaluation results on real-world datasets
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show that CollabLearn consistently outperforms both the state-
of-the-art Al-only and crowd-Al hybrid baselines in accurately
assessing the damage of several world-renowned cultural heritage
sites in recent disaster events.

Index Terms— Crowd-Al collaboration, cultural heritage dam-
age assessment (CHDA), online social media, uncertainty quan-
tification.

I. INTRODUCTION

ULTURAL heritage sites (e.g., historical buildings, mon-

uments, archeological sites, and landscapes) are precious
and fragile resources that hold significant historical, esthetic,
and social values in our society [1]. However, the increasing
frequency and severity of natural and man-made disasters
(e.g., earthquakes, hurricanes, and vandalism) constantly strike
the cultural heritage sites with significant damages [2]. For
example, thousands of heritage places in Syria have suffered
significant damage from conflict, looting, and the cessation
of official protection since 2011. This article focuses on an
emerging application, cultural heritage damage assessment
(CHDA), that aims to protect and conserve cultural heritage
sites. The objective of CHDA applications is to accurately
locate the damaged areas of a cultural heritage site by explor-
ing the imagery data posted on social media during a disaster
event. Unlike other infrastructure-based solutions (e.g., using
surveillance cameras, drones, and satellites), the social media
platforms provide an infrastructure-free solution that is more
pervasive and scalable to acquire timely damage information
of the cultural heritage sites during disaster events [3]-[5].
The assessment information can then be leveraged by the gov-
ernment agencies and organizations to provide conservation
and recovery actions to the sites and save them from further
damages.

Recent progress in Al and image processing has been made
toward addressing the disaster damage assessment (DDA)
problem [3], [6]-[11]. In particular, the deep learning-based
DDA solutions significantly reduce the labeling costs while
providing a reasonable assessment accuracy compared with
the traditional domain experts-based solutions [7]. Compared
with the DDA problem that primarily focuses on identifying
disaster-related damages from social media images, the CHDA
problem is more challenging due to the high complexity of
cultural heritage damage and the lack of cultural background
knowledge of Al-based DDA solutions [12]. Fig. 1 shows
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a few examples of failure scenarios when current Al-based
solutions are applied to assess the damaged areas of the
cultural heritage sites. For example, the damage areas detected
by AI algorithms for the tower in Fig. 1(A), the stone lions
in Fig. 1(B), and the castle in Fig. 1(C) is actually part of the
cultural and artistic design that is often observed at the cultural
heritage sites [13]. Meanwhile, the damage areas detected by
Al algorithms for the stair flight in Fig. 1(D), the stone wall
in Fig. 1(E), and the tiles in Fig. 1(F) are caused by long-term
aging effects, which are often confused with the damages
caused by recent disasters for Al algorithms. In contrast,
humans are often observed to perform better at identifying
the damages of cultural heritage sites where Al solutions fail.
The reason is intuitive: humans normally have certain cultural
background knowledge and a reasonable understanding of the
complex scenes in cultural heritage sites, which together help
them make a better judgment in CHDA applications. However,
the solutions that fully depend on human efforts are expensive
in terms of both time and cost and not scalable to address
our problem with a large amount of social media data inputs
during disaster events [6].

In this article, we develop an integrated crowd-Al collab-
oration system to solve the CHDA problem by exploring the
collective strength of both Al and human intelligence. In par-
ticular, our goal is to achieve a win—win objective between
Al and human intelligence by effectively leveraging the high
detection efficiency of Al solutions to automatically process
the vast amount of cultural heritage site images and explicitly
exploring the human intelligence to identify and fix the failure
cases of Al in CHDA applications. To obtain timely and
scalable human intelligence, we leverage the widely adopted
open crowdsourcing platforms [e.g., Amazon Mechanical
Turk (AMT)], which offer a large amount of 24/7 available
crowd workers with reasonable costs [14]. We refer to the
human intelligence acquired from the crowdsourcing platform
as crowd intelligence (CI). The design of such a crowd-Al
collaboration system is a nontrivial task due to two critical
technical challenges that are elaborated in the following.

A. Identification of Al Failure Cases

The first challenge lies in how to accurately identify the fail-
ure cases of Al damage assessment solutions without knowing
the ground truth labels of images a priori. One straightforward
solution to address this problem is to directly ask the crowd
workers to examine every output of Al solutions to identify
and fix the failure cases, as shown in Fig. 1. However, such
an approach is impractical due to the heavy labor costs and
low efficiency, especially in the context of the massive social
media data inputs. Some initial efforts were made to address
this issue by only selecting the imagery data with complicated
image properties (e.g., images with complex contents and color
distribution) for crowd labeling under the assumption that
the Al solutions are more likely to fail when the image is
complex [15]. However, such an assumption does not always
hold for the cultural heritage damages as Al may also fail
when the input image is relatively simple [e.g., the color
distributions in Fig. 1(D) are quite simple]. Recent work
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Fig. 1. Examples of failure cases of Al solutions for CHDA. (a) Tower.
(b) Stone lions. (c) Castle. (d) Stair flight. (e) Stone wall. (f) Tiles.

on uncertainty-aware Al solutions (e.g., query-by-committee,
dropout) could also potentially be applied to detect the failure
cases of Al [11], [16]. Those approaches often leverage a
committee of different AI models or different instances of
the same model to identify the problematic cases based on
the consensus from the outputs of the committee members.
However, those approaches will fail when all members in
the committee happen to make similar mistakes on the same
input [17]. Therefore, it remains to be a challenging question
on how to effectively detect the failure cases of Al in the
absence of ground truth labels in CHDA applications.

B. Imperfect Crowd Intelligence

The second challenge lies in how to acquire accurate CI
from the potentially unreliable crowd workers to fix the failure
cases of Al Unlike the labels annotated by domain experts,
the labels from the crowd workers can be uncertain and
inconsistent [18]. Such inconsistency is especially salient in
CHDA applications due to the intricate nature of the cultural
heritage site damage. For example, in Fig. 2, we observe that
the damage areas identified by different crowd workers are not
always consistent. In particular, workers 1 and 2 in Fig. 2(B)
and (C) believe the stone pillar is damaged, while worker 3 in
Fig. 2(D) thinks the stone pillar is intact during a disaster
event. Such uncertain and inconsistent crowd labels present
a critical challenge to the current active learning-based Al
systems that rely on accurate human labels to troubleshoot and
retrain the Al models to optimize the model performance [19],
[20]. In particular, the imperfect CI could potentially collapse
the Al model during the model retraining process [21]. Several
recent efforts have been made on training the AI models
with imperfect labels [22], [23]. However, those models are
designed for structural image processing tasks (e.g., segment-
ing structural magnetic resonance imaging data) with limited
errors in the training labels annotated by domain experts,
which cannot be directly applied to handle the complex social
media images with the uncertain and inconsistent crowd labels.
Therefore, it remains to be a nontrivial question on how to
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Fig. 2. Example of imperfect CI in CHDA applications. (a) Ground truth.
(b) Worker 1. (¢c) Worker 2. (d) Worker 3.

leverage the imperfect CI to effectively address the failure
cases of the Al model in CHDA applications.

To address the above-mentioned challenges, we develop
CollabLearn, an uncertainty-aware crowd-Al collaboration
system that explicitly explores the imperfect CI to identify and
fix the Al failure cases in CHDA applications. In particular,
our CollabLearn jointly models the uncertainty from both Al
and CI under a unified framework to solve the CHDA problem.
To address the first challenge, we develop an uncertainty-aware
deep damage assessment (UDDA) model to quantify the uncer-
tainty of the estimated damage areas and detect the failure
cases of Al. To address the second challenge, we design a
novel crowd-AlI fusion model that integrates the uncertainty of
both Al models and crowd responses into a holistic estimation
framework that addresses the failure cases of Al and improves
the overall damage assessment accuracy in CHDA. To the
best of our knowledge, our CollabLearn is the first integrated
crowd-Al collaboration system that explicitly explores the col-
lective power of uncertain Al models and imperfect CI under
the same analytical framework to address the CHDA problem.
We evaluate the CollabLearn using a set of real-world CHDA
datasets from seven world-renowned cultural heritage sites
that were recently damaged. The evaluation results show that
CollabLearn consistently outperforms both state-of-the-art Al
approaches and crowd-Al baselines in correctly identifying the
cultural heritage damages under diversified types of cultural
heritage sites and evaluation scenarios. We summarize our
main contributions as follows.

1) We study an important CHDA problem that aims to pro-
tect and conserve cultural heritage sites by exploring the
collective power of uncertain Al models and imperfect
CIL

2) We develop CollabLearn, the first uncertainty-aware
crowd-Al collaboration system in CHDA applications to
address two important technical challenges, i.e., identi-
fication of Al failure cases and imperfect CI, under a
unified analytical framework.
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3) We perform extensive experiments to evaluate Col-
labLearn through real-world case studies from seven
world-renowned and recently damaged cultural heritage
sites and the results demonstrate clear performance gains
of our CollabLearn scheme compared with state-of-the-
art baselines.

The rest of this article is organized as follows. We first
review the related work in Section II. In Section III, we for-
mally define our crowd-AI CHDA problem. The proposed Col-
labLearn framework is elaborated in Section IV. Experiments
and evaluation results are presented in Section V. Finally,
we conclude this article in Section VI.

II. RELATED WORK
A. Crowdsourcing

Crowdsourcing has emerged as a new application paradigm,
where individual workers work collaboratively to address some
challenging problems [24], [25]. Examples of crowdsourc-
ing applications include enhancing driver situation awareness
using participatory sensing [26], monitoring infectious disease
outbreaks using real-time mobile crowdsensing [27], detecting
ongoing cyber-attacks using social media feeds [28], and
obtaining situational awareness in disaster response using
social sensing [29]. A comprehensive summary of crowdsourc-
ing applications can be found in [30]. Several key challenges
exist in current crowdsourcing applications, including data
reliability, incentive design, data scarcity, human—computer
interaction, and privacy protection [31]-[34]. However, lever-
aging the imperfect CI to identify and fix the Al failure cases
in CHDA applications remains to be a challenging problem
in crowdsourcing applications. In this article, we developed
the CollabLearn scheme to address this problem by designing
a novel crowd-Al collaboration system to boost the CHDA
performance. Our work is also related to the recent efforts in
obtaining reliable information from unreliable crowd-sourced
data [35], [36]. However, those solutions primarily focus on
fusing the labels from different crowd workers and do not
explore the collaboration between CI and Al, which often
leads to suboptimal system performance [37]. In contrast,
our CollabLearn develops a unified analytical framework to
explicitly model the uncertainty of both AI models and crowd
responses to address the failure cases of Al and optimize the
performance of CHDA applications.

B. Social Media-Based Damage Assessment

Previous efforts have been made to address the damage
assessment problem using social media data [3], [6], [7],
[38]-[42]. For example, Li er al. [7] proposed a deep con-
volutional network approach to classify the severity levels
of the damage based on social media images during natural
disasters. Mouzannar et al. [38] developed a deep learning
framework that utilizes heterogeneous social media data to
obtain situation awareness in disaster response via multimodal
convolutional neural networks. Kumar er al. [3] designed
an end-to-end social media image processing and analytical
model to identify the disaster damage images on social media
using deep neural networks. However, those approaches cannot
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be directly applied to solve our CHDA problem due to the
complex nature of the cultural heritage damages and the lack
of cultural background knowledge of those Al-based solutions.
There also exist a couple of initial efforts that leverage human
intelligence to identify and address the failure cases of Al in
DDA [19], [20]. However, those human-assisted Al systems
often rely on accurate human labels to troubleshoot and
retrain the AI models to optimize the model performance.
The inconsistent and uncertain crowd labels could cause a
potential model collapse in the retraining process of those
models. In contrast, this article explores the uncertainty of
both Al models and crowd responses and integrates them into
a holistic uncertainty-aware estimation framework to address
the failure cases of Al in CHDA applications.

C. Crowd-Al Hybrid Systems

Our work belongs to the growing trend of designing the
crowd-Al hybrid systems to solve the complex real-world
problems [11], [15], [43]-[46]. For example, Jarrett et al. [15]
developed an elastic crowd-Al learning framework that intro-
duces a task complexity index to optimize the integration of
Al and CI to improve the overall task performance in a mobile
face recognition application. Sener and Savarese [43] proposed
a deep core-set selection approach that collects crowd labels
from a subset of representative images to retrain the Al
models to improve the overall accuracy in natural scene image
classification tasks. Zhang et al. [11] designed a crowd-Al
hybrid system that leverages CI to retrain the AI models
and combine crowd labels with Al outputs to troubleshoot
and tune the performance of Al algorithms in DDA applica-
tions. Guo et al. [44] designed a crowd-Al hybrid question-
answering system in smart home applications by analyzing
the content from camera steam captured by smart [oT devices.
Yang et al. [45] proposed an interactive framework to leverage
crowdsourcing platforms and a deep probabilistic model to
denoise the data in movie reviews and news articles. Current
crowd-Al solutions often rely on a committee of different Al
models to identify the problematic cases when those models do
not agree with each other. However, those approaches would
likely fail when all members of the committee happen to
make similar mistakes on the same input due to the lack
of cultural background knowledge [12]. More importantly,
we observe that current crowd-Al approaches often retrain
the AI models with additional labels from the crowd workers
to improve their performance. However, we find that such a
retraining mechanism does not work well with the imperfect
labels on cultural heritage damage images obtained from the
crowd due to the complex nature of cultural heritage damage,
which can be easily confused with specific cultural and artistic
designs and long-term aging effects that are often observed
at the cultural heritage sites. In contrast, CollabLearn is the
first crowd-Al collaboration system that explicitly explores the
collective power of uncertain Al models and imperfect CI to
boost the assessment accuracy in CHDA applications.

D. Deep Learning-Based Image Processing and Analytics

Our work also bears resemblance to the deep learning
technique to automate the intelligent image processing and
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analytics in many real-world applications [47]. For example,
Wang et al. [8] proposed a semantic reranking framework that
leverages the deep features extracted by convolutional neural
networks to improve the sketch-based image retrieval perfor-
mance. Ronneberger et al. [48] designed a skip-connected
convolutional neural network that utilizes both contracting and
expanding paths to enable cross-layer information transmission
for biomedical image segmentation. Xie et al. [9] proposed an
image classification framework to classify the building damage
status during a natural disaster from satellite radar images via
ensemble models and deep learning networks. Zhu et al. [10]
developed a multimodal hypergraph learning approach that
leverages vertices and hyperedges in hypergraphs to cap-
ture the complex similarities between different landmarks
in content-based landmark image searching. Li et al. [49]
proposed a deep feature aggregation framework that aggregates
discriminative features from different subnetworks to achieve
a fast model convergence for semantic image segmentation.
While the above-mentioned solutions focused on developing
deep learning models to optimize the performance of specific
applications, they are not designed to accurately detect the
failure cases of the deep learning models in the absence of the
ground truth labels. In contrast, CollabLearn designs a UDDA
network to accurately quantify the uncertainty of the estimated
results to detect the failure cases of the deep learning models
in CHDA applications.

E. Social Computing

Our work is also related to the recent advances in
social computing, which have been successfully applied in
many application domains, such as human-robot interaction,
the Internet-of-Things (IoT), public health, and information
diffusion [50]-[53]. For example, Erol et al. [50] proposed an
affection-based perception system that enables social robots to
recognize human emotional states to improve the personaliza-
tion in human-robot interaction. Liu et al. [51] introduced
an edge-cloud collaborative computing system to improve
energy efficiency and reduce system latency in face detection
and recognition using field-programmable gate array-based
CNN accelerators. Zhu et al. [52] developed an attentive
deep recurrent framework for daily mental-state monitor-
ing of depression patients by examining the dynamics of
human blood vascular systems using Photoplethysmography.
Dong et al. [53] designed a social media information flow
model to track the information spread during disaster events
and study the influence of different social media user groups
on disaster information dissemination. To the best of our
knowledge, our CollabLearn is the first crowd-Al collaboration
system that explicitly explores the uncertainty of both Al and
crowd responses in a unified analytical framework to address a
real-world issue that has an important social impact—cultural
heritage protection and conservation.

III. PROBLEM DESCRIPTION

In this section, we formally define our crowd-Al CHDA
problem. We first define a few key terms used in the problem
formulation.
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Fig. 3.

Examples of cultural heritage damage images.

Definition 1 (Cultural Heritage Damage Images (X)): We
define X to be the set of cultural heritage damage images
posted on social media (e.g., Twitter), where each image
captures a specific scene of a damaged cultural heritage site,
as shown in Fig. 3. In particular, we collect the cultural
heritage damage images from social media sites using a
cultural heritage imagery data crawler tool [3], where each
collected image contains the damage of a cultural heritage
site from a recent damaging event (e.g., disaster and war).
In addition, we define X = {X, X5,..., X4} as a set of
collected cultural heritage damage images, where A represents
the number of collected images.

Definition 2 (Actual Damage Area (D)): We define D as
the actual damage areas in cultural heritage site images (e.g.,
the red color areas, as shown in Fig. 3). In particular, we define
D ={D;, D, ..., D4} to represent the actual damage areas
in all collected images, where D, represents the actual damage
area of the ath image. -

Definition 3 (Estimated Damage Area by AI (DA1)): We
define DA! as the damage areas estimated by the Al module of
the crowd-Al collaboration system for the cultural heritage site
images. In particular, we define DA! as the estimated damage
area of the ath image. -

Definition 4 (Marked Damage Area by Crowd (D')): We
define DC! as the damage area annotated by the crowd workers
from the crowdsourcing platforms (e.g., AMT). In particular,
we define DS! to represent the marked damage area by a crowd
worker for the cultural heritage image X,,.

Definition 5 (Crowd Query (Q)]): We define a crowd query
to be a crowdsourcing task where our crowd-Al collaboration
system decides to send a set of cultural heritage damage
images to the crowdsourcing platform, where each image in
the crowd query is marked by a set of N crowd workers on
the damaged area in the image as follows:

0(X,) = {DS(1), DS(2), ..., DI(N)) (1)

where Bac\l(n) indicates the damage area marked by the nth
crowd worker for the image X,. We note that the damage areas
marked by different crowd workers in each crowd query could
be uncertain and inconsistent due to the complex nature of
the cultural heritage damage and the uncertainty of the crowd
workers, as shown in Fig. 2.

Definition 6 (Crowd Query Ratio (6)): We define 0 to be
an application-specific parameter that specifies the percentage
of cultural heritage damage images that is sent in a crowd
query, which is often decided by the performance and budget
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tradeoff of a CHDA application. In other words, a total of 6- A
images will be sent for the crowd to mark in a crowd query.

Definition 7 (Ildentified Damage Area by Crowd-Al Collab-
oration System ( D )): We define D to be the final identified
damage area from our crowd-Al collaboration system by
leveragilggoth the estimated damage area generated by Al
module/QAI and marked damage areas returned by crowd
query D€L, In particular, we define D, to represent the final
identified damage area for the collected image X,,.

The goal of our article is to accurately assess the damage
of the cultural heritage sites by identifying the damage areas
of images of the sites through collective intelligence from
both Al and crowd. Given the above-mentioned definitions,
we formally define our problem as follows:

argmax(I'(D,, D) | X, O, N,0) Vl<a<A (2
D,
where I'(:) represents the quantitative metrics (e.g., [oU and
DSC [54]) to measure the similarity between the identified and
actual damage area (ﬁa and D,) of an image. This problem
is challenging due to the difficulty of effectively detecting the
failure cases of Al in the absence of the ground truth labels
and the imperfect knowledge obtained from crowdsourcing
platforms. In this article, we develop a CollabLearn framework
to address these challenges, which is elaborated in Section I'V.

IV. SOLUTION
A. Overview of CollabLearn Framework

CollabLearn is an uncertain-aware crowd-Al collaboration
system to address the CHDA problem formulated earlier. The
overview of the CollabLearn is shown in Fig. 4. In particular,
it consists of two modules.

1) Uncertainty-Aware Deep Damage Assessment: First,
the UDDA module designs a novel deep damage assess-
ment model to accurately quantify the uncertainty of
the estimated damage areas and detect the failure cases
of Al in CHDA applications. In particular, the UDDA
module designs a duo-branch deep estimation network
that contains two parallel output branches to simulta-
neously generate the damage area estimations together
with the quantification of the estimation uncertainty
under a unified network architecture. More importantly,
to ensure the accuracy of the uncertainty quantification,
we design an uncertainty-aware loss function to model
the error of the estimated damage area and accurately
quantify the uncertainty of the estimation within the
deep network optimization process.

2) Imperfect Crowd Knowledge Fusion: Second, the imper-
fect crowd knowledge fusion (ICKF) develops a
confidence-aware estimation framework to explicitly
model the uncertainty of both AI models and crowd
responses to address the failure cases of Al and optimize
the performance of CollabLearn. In particular, the ICKF
module first designs a novel crowd annotation portal
on AMT by allowing the crowd workers to document
their confidence in their marked damaged areas, which
is essential to obtain accurate CI given the complex
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Fig. 4. Overview of CollabLearn framework.

cultural heritage damage and the unvetted nature of the
crowd workers. More importantly, we further design
a novel confidence-aware maximum likelihood estima-
tion (MLE) model to leverage the inconsistent crowd
responses with different confidence levels to derive the
accurate damage areas of cultural heritage sites to fix
the failure cases of Al

B. Uncertainty-Aware Deep Damage Assessment

In this section, we present the UDDA network architecture
in CollabLearn to estimate the damaged area in each cultural
heritage image and quantify the uncertainty of the estimation
results. In particular, our UDDA network architecture design
consists of two network components: an encoder network (EN)
and an assessment network (AN). In particular, the EN is
first used to extract both high-level (e.g., objects and patterns)
and low-level (e.g., colors and textures) damage-related visual
features from the cultural heritage images. The AN is then
used to explicitly identify the damaged areas and quantify
the uncertainty of the estimation results using the multilevel
visual features extracted by EN. To the best of our knowledge,
the UDDA is the first end-to-end Al-based damage assessment
approach that designs a multibranch uncertainty estimation
network architecture to detect the failure cases of Al in CHDA
applications in the absence of ground truth labels.

We first define a key concept for our UDDA module as
follows.

Definition 8 (Damage Estimation Uncertainty Matrix (M)):
We first consider the error between the actual and estimated
damage area by Al as follows:

—

Lcg(Dg, DAY (3)

where Lcg represents the cross-entropy loss [55] that measures
the error between the actual and estimated damage area of a
cultural heritage image. D, i/sihe actual damage area for an
image X, (Definition 2) and D21 is the estimated damage area
for X, (defined in Definition 3). We observe that such an error
often follows a Gaussian distribution [56]:

Lcg(Da, DY) ~ N (0, M) )
where M, represents the estimation uncertainty matrix that
indicates the standard deviation of the cross-entropy loss at all
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pixels for the cultural heritage damage image X,. Specifically,
we define M = {M, M>, ..., M} to be a set of the damage
estimation uncertainty matrices for all cultural heritage images
in a CHDA application.

Given the above-mentioned definition, let us first formally
define the EN and the AN in our UDDA module as follows.

Definition 9 (Encoder Network): We define EN as a map-
ping network to extract multilevel damage-related visual fea-
tures from the cultural heritage imagery data as follows:

V¥ = EN(X) ®)
where VX is used to represent the extracted damage-related
visual features. We show an example of EN in Fig. 5(A).
It contains a stack of ImageNet pretrained convolutional layers
for damage-related visual feature extraction. This is done to
ensure the mapping network is capable of accurately identify-
ing the complex visual features for an input cultural heritage
image. In addition, we enable the skip connection in the EN
(i.e., the dotted lines in Fig. 5), which is used to forward
different levels of damage-related visual features extracted by
EN to AN. The different levels of visual features can then be
utilized by AN to effectively identify the damaged area for
each cultural heritage image.

Definition 10 (Assessment Network): We define AN as a
generation network that estimates the damaged area for each
cultural heritage image and infers the estimation uncertainty
matrix using the damage-related visual feature V¥ extracted
by EN

(DT, M) = AN(VY) ©)
where DAT is the estimated damage area generated by the AN
and M is the set of damage estimation uncertainty matrices
defined earlier. We show an example of AN in Fig. 5(B).
In particular, the AN consists of a set of deconvolutional
layers that explicitly identify the damaged area of an image
by gradually examining the damage-related visual features.
In addition, AN also includes a set of convolutional layers
that fuse different levels of visual features extracted by EN
through skip-connections. This is done to ensure both high-
level (e.g., objects and patterns) and low-level (e.g., colors
and textures) damage-related visual features are successfully
forwarded from EN to AN for accurate damage area estima-
tion. The key novelty of the AN lies in the parallel output
branch design where each branch contains a convolutional
layer and a sigmoid layer, as shown in Fig. 5. This design
provides the estimation of the damaged area together with the
quantification of the estimation uncertainty under an end-to-
end network architecture.

Given the two network architectures earlier, our next ques-
tion is how to define a loss function for our network to generate
the damage assessment results and the estimation uncertainty
matrix to quantify the accuracy of the results. To that end,
we define two sets of loss functions in our model. In particular,
we first consider the assessment loss for the EN and AN as
follows:

LSS+ Lop(AN(EN(X)), D) @)
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Fig. 5. Overall network architecture of UDDA. (A) Encoder network.
(B) Assessment network.

where Ly, represents the assessment loss function for EN

and AN. Lcg represents the cross-entropy loss that measures
the difference between the actual and estimated damage area
of cultural heritage images. The goal of this loss function is
to check if AN can accurately estimate the damage area of
images using the visual features captured by EN.

Next, recall that the difference between the actual and
estimated damage area [i.e., Lcg(AN(EN(X)), D)] follows the
Gaussian distribution [i.e., A'(0, M?)] in Definition 8. We can
derive the log-likelihood function for Lcg(AN(EN(X)), D) as
follows:

logIL(0, M; Lce(AN(EN(X)), D))

11 2 11 [|M||?
=—=1o — —1lo
2 g LT ) g 2

[|1Lce(AN(EN(X)), D)|| (8)
2IIM||% ce(AN( ). D)II3.

Therefore, we define our uncertainty loss function as the
negation of the log-likelihood function as follows:

EUncertam

1
EN,AN mln(i(loan + log||M||3

| Ler(ANEN(X)), D)Ilz)) ©)

[IM113
By minimizing the loss function EEI'\‘,C,"’A‘}\‘F“ in our
deep damage AN, we can obtain the uncertainty
matrices M that maximize the likelihood function

log L(0, M; Lcg(AN(EN(X)), D)) defined earlier.

We then combine the above-mentioned two sets of loss
functions to derive the final loss function LE\ to generate
the damage estimation results and the uncertainty matrix of

the estimation for the UDDA module as follows:

ﬁFlnal EAccess ﬁUncenain

EN,AN * "~EN,AN + EN,AN (10)

where £E | is a summation of L5555y, and LR, For the

Eé&ce/&, we follow the standard cross-entropy loss design that
translates the matrix to a score by calculating the mean value
of all the elements in the matrix. For LZ44", we translate
the matrix to a score by calculating the L2 norm of the

matrix.
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Using the above-mentioned loss function, we can learn the
optimal instances (i.e., EN* and AN*) using the RMSprop
optimizer [57]. Finally, we use EN* and AN* to estimate the
damage areas and the estimation uncertainty matrices for all
input cultural heritage damage images X as follows:

(DT, M)

= AN*(EN*(X)). (11)

Given the estimated damage area and the associated uncer-
tainty matrix learned by our UDDA module, our next step is
to use them to determine the failure cases of the Al model
and send the identified failure cases to the crowdsourcing
platforms to obtain CI. In particular, a higher uncertainty
value in the uncertainty matrix indicates the AI model is more
uncertain about estimation results, where the estimation results
on damage area are more likely to be inaccurate. Therefore,
we define an uncertainty score @ to determine which cultural
heritage images should be added to the crowd query Q as
follows.

Definition 11 (Uncertainty Score ®): We define @, to rep-
resent the uncertainty score of a cultural heritage image X, as
follows:

@, = mean(M,) (12)

where mean(-) indicates the mean value of all elements in a
matrix. M, is the uncertainty matrix of the image X,,.

Finally, we sort the uncertainty scores of all cultural heritage
images and select the top 6 - A ranked images into the crowd
query Q (@ refers to the crowd query ratio in Definition 6 and
A is the number of studied images). For the images that are
not added to the crowd query Q, we use the damaged area
estimated by our Al module DAI as the output D for those
images.

C. Imperfect Crowd Knowledge Fusion

In Section IV-B, we present the UDDA module that iden-
tifies the failure cases of AIl. Our next question is how to
acquire accurate CI from the potentially unreliable crowd
workers to fix the failure cases of AI. We note many current
active learning-based crowd-Al approaches often retrain the Al
models with additional labels from the annotators to improve
their performance. However, we found that such a retraining
mechanism does not work well with the imperfect labels on
cultural heritage damage images obtained from the crowd. In
particular, we compare the performance of three representa-
tive deep learning-based damage assessment baselines (i.e.,
UNet [48], FCN [58], and DFANet [49]) together with our
UDDA module with and without retraining using the imperfect
crowd labels. The results are shown in Fig. 6. We observe
that the performance of all schemes decreases after they are
retrained with the imperfect crowd labels. The reason for the
decreased performance of Al models retrained by imperfect
crowd labels is that the imperfect crowd labels could enforce
the Al models to learn the incorrect visual characteristics about
the damaged areas (e.g., mistakenly learn the visual charac-
teristics of intact areas as the evidence for damaged areas).
The results validate our hypothesis that simply retraining Al
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models with imperfect labels from the crowd may lead to
suboptimal performance of the models.

To address the above-mentioned challenge, we design a
crowd-Al fusion module that integrates the uncertainty esti-
mation of the Al module and the imperfect crowd responses
into a holistic estimation framework to improve the overall
damage assessment accuracy. In particular, we first design
a crowd annotation portal on AMT by allowing the crowd
workers to document their confidence on their marked damage
areas, as shown in Fig. 7. Such confidence-aware design is
important due to the complex cultural heritage damage and
imperfect nature of individual crowd workers. We note that
different crowd workers could mark different areas as the
damaged area and the same worker could express different
levels of confidence for the marked areas. Our next question
is how to obtain reliable CI by leveraging the inconsis-
tent and uncertain responses from the individually unreliable
crowd workers. To that end, we first define a key term as
follows. o
_ Definition 12 (Inferred Damage Area (D')): we define
DC to represent the damage area inferred by our ICKF module
using the responses from the crowd query Q. In particular,
we define DST to be the inferred damage area for cultural
heritage image X, in the crowd query Q.

Given the definition earlier, our problem of deriving the
inferred damage area using the inconsistent crowd response

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 5, OCTOBER 2022

can be nicely formulated as an MLE problem as follows:

Pr ((DS'(1), ..., DSY(N)), (CF,(1), ..., CF.(N))|DS) (13)
where Bac\l(n) represents the damage area marked by a crowd
worker in a crowd query (Definition 5) for cultural heritage
image Xﬁ.\CFa(n) indicates the associated confidence-level
for the DS{'(n), as shown in Fig. 7. Our goal here is to
estimate the likelihood of each pixel of an image being a
part of the damage area in X, given the crowd responses and
associated confidence levels, which collectively help infer DST.
In particular, we first define a likelihood function L(Q; O, Z)
as follows:

L(Q; 0, 2)
= L(e: (D). ... DI(N)).
(CE,(1),...,CE,(N))), DS

P c (1=U,,p)
_ H H( afL]C P&&V ,,) > (1 _ Zan’c)
c=1 c=1

p=1 \n=1

% d « Zp + H(HﬂU &&Vn p)
(1=Un,p)
X (1 — Z,b’) x(1—d)x (1 — z,,)). (14)
c=1

The above-mentioned likelihood function represents the
likelihood of the observed data O (i.e., damage areas marked
by different workers) with different confidence levels and the
values of hidden variables Z (i.e., the damage area of an
image) given the estimated parameter (. The detailed expla-
nations of the above-mentioned parameters of the likelihood
function are summarized in Table I.

The objective of our problem is to infer the accurate dam-
aged area DS! by deriving the values of the hidden variable z,,
that indicates whether a specific pixel p of an image belongs
to a part of the damaged area. In particular, the formulated
problem can be solved using expectation maximization (EM).
However, one key issue for the EM algorithm is that the
algorithm is often sensitive to the initialization of the model
parameters, which may lead the algorithm to a suboptimal
solution.

To address this problem, we leverage the uncertainty esti-
mation generated by our UDDA module to help the EM
algorithm with a better parameter initialization that maximizes
the chance of the algorithm to reach an optimized solution. In
particular, we first define a key term as follows.

Definition 13 (Reliable Al Estimation Area (9,)): We define
J, to represent the subarea in a cultural heritage image X,
with top k percent lowest uncertainty values in the estimation
uncertainty matrix M,, which often indicates that the Al
module is certain about the estimation results in J, The value
of k is often set to be small (e.g., 10 in our experiments) in
practice to ensure the estimation results from the Al module
are reliable.

Leveraging J,, we then set the value of z, for each pixel
p within J, to be the same as the assessment result from the
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TABLE I
NOTATIONS IN IMPERFECT CI FUSION

Notations | Definitions/Explanations

P number of pixels in a cultural heritage image

N \ number of crowd workers for each crowd query

C number of confidence levels in our crowdsourcing por-
tal

Qn,c conditional probability that a crowd worker n marks a
pixel to be a part of the damage area with a confidence
level of c given the pixel is a part of the damage area

Bn,c conditional probability that a crowd worker n marks a
pixel to be a part of the damage area with a confidence
level of c given the pixel is not a part of the damage
area

Un,p indicator variable that is set to be 1 when a crowd
worker n marks a pixel p to be a part of the damage
area and is set to be 0 otherwise

Vi indicator variable that is set to be 1 when a crowd
worker reports a pixel p to be a part of the damage
area with a confidence level of ¢ and is set to be 0
otherwise.

&& “logical and" operation

d prior probability that a randomly chosen pixel is a part
of the damage area

Zp probability that whether a specific pixel p is part of the
damage area or not

Q estimation parameter of the model, where @ =
{al,a Q2.cyy AN ¢} ﬁl,ca BQ,C» ceey 5N,cy d} for c=
1,2...,.C

O ob/sgved vari/aﬂe of /&e model, where O =
(DEI(), ..., DFT(2), DFI(N)), (CFa(1), CFa(2),
.., CF.(N))

Z latent variable of the model, which indicates the in-
ferred damage area DS!

UDDA model (i.e., set z, to be 1 if the pixel is estimated
by Al as a part of the damaged area and O otherwise) in
the initialization and iterative process of the EM algorithm.
We can then infer the damaged area of an image D_aCI in the
crowd query from the learned z, for each pixel. In particular,
we exam the z,, for all pixels in an image and set all pixels p
with z,, > 0.5 as the inferred damaged area. Finally, we use
the i&erred damage area D to replace the estimated damage
area DAT generated by the UDDA module for all images in the
crowd query Q as the output D of our CollabLearn framework,
which fixes the failure cases of Al

D. Summary of CollabLearn Framework

Finally, we summarize the CollabLearn framework in
Algorithm 1. In particular, CollabLearn includes three main
phases in performing the crowd-Al-based CHDA as follows.

1) Model Training Phase: The objective of this phase is

to train an optimized UDDA network (i.e., EN* and
AN*) that will be used in the later phases to detect
the failure cases of AI and infer accurate labels on
damage area from the crowd responses. In particular,
our framework leverages labeled data to train the UDDA
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network by optimizing the final loss function [(10)]
using the RMSprop optimizer [57].

2) Al troubleshooting Phase: Given the learned optimized
EN* and AN*, our objective in this phase is to identify
the failure cases of Al by selecting the images with a
high uncertainty score ® and adding those images to
the crowd query Q. Note that our CollabLearn does
not involve any network training during the Al trou-
bleshooting phase. Instead, it utilizes the learned net-
work instances (EN* and AN™) obtained from the model
training phase to identify the damaged area of cultural
heritage sites and generate the uncertainty estimation of
the inferred damaged area. In addition, for the images
that are not added to Q, we /tz&e the damaged area
estimated by our Al module DAT as the output D of
our CollabLearn framework.

3) Crowd Knowledge Fusion Phase: For the images in /tkg
crowd query Q, we first obtain the crowd responses DT
from the crowdsourcing platform. Our objective of this
phase is to integrate the uncertainty matrices M from
the UDDA module and imperfect crowd response D!
to infer the accurate damage area DC!. The D! will be
used as the output D of our CollabLearn framework for
all cultural heritage images in the crowd query Q.

Algorithm 1 CollabLearn Framework Summary

> Model Training Phase
: initialize EN (Definition 9)
: initialize AN (Definition 10)
: for each epoch do
for each batch do
optimize EN and AN (Equation (10))
end for
: end for
: obtain EN* and AN*
& Al Troubleshooting Phase
9: obtain DA/ and M using EN* and AN* (Equation (11))
10: for a in [1,2,...,A] do
11:  if @, in top 6 - A then
12: add X, to Q
13: else

14: set DA aspz,
15: add D, to D
16:  end if

17: end for

> Crowd Knowledge Fusion Phase
18: for each X, in Q do
19:  obtain O from crowdsourcing platform
20:  drive DS! by solving Equation (14) using EM
21:  set DS! asAf);
22: add D, to D
23: end for_
24: output D

V. EVALUATION

In this section, we evaluate the performance of the
CollabLearn framework using the real-world datasets on
cultural heritage damages collected from seven different
recently damaged cultural heritage sites. The results show that
CollabLearn consistently outperforms the state-of-the-art
Al-only and crowd-Al hybrid baselines in terms of CHDA
accuracy under various application scenarios.
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A. Dataset

1) Cultural Heritage Damage Dataset: In our evaluation,
we use a real-world dataset on cultural heritage damage col-
lected by [3].! In particular, the dataset consists of social media
images collected from seven different recently damaged cul-
tural heritage sites, as shown in Fig. 8. These cultural heritage
damages have a diversified set of damage characteristics (e.g.,
damage types, affected areas, and building characteristics),
which create a challenging evaluation scenario to study the
cultural heritage assessment problem. The ground truth dam-
age area in each cultural heritage image is manually annotated
by domain experts using the image polygonal annotation
tool Labelme.? In particular, for the seven recently damaged
cultural heritage sites studied in our experiment, we first
collect the validation images of intact cultural heritage sites
using the online data sources (e.g., Google and Wikipedia).
We then compare the damage images of the cultural heritage
sites with the validation images to determine the ground truth
damage area in each image. In addition, we show a few
examples of such a ground truth damage area annotation
process in Fig. 9. Please note that the above-mentioned ground
truth dataset is used for the purpose of evaluation only and is
often not available to the crowd-Al system due to the heavy
labor costs and low efficiency of domain experts. In addition,
we randomly sample the training and testing data from the
dataset by setting the ratio of training to testing data as 1:1.
Such a ratio is set to ensure that all compared schemes can
be evaluated with a sufficient amount of testing data. A large
testing set also makes it more challenging for all crowd-Al
schemes (including CollabLearn) to identify the Al failure
cases [59]. The training dataset is used to train all compared
Al models for CHDA. In our experiments, we also study the
robustness of the CollabLearn scheme and the baselines by
varying the ratio between the training and testing data.

2) Amazon Mechanical Turk Platform: To obtain the CI,
we utilize the AMT.? In our experiment, each image in a
crowd query is marked by three independent crowd workers.
To ensure the crowd label quality, we select the crowd workers
who have an overall task approval rate greater than 95% and
have completed at least 1000 approved tasks to participate in
our crowd query task. We pay $0.20 to each worker per image

Uhttps://crisisnlp.qcri.org/heritage
Zhttps://github.com/wkentaro/labelme
3https://www.mturk.com/
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in our experiment. In each crowd query task, we ask the crowd
workers to mark the damaged area for each image in the crowd
query together with their confidence on their marked damage
areas as shown in Fig. 7 in Section I'V-C. In our experiments,
we vary the crowd query ratio (Definition 6) from 10% to 25%
in our experiments. We also set the number of crowd workers
who respond to each queried image to be 3 for all compared
schemes, which achieves a reasonable balance between the
number of crowd labels and the query cost. We have followed
the corresponding IRB protocol of this research.

B. Baselines and Experiment Settings

We compare CollabLearn with a set of representative Al
and crowd-Al baselines that are widely used in the literature
for the damage assessment using social media data images.

1) Al Baselines:

a) UNet [48]: A widely used deep neural network
approach that utilizes both contracting and expand-
ing paths to enable cross-layer information trans-
mission for desirable CHDA accuracy.

b) FCN [58]: A deep learning model that utilizes
the fully convolutional neural networks to map the
cultural heritage imagery data into a latent deep
feature space to infer the damaged area.

c) Attention UNet [60]: A recent deep convolutional
model that integrates the U-Net model with an
attention gate mechanism to improve the model
sensitivity in detecting the cultural heritage dam-
ages.

d) DFANet [49]: A deep segmentation network that
aggregates discriminative features from different
subnetworks to achieve a fast model convergence
speed for the CHDA task.
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TABLE 11
PERFORMANCE COMPARISONS ON DAMAGE ASSESSMENT ACCURACY

I | 0=10% 0 = 15% 0 = 20% 0 = 25%
Category ||  Algorithm | IoU DSC || IoU DSC || IoU DSC || IoU DSC
Random ||  Random | 02050 03277 || 0.1989 03198 || 02154 03294 || 0.2023  0.3251
| UNet | 04115 05540 || 04500 0.5915 || 04244 05562 || 04928 0.6311
Al-Only || FCN | 04069 05507 || 04384 0.5797 || 04662 0.6058 || 04879  0.6269
|| AttentionUNet | 0.3329 04535 || 03633 04835 || 03684 04911 || 03962 05179
| DFANet | 0.3839 05539 || 03692 05382 || 03677 0.5371 || 0.3810 0.5510
|| Hybrid Para | 04963 0.6278 || 0.5027 06337 || 05162 0.6457 || 0.5205 0.6489
Crowd-Al || Deep Active | 0.3856 05263 || 03970 0.5389 || 04273 0.5706 || 0.4580 05970
|| CrowdLearn | 04894 0.6248 || 04987 06322 || 0.5074 0.6406 || 05171  0.6504
Our Model || CollabLearn | 0.5298 0.6580 || 0.5490 0.6763 || 0.5581 0.6838 || 0.5686 0.6924

2) Crowd-Al Hybrid Baselines:

a) Hybrid Para [15]: An elastic crowd-Al learning
architecture that allocates the imagery data with
complex image property (e.g., the images with
large size and complex color distributions) for the
crowd to label in order to improve the overall
assessment accuracy of CHDA application.

b) Deep Active [43]: A deep active learning-based
crowd-Al system that utilizes the deep features
extracted from each cultural heritage image to
identify the representative ones for crowd labeling
to retrain the AI models for performance optimiza-
tion.

¢) CrowdLearn [11]: A recent crowd-Al framework
that explores the CI and Al by directly combining
crowd labels with Al outputs to improve the accu-
racy of the estimated labels on cultural heritage
damage.

To ensure a fair comparison, the inputs to all compared
schemes are set to be the same, which include: 1) the collected
social media images; 2) the ground truth labels of images in
the training dataset; and 3) the labeled images from crowd
workers. In particular, we retrain the Al baselines using the
labels returned by the crowd for a fair comparison. In addi-
tion, we also consider the random baseline, which estimates
the damaged area for each image by randomly determining
whether each pixel in the image is a part of the damaged area
or not. In our experiments, we implement our model using
PyTorch 1.1.0 libraries* and train our model using the NVIDIA
Quadro RTX 6000 GPUs. In our experiments, all hyperpa-
rameters are optimized using the RMSprop optimizer [57].
In particular, we set the learning rate to be 10~*. We also
set the batch size to be 10 and the model is trained over
300 epochs.

To evaluate the performance of all compared schemes,
we adopt two representative metrics that are widely used

“https://pytorch.org/

to study the performance of the object detection in image
processing and computer vision community [54]. In par-
ticular, the two metrics measure the overlap between the
estimated and actual damage area as: 1) intersection over
union (IoU) = (Intersection/Union) and 2) dice similarity
coefficient (DSC) = (2 * Intersection/Intersection + Union),
where intersection and union represent the intersection and
union between the inferred damage area and the actual damage
area, respectively. Intuitively, a higher IOU or DSC value
indicates a better performance in identifying the damage area
of a cultural heritage image.

C. Evaluation Results

1) Performance Comparisons on Cultural Heritage Damage
Assessment: In the first set of experiments, we evaluate the
accuracy of all compared schemes in estimating the damaged
area of a cultural heritage image. In particular, we study the
performance of all compared schemes by varying the crowd
query ratio @ (the percentage of images that are sent to the
crowdsourcing platform for labeling defined in Definition 6)
from 10% to 25%, which achieves a reasonable tradeoff
between the number of crowd responses and the query cost.
In particular, we set the lower bound of the crowd query ratio
in our experiment to be 10% to ensure that the CollabLearn can
acquire sufficient crowd labels to fix the failure cases of Al
In addition, we set the upper bound of the crowd query ratio
to be 25% because the performance of CollabLearn plateaus
when the crowd query ratio reaches 25% and further increasing
the crowd query ratio and query cost will not further improve
the performance of CollabLearn. The evaluation results are
presented in Table II. We observe that the CollabLearn scheme
consistently outperforms all compared baselines. For example,
the performance gain of CollabLearn compared with the
best-performing baseline (i.e., hybrid para) when the crowd
query ratio # = 25% on IoU and DSC are 4.81% and
4.35%, respectively. Such performance gains mainly come
from the fact that our CollabLearn scheme carefully explores
the uncertainty of both the deep learning model and CI under
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Fig. 10. Effectiveness of uncertainty-aware damage assessment [DCI (IoU)].
(a) Crowd query ratio = 10% with DCI (IoU). (b) Crowd query ratio = 15%
with DCI (IoU). (c) Crowd query ratio = 20% with DCI (IoU). (d) Crowd

query ratio = 25% with DCI (IoU).
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Fig. 11. Effectiveness of uncertainty-aware damage assessment [DCI (DSC)].
(a) Crowd query ratio = 10% with DCI (DSC). (b) Crowd query ratio = 15%
with DCI (DSC). (¢) Crowd query ratio = 20% with DCI (DSC). (d) Crowd
query ratio = 25% with DCI (DSC).

a holistic estimation framework and collectively improve the
overall damage assessment accuracy. We also observe that
the performance of our CollabLearn scheme improves when
the crowd query ratio increases. This is because, with a
larger crowd query ratio, more problematic Al cases will be
identified by the UDDA module and fixed by the crowd via
the ICKF module of our solution. The above-mentioned results
demonstrate the effervesces of our CollabLearn in leveraging
the imperfect CI to carefully address the failure cases of Al
to boost the accuracy of CHDA applications.

2) Effectiveness of Al Failure Detection: In the sec-
ond set of experiment, we evaluate the effectiveness of
our CollabLearn in identifying the failure cases of the Al
model. In particular, we first introduce a new metric—
detection efficiency index (DCI). In particular, we have
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Fig. 12. Convergence of CollabLearn scheme. (a) Crowd query ratio = 10%.
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DCI(A) = (A(nonselected)/ A(selected)). The selected indi-
cates the set of images that the scheme estimated as the
failure cases of AI, which are selected for the crowd query.
The nonselected indicates the remaining images that are not
selected for the crowd query. A indicates the mean value of
the IoU or DSC of the images in the set. Intuitively, a higher
DCI value indicates that the crowd-Al schemes are more
effective in identifying the AI failure cases (i.e., the images
selected for the crowd query have much lower IoU/DSC values
compared to the ones that are not selected). The results are
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Fig. 14. Robustness of CollabLearn scheme (DSC). (a) Crowd query ratio =
10%. (b) Crowd query ratio = 15%. (c) Crowd query ratio = 20%. (d) Crowd
query ratio = 25%.

shown in Figs. 10 and 11. Note that we only compare our
CollabLearn with the crowd-Al Hybrid baselines because the
current Al-only solutions often do not have a mechanism for
detecting their failure cases. We observe that the CollabLearn
clearly outperforms all compared schemes by achieving the
highest DCI in all evaluation scenarios. The above-mentioned
results further validate the effectiveness of the UDDA module
in our CollabLearn framework.

3) Convergence Study of Imperfect Crowd Knowledge
Fusion: In the third set of experiments, we evaluate the
convergence of the ICKF module of our CollabLearn frame-
work in inferring the accurate damage area of images from
the imperfect crowd responses. In particular, we show the
convergence of our ICKF module in learning the inferred
damaged areas over different iterations. The results are
shown in Fig. 12. We observe that our CollabLearn can
quickly boost the assessment performance and remain stable
afterward. The results are similar across different metrics
and crowd query ratios. Such results illustrate the effec-
tiveness of the ICKF module in CollabLearn in leverag-
ing the uncertainty estimation from both Al and crowd
responses to derive accurate labels on damaged areas of the
queried images to improve the overall performance of CHDA
applications.

4) Robustness Study of CollabLearn Scheme: In the last
set of experiments, we study the robustness of the Col-
labLearn scheme by varying the ratio between the training
and testing data. In particular, we first define the train-
ing to testing data ratio: # = (number of testing images/
number of training images). We compare the performance of
the CollabLearn with the best-performing baselines from both
Al-only and crowd-Al hybrid categories (i.e., UNet from the
Al-only and hybrid para from the crowd-Al). The results are
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shown in Figs. 13 and 14.> We observe that the performance
of our CollabLearn scheme is relatively stable as training to
testing data ratio changes under different crowd query settings.
The results demonstrate the robustness of our scheme over
various evaluation settings. We also observe that CollabLearn
consistently outperforms the best-performing baselines on
different evaluation metrics, which further demonstrates the
effectiveness of CollabLearn in optimizing the performance
of CHDA applications under a unified crowd-Al analytical
framework.

VI. CONCLUSION

This article presents a CollabLearn framework to address
a CHDA problem by exploring the collective intelligence
from both AI and crowd under a unified analytical frame-
work. CollabLearn addresses two key challenges: the iden-
tification of AI failures cases without ground truth labels
and the imperfect CI fusion. We develop an uncertainty-
aware crowd-Al collaboration system to explicitly model the
uncertainty of both AI models and crowd responses in a
principled estimation framework and explore their comple-
mentary strengths to improve the overall performance of the
CHDA applications. The results on the real-world CHDA
applications show that CollabLearn consistently outperforms
both Al-only and crowd-Al hybrid baselines in terms of the
CHDA accuracy. We believe CollabLearn will provide useful
insights to explore the integrated power of uncertain AI models
and imperfect CI to boost the performance of a diversified
set of complex intelligent computing systems (e.g., intelligent
transportation, smart health, and social AI) where AI and
CI are melded into a collaborative and mutually beneficial
paradigm.
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