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Abstract

Background: Finding biomedical named entities is one of the most essential tasks in biomedical text mining.

Recently, deep learning-based approaches have been applied to biomedical named entity recognition (BioNER) and

showed promising results. However, as deep learning approaches need an abundant amount of training data, a lack

of data can hinder performance. BioNER datasets are scarce resources and each dataset covers only a small subset of

entity types. Furthermore, many bio entities are polysemous, which is one of the major obstacles in named entity

recognition.

Results: To address the lack of data and the entity type misclassification problem, we propose CollaboNet which

utilizes a combination of multiple NER models. In CollaboNet, models trained on a different dataset are connected to

each other so that a target model obtains information from other collaborator models to reduce false positives. Every

model is an expert on their target entity type and takes turns serving as a target and a collaborator model during

training time. The experimental results show that CollaboNet can be used to greatly reduce the number of false

positives and misclassified entities including polysemous words. CollaboNet achieved state-of-the-art performance in

terms of precision, recall and F1 score.

Conclusions: We demonstrated the benefits of combining multiple models for BioNER. Our model has successfully

reduced the number of misclassified entities and improved the performance by leveraging multiple datasets

annotated for different entity types. Given the state-of-the-art performance of our model, we believe that CollaboNet

can improve the accuracy of downstream biomedical text mining applications such as bio-entity relation extraction.
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Background

The amount of biomedical text continues to increase

rapidly. There were 4.7 million full-text online accessible

articles in PubMed Central [1] in 2017. One of the obsta-

cles in utilizing biomedical text data is that it is too large

for a human to read or even search for needed informa-

tion. This has led to the demand for automated extraction
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of valuable information. Text mining can be used to turn

the time-consuming task into a fully automated job [2–7].

Named Entity Recognition (NER) is the computerized

procedure of recognizing and labeling entities in given

texts. In the biomedical domain, typical entity types

include disease, chemical, gene and protein.

Biomedical named entity recognition (BioNER) is an

essential building block of many downstream text mining

applications such as extracting drug-drug interactions [8]

and disease-treatment relations [9]. BioNER is also used

when building a sophisticated biomedical entity search

tool [10] that enables users to pose complex queries to

search for bio-entities.
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NER in biomedical text mining is focused mainly

on dictionary-, rule-, and machined learning-based

approaches [11–16]. Dictionary based systems have a sim-

ple and intuitive structure but they cannot handle unseen

entities or polysemous words, resulting in low recall

[11, 12]. Moreover, building and maintaining a compre-

hensive and up-to-date dictionary involves a consider-

able amount of manual work. The rule based approach

is more scalable, but it needs hand crafted feature

sets to fit a model to a dataset [13, 14]. These rule

and dictionary-based approaches can achieve high pre-

cision [10] but can produce incorrect predictions when

a new word, which is not in the training data, appears

in a sentence (out-of-vocabulary problem). This out-of-

vocabulary problem occurs frequently especially in the

biomedical domain, as it is common for a new biomed-

ical term, such as a new drug name, to be registered in

this domain.

Recently, studies have demonstrated the effectiveness

of deep learning based methods. Sahu and Anand [17]

demonstrated the efficiency of Recurrent Neural Network

(RNN) for NER in biomedical text. Themodel by Sahu and

Anand is composed of a bidirectional Long Short-Term

Memory Network (BiLSTM) and Conditional Random

Field (CRF). Sahu and Anand [17] also used character

level word embeddings but could not demonstrate their

benefits. Habibi et al. [18] combined the BiLSTM-CRF

model implementation of Lample et al. [19] and the word

embeddings of Pyysalo et al. [20]. Habibi et al. [18] utilized

character level word embeddings to capture characteris-

tics, such as orthographic features, of bio-medical entities

and achieved state-of-the-art performance, demonstrat-

ing the effectiveness of character level word embeddings

in BioNER.

Although these models showed some promising results,

NER is still a very challenging task in the biomedical

domain for the following reasons. First, a limited amount

of training data is available for BioNER tasks. Gold-

standard datasets contain annotations of one or two entity

types. For example, the NCBI corpus [21] includes anno-

tations of diseases but not of other types of entities such as

genes and proteins. On the other hand, the JNLPBA cor-

pus [22] contains annotations of only genes and proteins.

Therefore, the data for each entity type comprises only a

small portion of the total amount of annotated data.

Multi-task learning (MTL) is a method for training a

single model for multiple tasks at the same time. MTL

can leverage different datasets that are collected for dif-

ferent but related tasks [23]. Although extracting genes

is different from extracting chemicals, both tasks require

learning some common features that can help understand

the linguistic expressions of biomedical texts. Crichton

et al. [24] developed an MTL model that was trained

on various source datasets containing annotations of

different subsets of entity types. An MTL model by Wang

et al. [25] achieved performance comparable to that of

the state-of-the-art single task NER models. Inspired by

the previous studies, we propose CollaboNet which uses

the collaboration of multiple models. Unlike the conven-

tional MTL methods which use only a single static model,

CollaboNet is composed of multiple models trained on

different datasets for different tasks. Each model in Col-

laboNet is trained on dataset annotated on a specific

type of entity and becomes an expert on their own

entity type.

Despite the high recall obtained by the MTL based

models, the precision of these models is relatively low.

Since MTL based models are trained on multiple types

of entities and larger training data, they have a broader

coverage of various biomedical entities, which naturally

results in high recall. On the other hand, as theMTLmod-

els are trained on combinations of different entity types,

they tend to have difficulty in differentiating among entity

types, resulting in lower precision.

Another reason NER is difficult in the biomedical

domain is that an entity could be labeled as different entity

types depending on its textual context. In our experi-

ments, we observed that many incorrect predictions were

a result of the polysemy problem, in which a word, for

example, can be used as both a gene and disease name.

Models designed to predict disease entities misiden-

tify some genes as diseases. This misidentification of

entity types increases the false positive rate. For instance,

BiLSTM-CRF based models for disease entities mistak-

enly label the gene name “BRCA1” as a disease entity

because there are disease names such as “BRCA1 abnor-

malities” or “Brca1-deficient” in the training set. Besides,

the training set that annotates “VHL” (Von Hippel-Lindau

disease) as a disease entity confuses the models because

VHL is also used as a gene name, since the mutation of

this gene causes VHL disease.

To solve the false positive problems due to polysemous

words, CollaboNet aggregates the results of collaborator

models, and uses them as an additional input to the tar-

get model. Consider the case of predicting the disease

entity VHL utilizing the outputs of gene and chemical

models. Once a gene model predicts VHL as a gene,

the gene model informs a disease model that VHL is

a gene entity so that the disease model will not pre-

dict VHL as a disease. In CollaboNet, each model is

individually trained on an entity type and then further

trained on the outputs of other models that are trained

on the other entity types. The models in CollaboNet

take turns in being the target and collaborator models

during training. Consequently, each model is an expert

in its own domain and helps improve the accuracy by

leveraging the multi-domain information from the other

models.
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Methods

In the following section, we first discuss a BiLSTM-CRF

model for biomedical named entity recognition. The over-

all structure of the BiLSTM-CRF model is illustrated in

Fig. 1. Next, we introduce the structure of CollaboNet,

which is comprised of a set of BiLSTM-CRF models as

shown in Fig. 2.

Problem Definition

Named entity recognition involves annotating words in a

sentence as named entities. More formally, given an input

sequence S = [w1,w2, ...,wN ], we predict corresponding

labels Y =
[

y1, y2, ..., yN
]

. We use the BIOES scheme [26]

for representing yt , where B stands for Beginning, I for

Inside, O for Out, E for End, and S for Single.

Embedding layer

Word Embedding (WE)

Word embedding is an effective way of representing

words. As word embeddings capture semantic and syn-

tactic meanings of words, they have been widely used

in various natural language processing tasks including

named entity recognition. The experiment of Habibi et al.

[18] showed that word embeddings trained on biomedi-

cal corpora notably improved the performance of BioNER

models. Pyysalo et al. [20] were the first to suggest training

word embeddings on biomedical corpora from PubMed,

PubMed Central (PMC), and Wikipedia. The results of

Pyysalo et al. [20] and Habibi et al. [18] suggest that using

word embeddings trained on biomedical corpora is essen-

tial for BioNER.We also use the trained word embeddings

provided by Pyysalo et al. [20]. For each word wt in a

sequence S, we denote a word represented by a word

embedding as xt ∈ R
dword where dword is a dimension of

the word embedding.

Character Level Word Embedding (CLWE)

To give our model character level morphological infor-

mation (e.g., ‘-ase’ is common in protein entities), we also

leverage the character level information of each word. We

build character level word embeddings (CLWEs) using a

convolution neural network (CNN), similar to the work of

Santos and Zadrozny [27]. Given a word wt , composed of

M number of characters, we representwt =
{

ct1, c
t
2, ..., c

t
M

}

where cti ∈ R
dchar is a randomly initialized character

embedding for each unique character. Note that unlike

the word embeddings trained on separate biomedical cor-

pora, character embeddings are learned from only the

BioNER task. For the CNN, padding of the proper size

((k − 1) /2) according to window size k should be attached

before and after each word. We obtain a window vector

Ct
i by simply concatenating the character embeddings of

cti with the character embeddings of (k − 1) /2 characters

on both sides:

Ct
i =

[

cti−(k−1)/2, · · · c
t
i , · · · c

t
i+(k−1)/2

]

∈ R
kdchar (1)

From the window vector Ct
i , we perform a convolution

operation as follows:

[

xct
]

j
= max

1≤i≤M

[

WcharC
t
i + bchar

]

j
(2)

Fig. 1 Character level word embedding using CNN and an overview of Bidirectional LSTM with Conditional Random Field (BiLSTM-CRF). Single-task

model structure
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Fig. 2 Structure of CollaboNet. Arrows show the flow of information

when target modelMTarget is training. The models in CollaboNet take

turns in being the target model

where Wchar ∈ R
dclwe×kdchar and bchar ∈ R

dclwe denote

a trainable filter and bias, respectively. We obtain the

element-wise maximum values, and the output is a char-

acter level word embedding denoted as xct ∈ R
dclwe . We

concatenate the character level word embedding with

the word embedding trained on biomedical corpora as

x̂t =
[

xt , x
c
t

]

to utilize both representations in our model.

Long Short-TermMemory (LSTM)

A Recurrent Neural Network (RNN) is a neural network

that effectively handles variable-length inputs. RNNs have

proven to be useful in various natural language process-

ing tasks including language modeling, speech recogni-

tion and machine translation [28–30]. Long Short-Term

Memory (LSTM) [31] is one of the most frequently used

variants of recurrent neural networks. Our model uses the

LSTM architecture from Graves et al. [29]. Given the out-

puts of an embedding layer
[

x̂1, ..., x̂N
]

, the hidden states

of LSTM are calculated as follows:

it = σ
(

Wxix̂t + Whiht−1 + bi
)

(3)

ft = σ
(

Wxf x̂t + Whf ht−1 + bf
)

(4)

ct = ft ⊙ ct−1 + it ⊙ tanh
(

Wxcx̂t + Whcht−1 + bc
)

(5)

ot = σ
(

Wxox̂t + Whoht−1 + bo
)

(6)

ht = ot ⊙ tanh (ct) (7)

where σ and tanh denote a logistic sigmoid function

and a hyperbolic tangent function, respectively, and ⊙ is

an element-wise product. We use a forward LSTM that

extracts the representations of inputs in the forward direc-

tion, and we use a backward LSTM that represents the

inputs in the backward direction.

We concatenate the two states coming from the forward

LSTM and the backward LSTM to form the hidden states

of the bi-directional LSTM (BiLSTM). BiLSTM, proposed

by Schuster and Paliwal [32], was extensively used in var-

ious sequence encoding tasks. We obtain a set of hidden

states hbit =
[

h
f
t , h

b
t

]

∈ R
2dlstm where h

f
t and hbt are hidden

states of forward and backward LSTMs, respectively, at a

time step t.

Bidirectional LSTMwith Conditional Random Field

(BiLSTM-CRF)

While BiLSTM handles long term dependency problems

as well as backward dependency issues, modeling depen-

dencies among adjacent output tags helps improve the

performance of the sequence labeling models [25]. We

applied a Conditional Random Field (CRF) to the output

layer of the BiLSTM to capture these dependencies.

First, we compute the probability of each label given the

sequence S = [w1, ...,wN ] as follows:

zt = Wyh
bi
t + by (8)

p(yt|w1, ...,wN ;�) = softmax(zt)

softmax(aj) =
exp aj

∑

k exp ak

(9)

where Wy ∈ R
5×2dlstm and by ∈ R

5 are parameters of the

fully connected layer for BIOES tags, and the softmax(·)

function computes the probability of each tag. Based on
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the probability p and the CRF layer, our training objective

to minimize is defined as follows:

LLSTM = −

N
∑

t=1

log p(yt|w1, ...,wN ;�) (10)

LCRF = −

T
∑

t=1

(

Ayt−1,yt + zt,yt
)

(11)

Loss = LLSTM + LCRF (12)

where LLSTM is the cross entropy loss for the label yt ,

and LCRF is the negative sentence-level log likelihood. The

score of a tag is the summation of the transition score

Ayt−1,yt and the emission score from our LSTM zt,yt at time

step t.

At test time, we use Viterbi decoding to find the most

probable sequence given the outputs of the BiLSTM-CRF

model.

CollaboNet

CollaboNet, our novel NER model, is composed of mul-

tiple BiLSTM-CRF models (Fig. 2), and following the

terminology of [25], we call each BiLSTM-CRF model

a single-task model (STM). In CollaboNet, each STM is

trained on a specific dataset and each STM is regarded

as an expert on a particular entity type. These experts

help each other since the knowledge of each expert is

transferred to all the other experts. Training CollaboNet

consists of phases and in each phase, except for the first

preparation phase, only the target STM is trained on a sin-

gle dataset for one epoch while the other STMs are not

trained but only used to generate input for the target STM

which is trained.

More formally, let us denote a set of datasets as D, and

a single-task model as Mn
k , which is trained on the k-

th dataset in phase Pn. In the preparation phase
(

P0
)

of

CollaboNet, each STM is trained independently on a cor-

responding dataset until the performance of each model

converges.

Note that an STM in the preparation phase
(

M0
k

)

is the

same as a single BiLSTM-CRF model. In the preparation

phase, we assume that each model M0
k has obtained the

maximum amount of knowledge about the k-th dataset.

In the subsequent phases Pn, where n ≥ 1, we select

an STM Mn−1
d

which is an expert on the dataset d. We

refer to the target STM Mn−1
d as the target model, and

the remaining STMs as the collaborator models. To train

the target model Mn−1
d , we use inputs from the target

dataset d and BiLSTM outputs from collaborator mod-

els Mn−1
k

, {k|k �= d, k ∈ D}. We train each STM on its

dataset for one epoch, and change the target STM Mn−1
d

as follows:

Ŝnd = αk1M
n−1
k1

([ Sd; 0] ) ⊘ · · · ⊘ αkmM
n−1
km

([ Sd; 0] ),

{ki|ki �= d, ki ∈ S}

(13)

p̂(Yd|Sd) = Mn−1
d

(

[ Sd; Ŝ
n
d]

)

(14)

where [ ·; ·] denotes concatenation and ⊘ denotes an

aggregation operation such as max pooling or concatena-

tion. We used weighted max pooling for the aggregation

operation. Sd is the input sequences of d-th dataset, and

Mn−1
d (·) is output ht , defined by Eq. 7. When aggregat-

ing the results of collaborator models, we multiply each of

the results by a weight αk , which is a trainable parameter.

The results are used to train the model Mn−1
d . Using the

outputs obtained by Eq. 14, we trainMn−1
d for one epoch,

and it becomes Mn
d in the next phase. The CRF layer is

attached to the final output ofMn
k
. Once we iterate all the

target datasets d ∈ D, the next phase begins.

During the training phase Pn for d, the target STM,

which is composed of the BiLSTM layer and the CRF layer,

and weights αk {k|k �= d, k ∈ D} are trained. Parameters

of the other STMs are not trained but the STMs gen-

erate only inferences on dataset d in the training phase

Pn. For example, when the disease dataset is the target

dataset, the BiLSTM of the other STMs produces infer-

ences about the other entity types for the disease dataset.

More specifically, inferences about genes for the disease

datasetMn−1
gene([ Sdisease; 0] ) which has rich information on

gene entities, will benefit the disease STM.

Experiments

Datasets

We used 5 datasets (BC2GM [33], BC4CHEMD [34],

BC5CDR [35–38], JNLPBA [22], NCBI [21]), all of which

were collected by Crichton et al [24] (Table 1). Each

of the 5 datasets were constructed from MEDLINE

abstracts, and we used the BIOES notation format for

named entity labels [26]. Each dataset focuses on one of

the three biomedical entity types: disease, chemical, and

gene/protein. We did not use cell-type entity tags from

JNLPBA for the entity types.

All the datasets are comprised of pairs of input sen-

tences and biomedical entity labels for the sentences.

While the JNLPBA dataset has only training and test sets,

the other four datasets contain training, development and

test sets. For JNLPBA, we used part of its training set as

its development set which is the same size as its test set.

Also, we found that the JNLPBA dataset from Crichton

et al. [24] contained sentences that were incorrectly split.

So we preprocessed the original dataset by Kim et al. [22]

with a more accurate sentence separation.

The BC5CDR dataset has the sub-datasets BC5CDR-

chem, BC5CDR-disease and BC5CDR-both, and they
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Table 1 Descriptions of datasets

Datasets Entity type # of sentence # of annotations Data Size

NCBI-Disease (Dogan et al., 2014) Disease 7639 6881 793 abstracts

JNLPBA (Kim et al., 2004) Gene/Proteins 22,562 35,336 2404 abstracts

BC5CDR (Li et al., 2016) Chemicals 14,228 15,935 1500 articles

BC5CDR (Li et al., 2016) Diseases 14,228 12,852 1500 articles

BC4CHEMD (Krallinger et al., 2015a) Chemicals 86,679 84,310 10,000 abstracts

BC2GM (Akhondi et al., 2014) Gene/Proteins 20,510 24,583 20,000 sentences

contain chemical entity types, disease entity types, and

both entity types, respectively. We reported the perfor-

mance on BC5CDR-chem and BC5CDR-disease. We have

a total of six datasets: BC2GM, BC4CHEMD, BC5CDR-

chem, BC5CDR-disease, JNLPBA, and NCBI.

Metric

For the evaluation of the named entity recognition task,

true positives are counted from exact matches between

predicted entity spans and ground truth spans based on

the BIOES notation.

We also designed and applied a simple post-processing

step that corrects invalid BIOES sequences. This simple

step improved precision by about 0.1 to 0.5%, and thus

boosted the F1 score by about 0.04 to 0.3%.

Precision, recall and F1 scores were used to evaluate the

models.

• M = total number of predicted entities in the

sequence.
• N = total number of ground truth entities in the

sequence.
• C = total number of correct entities.

Precision = P =
C

M
,Recall = R =

C

N
,

F1score =
2PR

P + R

(15)

Settings and hyperparameters

We used the 200 dimensional word embedding (WE) by

Pyysalo et al. [20] which was trained on PubMed, PubMed

Central (PMC) andWikipedia text, and it contains about 5

million words. Word2vec [39] was used to train the word

embedding. For character level word embedding (CLWE),

we used window sizes of 3, 5, and 7.

We used AdaGrad optimizer [40] with an initial learn-

ing rate of 0.01 which was exponentially decayed for each

epoch by 0.95. The dimension of the character embed-

ding (dchar) was 30 and dimension of the character level

word embedding (dclwe) was 200*3. We used 300 hidden

units for both forward and backward LSTMs. Weights

for aggregating the results of collaborator models were

uniformly initialized with 1. We applied dropout [41] to

two parts of CollaboNet: output of CLWE (0.5) and output

of BiLSTM (0.3). The mini-batch size for our experiment

was 10.

Most of our hyperparameter settings are similar to those

ofWang et al. [25]. Only a few settings such as the dropout

rates were different from the hyperparameters of Wang.

We tuned these hyperparameters using validation sets.

The preparation phase P0 for 6 datasets takes approx-

imately 900 min, which is the same amount of time it

takes to train 6 single-task models. The rest of the phases

Pn, n ≥ 1 require 3000 min for complete training. If we

exclude BC4CHEMD, the largest dataset, then the train-

ing time for Pn is reduced to 1500 min, which is half the

time required for the remainder phases. Experiments were

conducted on a 10-core CPU (Intel Xeon E5-260 v4 CPU

2.2 GHz) with one graphics processing unit (NVIDIA

Titan Xp). Our code is written in TensorFlow 1.7 (GPU

enabled version) for Python 2.7.

Results

The experimental results of the baseline models and Col-

laboNet are provided in Tables 2 and 3, respectively.

Table 2 shows the results of the single-taskmodels (STMs)

where Table 3 shows the comparison between the exist-

ing state-of-the-art multi-task learningmodel (MTM) and

our CollaboNet.

Since Wang et al. [25] used BC5CDR-both for their

experiments, we reran their models on BC5CDR-chem

and BC5CDR-disease for a fair comparison with other

models. The rerun scores are denoted with asterisks. We

conducted 10 experiments with 10 different random ini-

tializations on our STM. We take arithmetic mean over

the 6 datasets to compare the overall performance of each

model.

Performance of single-task models

Table 2 shows the results of the STMs of Habibi et al. [18]

and Wang et al. [25] (baseline STMs), and our STM on

the 6 datasets. While the baseline STMs applied BiLSTM

for the Character Level Word Embedding (CLWE) layer

[18, 25], our STM used Convolution Neural Network

(CNN) for the CLWE layer.
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Table 2 Performances of single-task models

Model Habibi et al. (2017) STM Wang et al. (2018) STM Our STM

Dataset Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

NCBI-disease 85.31 83.58 84.44 84.95 82.92 83.92 83.95 85.45 84.69 (±0.54)

JNLPBA 74.83 79.82 77.25 69.60 74.95 72.17 72.51 82.98 77.39 (±0.24)

BC5CDR-chem 92.57 88.77 90.63 *93.05 *86.87 *89.85 94.02 91.50 92.74 (±0.47)

BC5CDR-disease 84.19 82.79 83.49 *84.09 *81.32 *82.68 82.98 82.25 82.61 (±0.25)

BC4CHEMD 87.83 85.45 86.62 90.53 87.04 88.75 90.50 85.96 88.19 (±0.23)

BC2GM 77.50 78.13 77.82 81.11 78.91 80.00 79.70 77.47 78.56 (±0.38)

Macro Average 83.71 83.09 83.38 83.89 82.00 82.90 83.94 84.27 84.03

Our STM achieved the best performance on 3 datasets among 6. Scores in the asterisked (*) cells are obtained in the experiments that we conducted; these scores are not

reported in the original papers. The best scores from these experiments are in bold

On average, our STM outperforms the baseline STMs

in terms of precision, recall and F1 score. Although, Sahu

and Anand [17] tried to improve the performance of NER

models with CNN based CLWE layer, they have failed to

do so. In our experiments, however, our STMoutperforms

other baseline STMs, demonstrating the effectiveness of

STM with CNN based CLWE layer.

Performance of CollaboNet

Comparing Tables 2 and 3, CollaboNet achieves higher

precision and F1 score than most STM models on all

datasets. On average, CollaboNet has improved both

precision and recall. CollaboNet also outperforms the

multi-task model (MTM) from Wang et al. [25] on 4

out of 6 datasets (Table 3). While multi-task learning

has improved performance in previous studies [25], using

CollaboNet, which consists of expert models trained for

each entity type, could further improve biomedical named

entity recognition performance.

Discussion

Compared to baseline models, CollaboNet achieves

higher performance on macro average (Tables 2 and 3).

The increase in precision is supportive when considering

the practical use of the bioNER systems. In a number of

biomedical text mining systems, important information

tends to be repeated in a large size text corpus. Therefore,

missing a few entities may not hinder the performance of

an entire system, as this can be compensated elsewhere.

However, incorrect information and the propagation of

errors can effect the entire system.

In Table 4, we report the error types of our STM and

CollaboNet. We define bio-entity error as recognizing dif-

ferent types of biomedical entities as target entity types.

For instance, recognizing ‘VHL’ as a gene when it was

used as a disease in a sentence is a bio-entity error. Note

that a bio-entity error could occur when an entity is a

polysemous word (e.g. VHL), or comprised of multiple

words (e.g. BRCA1 deficient), and thus correcting bio-

entity errors requires contextual information or supervi-

sion of other entity type models. The error analysis was

conducted on 4334 errors of our STM and 3966 errors

of CollaboNet on 5 datasets (BC2GM, BC5CDR-chem,

BC5CDR-disease, JNLPBA, NCBI). Error analysis was

conducted on models which showed best performance in

our experiments.

The error analysis of our STM, which is a single

BiLSTM-CRF model, shows that the majority of errors

Table 3 Performance of CollaboNet and the Multi-Task Model by Wang et al. [25]

Model Wang et al. (2018) MTM CollaboNet

Dataset Precision Recall F1 Score Precision Recall F1 Score

NCBI-disease 85.86 86.42 86.14 85.48 87.27 86.36 (±0.54)

JNLPBA 70.91 76.34 73.52 74.43 83.22 78.58

BC5CDR-chem *93.09 *89.56 *91.29 94.26 92.38 93.31

BC5CDR-disease *83.73 *82.93 *83.33 85.61 82.61 84.08

BC4CHEMD 91.30 87.53 89.37 90.78 87.01 88.85

BC2GM 82.10 79.42 80.74 80.49 78.99 79.73

Macro Average 84.50 83.70 84.07 85.18 85.25 85.15

Scores in the asterisked (*) cells are obtained in the experiments that we conducted; these scores are not reported in the original papers. The best scores from these

experiments are in bold
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Table 4 The number of bio-entity type errors, the total number of errors, and the ratio of bio-entity errors to the total numbers of

errors for each model prediction

Our STM CollaboNet

Dataset Bio Entity Total Ratio of Bio Entity Bio Entity Total Ratio of Bio Entity Difference

NCBI-disease 54 167 32.3% 38 131 29.0% -3.3%

JNLPBA 749 1520 49.3% 227 1437 15.8% -33.5%

BC5CDR-chem 142 503 28.2% 122 505 24.2% -4.1%

BC5CDR-disease 199 867 23.0% 131 728 18.0% -5.0%

BC2GM 189 1277 14.8% 218 1165 18.7% 3.9%

Negative values at the difference tab indicate that CollaboNet reduced the number of false positives, especially false biomedical entities

are classified as bio-entity errors which comprise up to

49.3% of the total errors in JNLPBA. According to the

error analysis of our STMmodel, bio-entity errors consti-

tute 1333 errors out of 4334 errors, comprising 30.8% of

all the errors. Although bio-entity error was not the most

common error type, the importance of bio-entity error

is much greater that of other errors such as span error

which was the most common error type, constituting 38%

of incorrect errors. While most span errors can be eas-

ily fixed by non-experts, bio-entity errors are difficult to

detect and fix, even for biomedical researchers. Also, for

biomedical text mining tasks such as drug-drug interac-

tion (DDI) extraction, span errors of an NER system have

a minor effect on DDI results but bio-entity errors could

lead to completely different results.

The performance improvement of CollaboNet over

STM may not seem significant when considering the

increased complexity of CollaboNet’s structure. We found

by error analysis that CollaboNet had an increased num-

ber of span errors. As our metric is based on the exact

match evaluation, consistent annotation of the ground

truth dataset is important for reducing span errors which

are caused by modifiers. For instance, in the phrase “acute

adult renal failure,” “adult renal failure” may be labeled as

an entity in some datasets. In this case, predicting “acute

adult renal failure” or “renal failure” as an entity will be

counted as a false negative and a false positive. On the

other hand, some other datasets may include the modifier

“acute” in an entity, considering “acute adult renal fail-

ure” as the only true prediction. Therefore, unlike STM,

CollaboNet uses various datasets that have been anno-

tated differently. Even though CollaboNet outperforms

STM, its results may be lower due to this inconsistency in

annotation.

In CollaboNet, each expert model is trained on a single

entity type dataset, and their training inputs are a con-

catenation of word embeddings and outputs of the other

expert models. We expect that the other expert models

will transfer knowledge on their respective entity to the

target model, and thus improve the bio-entity type error

problem by collaboration. As Table 4 shows, CollaboNet

performs better than our STM in detecting polysemy and

other entity types. Among 3966 errors from CollaboNet,

736 errors are bio-entity errors, comprising 18.6% of all

the errors.

Case study

We sampled the predictions of CollaboNet and those of

our STM (single-task model) to further understand the

strengths of CollaboNet in Table 5.

The first example from chemical dataset in Table 5

shows our expected result from CollaboNet. Our STM

annotates antilymphocyte globulin as a chemical entity.

However, it is clear that the entity is not a chemical but a

type of globulin which is a protein. The second example

sentence from the chemical dataset is about anACE / ARB

entity. Again, our STMmisidentifies the entity as a chem-

ical entity. On the other hand, in CollaboNet, the target

model (chemical model) obtains knowledge from one of

the collaborator models (the gene/protein model) to avoid

mistakenly recognizing the entity as a chemical entity.

As globulin or ACE entities appear in the gene/protein

dataset, the chemical model obtains information from the

gene/protein model.

In the disease dataset, the first example shows a multi-

word entity in parentheses. As a gene model can pass

syntactic and semantic information about a word e.g.,

mutated and its surrounding words to a disease model,

CollaboNet can abstain from predicting A-T, mutated as

the disease entity, which our STMmodel failed to do. The

second example in the disease dataset is on cardiac tro-

ponin T. Since cardiac + noun in biomedical text can be

easily considered as a disease name, our STM misidenti-

fied this word as a disease entity. However, with the help

of a gene model, CollaboNet did not mark it as a disease

entity.

The gene/protein entity type further demonstrates

the effectiveness of CollaboNet in reducing bio-entity

type errors. Two example sentences contain abbrevi-

ations, which are one of the distinct characteristics
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Table 5 Case study

Chemical dataset

Our STM No prophylaxis with antilymphocyte globulin was used - globulin : Protein

CollaboNet No prophylaxis with antilymphocyte globulin was used

Ground Truth No prophylaxis with antilymphocyte globulin was used

Our STM elderly patients using ACE / ARB in combination with potassium ACE : Gene/Protein

CollaboNet elderly patients using ACE / ARB in combination with potassium

Ground Truth elderly patients using ACE / ARB in combination with potassium

Disease Dataset

Our STM The ATM (A-T, mutated) gene on human chromosome 11q22. A-T, mutated : Gene

CollaboNet The ATM (A-T, mutated) gene on human chromosome 11q22.

Ground Truth The ATM (A-T, mutated) gene on human chromosome 11q22.

Our STM to bind to the human cardiac troponin T (cTNT) pre-messenger RNA cTNT : Gene/Protein

CollaboNet to bind to the human cardiac troponin T (cTNT) pre-messenger RNA

Ground Truth to bind to the human cardiac troponin T (cTNT) pre-messenger RNA

Gene / Protein Dataset

Our STM which is inhibited by the cytotoxin leptomycin B (LMB), and also by its interaction LMB : Chemical, Drug

CollaboNet which is inhibited by the cytotoxin leptomycin B (LMB), and also by its interaction

Ground Truth which is inhibited by the cytotoxin leptomycin B (LMB), and also by its interaction

Our STM Classic Hodgkin disease (cHD) is derived from B cells with high loads of mutations. cHD : Disease

CollaboNet Classic Hodgkin disease (cHD) is derived from B cells with high loads of mutations

Ground Truth Classic Hodgkin disease (cHD) is derived from B cells with high loads of mutations

This table contains sentences that were incorrectly predicted by of our STM but were correctly predicted by CollaboNet. The predicted labels or the ground truth labels are

underlined

of gene entities. LMB and cHD are incorrectly pre-

dicted as gene/protein entities by our STM, since lots

of gene/protein entities are abbreviations. However, the

target model (gene/protein model) in CollaboNet can

obtain information on leptomycin and disease from the

chemical and disease models, respectively. With the help

of information from collaborator models, CollaboNet

can effectively increase the precision of other entity

type models.

In addition, we found some labels in the ground truth

set, which we believe are incorrect. Tsai et al. [15] also

reported that the inconsistent annotations in the JNLPBA

corpus limit the NER system. We report our findings in

Table 6.

Table 6 Case study

Gene / Protein Dataset

CollaboNet Troglitazone, a PPARgamma ligand, inhibits osteopontin gene expression in THP-1 cells.

Ground Truth Troglitazone, a PPARgamma ligand, inhibits osteopontin gene expression in THP-1 cells

CollaboNet The translesion DNA polymerase zeta plays a major role in lg and bcl-6 somatic hypermutation.

Ground Truth The translesion DNA polymerase zeta plays a major role in lg and bcl-6 somatic hypermutation.

Chemical Dataset

CollaboNet recently identified Delta22-isomer of beta-muricholate contribute for 5.4%

Ground Truth recently identified Delta22-isomer of beta-muricholate contribute for 5.4%

CollaboNet Hexabrix and polyvidone are considered the best contrast media for hysterosalpingography.

Ground Truth Hexabrix and polyvidone are considered the best contrast media for hysterosalpingography.

This table shows the questionable answers from the ground truth datasets. Our model achieves better performance in detecting entities in these example sentences. The

predicted labels or the ground truth labels are underlined
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In the first row of Table 6, the gene/protein entity

osteopontin was not marked in the ground truth labels,

whereas our network correctly predicted it as a gene

entity. The second row also displays questionable results

of the ground truth labels. Although lg and bcl-6, which

are abbreviations of Immunoglobulin and B-cell lym-

phoma 6, where not labeled in the ground truth labels, our

model detected them as a gene / protein entity. The exam-

ple sentences of gene/protein annotations in Table 6 were

reviewed by several domain experts and medical doctors.

As shown in the third row, beta-muricholate is a chemical

entity but it was not annotated in the ground truth labels.

However, the last row shows another type of annotation

error. Contrast media is a general term for a medium used

in medical imaging and since is not a proper noun, it is not

a named entity.

These examples shows the presence of incorrect ground

truth labels, which can harm the performance of bioNER

models. However, we believe that these missed or

misidentified ground truth labels can be corrected by our

system.

Future works

For future work, we plan to cover more target entity

types and use more datasets. For example, CRAFT [42],

LINNAEUS [43] and Variome [44] are manually anno-

tated datasets and are valuable resources that can be used

for expanding our model. Second, we plan to apply Col-

laboNet to downstream biomedical text mining systems.

For example, entity search engines such as BEST [10]

could be improved by using more accurate NER models.

Conclusion

In this paper, we introduced CollaboNet, which con-

sists of multiple BiLSTM-CRF models, for biomedical

named entity recognition. While existing models were

only able to handle datasets with a single entity type,

CollaboNet leverages multiple datasets and achieves the

highest F1 scores. Unlike recently proposed multi-task

models, CollaboNet is built upon multiple single-task

NER models (STMs) that send information to each other

for more accurate predictions. In addition to the perfor-

mance improvement over multi-task models, CollaboNet

differentiates between biomedical entities that are pol-

ysemous or have similar orthographic features. As a

result, our model achieved state-of-the-art performance

on four bioNER datasets in terms of F1 score, precision

and recall. Although our model requires a large amount

of memory and time, which existing multi-task models

require as well, the simple structure of CollaboNet allows

researchers to build another expert model for different

entity types in CollaboNet. As CollaboNet obtains higher

precision than other models, we plan to apply CollaboNet

in a biomedical text mining system.
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