\ 4

AARHUS UNIVERSITY

Coversheet

This is the accepted manuscript (post-print version) of the article.
Contentwise, the post-print version is identical to the final published version, but there may be
differences in typography and layout.

How to cite this publication
Please cite the final published version:

Loftis, M., & Mortensen, P. B. (2020). Collaborating with the Machines: A hybrid method for
classifying policy documents. Policy Studies Journal, 48(1), 184-206.
https://doi.org/10.1111/psj.12245

Publication metadata

Title: Collaborating with the Machines: A hybrid method for classifying policy
documents
Author(s): Matt W. Loftis, Peter Bjerre Mortensen
Journal: Policy Studies Journal, 48(1), 184-206
DOIl/Link: https://doi.org/10.1111/psj.12245
Document version: Accepted manuscript (post-print)
General Rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and
investigate your claim.

This coversheet template is made available by AU Library
Version 1.0, October 2016

https://doi.org/10.1111/psj.12245
https://doi.org/10.1111/psj.12245

Collaborating with the Machines
A hybrid method for classifying policy documents

Matt W. Loftis Peter B. Mortensen
Aarhus University Aarhus University
mattwloftis@Qps.au.dk” peter@ps.au.dk

January 2018

Abstract

Governments produce vast and growing quantities of freely available text: laws,
rules, budgets, press releases, etc. This information flood is facilitating important,
growing research programs in policy and public administration. However, tight-
ening research budgets and the information’s vast scale force political science and
public policy to aspire to do more with less. Meeting this challenge means ap-
plied researchers must innovate. This paper makes two contributions for practical
text coding — the process of sorting government text into researcher-defined coding
schemes. First, we propose a method of combining human coding with automated
computer classification for large data sets. Second, we present a well-known al-
gorithm for automated text classification, the Naive Bayes classifier, and provide
software for working with it. We argue and provide evidence this method can help
applied researchers using human coders to get more from their research budgets,
and we demonstrate the method using classical examples from the study of policy
agendas.

Published: Policy Studies Journal

*The authors wish to thank Jason Eichorst, Henrik Bech Seeberg, Martin Baekgaard,
Carsten Jensen, and Public Administration workshop participants at the Aarhus Univer-
sity Department of Political Science.

mattwloftis@ps.au.dk
peter@ps.au.dk

Often scholars of public administration or public policy work on research problems
that require them to classify or categorize huge numbers of documents. Furthermore,
classification often needs to be consistent across a large number of units of analysis
and/or across time. One example is the literature on rule dynamics, where scholars
need to categorize whether a given set of rules belongs to one category or another based
on short text summaries. For instance, does this law or that specific paragraph belong
to the domain of energy policy, education policy, social policy, or environmental policy
(see |Jakobsen and Mortensen, 2015; March, Schulz and Zhou, [2000; |Schulz, 1998} van
Witteloostuijn and de Jong, |2007; |Zhou, |1993).

Another example is the structure of government strand of research, which focuses on
the design, re-design, termination and birth of public agencies and /or ministries (Carpen-
ter, 2001; Lewis, 2003} Yesilkagit and Christensen, [2010). In this case, the challenge of cat-
egorization is to consistently classify organizations over decades and/or cross-nationally
into different policy areas or jurisdictions. A third example is public budgeting research.
As it is well-known, budget formats change from time to time making it challenging to
systematically trace how spending on a given government function has evolved over time
(Jones, Zalanyi and Erdi, 2014). To address such challenges, researchers need to carry
out tedious, manual categorizations of clusters of spending based on text descriptions of
budget items (see Truel 2009). Other examples of research relying on large scale classifica-
tions of government text can be found within the Institutional Analysis and Development
framework (see Ostrom and Schlager, |2014), within media and communication research
(Thesen, 2013} |Vliegenthart et al. [2016), as well as within a broader range of research
relying on classification of political activities such as congressional hearings, bills, parlia-
mentary questions, party manifestos, etc. (Adler and Wilkerson) [2013; (Green-Pedersen
and Walgrave, [2014)).

The goal of this paper is to propose a simple and practical approach to computer-
assisted data coding for public administration and public policy scholars classifying large
amounts of text and to provide a practical guide for executing such analyses. We argue

and provide evidence that this practice can help overcome significant challenges facing

researchers’ capacity to code large amounts of data and maintain the data at the center
of their research program. Budget constraints limit opportunities to launch large-scale
human data collection, and a combination of limited experience with automated coding
and time constraints prevent many applied policy scholars from applying even well-known
automated coding tools on a broad scale.

Thus, the intended audience of this paper is not the small group of scholars with the
training and competence in using advanced tools for automated coding, but the large
group of public administration and public policy scholars whose research could benefit
significantly from computer assisted text classification. These are the researchers who
would normally rely entirely on human coding either based on their own preferences or
due to various time and resource barriers to adopting tools for automated coding.

The alternative we introduce and advocate in this paper is a human-computer collab-
oration approach designed to ease budget constraints by speeding the coding process and
dramatically reducing the amount of human coder time required to build large datasets
of coded data. Furthermore, including computers in the work flow means humans do
far less actual coding and move primarily into the role of applying expert knowledge to
improve computer coding reinforcing the role of expert knowledge in the coding process.

We illustrate the steps in and the virtues of the approach using data from the Com-
parative Agendas Project (CAP). As illustrated by almost 60 articles published in Policy
Studies Journal and a total of nearly 400 publications according to the latest count
(Baumgartner, Jones and Mortensen, 2017, 85), this is a vivid and growing research field.
The CAP project is a network of researchers united around a demanding measurement
system developed to classify a broad range of political activities into topics which can be
compared over time and across political systems (see |Jones, |2016). Thereby, it is also a
research field where the challenges sketched above are very real.

First, content coding policy agendas is detailed: the CAP coding scheme consists of
21 major topics and more than 200 subtopics. Second, the text material used in agenda-
setting research is quite heterogeneous, varying from legislative hearings to speeches by

heads of state, legislative debates, parliamentary questions, and more. The scale and

diversity of this data makes coding new policy agendas data both labor intensive and time
consuming. Third, the material to be coded is enormous. The U.S. Congressional Bills
Project consists of more than 450,000 titles of proposed legislation (Adler and Wilkerson,
2015)), while the larger U.S. Policy Agendas Project maintains data on thousands of
Congressional hearings, entries in the Congressional Quarterly Almanac, executive orders,
State of the Union addresses, Supreme Court rulings, budgetary allocations, and more
(Baumgartner and Jones|, 2016)).

The Danish Policy Agendas Project, for instance, includes almost 13,000 legislative
bills since 1953, along with thousands of interpellations, motions, parliamentary ques-
tions, prime ministerial speeches, and others (Green-Pedersen and Mortensen) [2013)).
The broader Comparative Agendas Project includes data on thousands of bills, speeches,
and other expressions of the policy agenda in more than a dozen countries and several U.S.
states, which have together taken years of labor to curate and classify. Lastly, the data
addressed by the CAP expands daily as governments pass laws, hold hearings, approve
budgets, etc.

The costly and time-consuming process of collecting and content coding policy agendas
data presents a major barrier to initiating new country data collection projects, and the
scale of the data, already vast, grows more quickly over time as governments make more
and more information available online. At the same time, social science research funding is
tightening around the world (Plazek and Steinberg, |2013)), making it increasingly difficult
to mobilize the funding needed to engage expert human coders to prepare large data
sets. Currently, 15 CAP country projects exist, relatively few in comparison to other
cross-national research programs[l] A still further difficulty for the CAP is the need to
update existing data. Keeping a corpus of policy agendas data up to date as new data
is constantly added can require new funding, and grants for updating existing datasets
can be more difficult to secure than those for preparing new data. Substantially, this

threatens to limit the relevance of agenda-setting research. Today, several major agendas

1 See, for example, the 60 countries included in the Comparative Manifesto Project

corpus (https://manifesto-project.wzb.eu/)).

https://manifesto-project.wzb.eu/

datasets end five or ten years ago. Given that the dynamics and drivers of policy agenda
setting likely change over time (Mettler, [2016]), this is a lurking barrier to further scientific
investigation of government attention.

In this paper, we suggest practices for confronting these challenges efficiently and
affordably, without compromising data quality. Specifically, we advocate and outline a
procedure for human-computer collaboration for coding policy and public administration
data. Along the way, we introduce to the reader and apply a machine learning algorithm
not widely used in the subfield and demonstrate its performance on real dataE] Finally, we

demonstrate in concrete terms how these tools can maximize returns on research budgets.

PRACTICAL PRACTICES FOR TEXT CODING

As argued above, the basic challenge facing policy agendas scholars is of relevance to a
broad range of research in public administration and public policy. We use examples
drawn from the study of policy agendas to illustrate a method and workflow for com-
puterized text coding| not least because the challenges are very salient to this field of
research and the potentials for improvement equally high.

Historically, CAP projects have employed mostly or only human coders to read agen-
das text documents and classify them into major and minor topics. We surveyed CAP
country project leaders in June 2016 about their application of automated tools to date.
Responses indicate many projects have experimented with computerized classification,
though only one reported using automated tools as a key part of their work. We believe
the written comments from the survey respondents reflect the experiences of many public

policy and public administration scholars:

2 Software used in all analyses is freely available online at https://cran.r-project.
org/ and http://github.com/mattwloftis/agendacodeR. Replication code available

on the author’s website.
3 We use the terms “text coding” and “text classification” interchangeably. Coding is

generally used for human labor (i.e. codebook and human coder), while classification is

favored in the computer science literature on categorizing text.

https://cran.r-project.org/
https://cran.r-project.org/
http://github.com/mattwloftis/agendacodeR

o “ .. I think we need more training both on the statistical concepts and the software techni-
calities to get to use these tools in a more systematic way”

o “The predicted codes were not satisfactory, once checked by our coders. In the end, we
gave up.”

o “We compared computer coding results against previous-double hand coded and reconciled
observations. We found the computer coded data to not reach our standards of accuracy
for it to be worth while to implement on a broad level.”

e “None [i.e. no computerized classification methods] thus far made it to more permanent
use, mainly financial resource limitations for really developing the tools further.”

Among CAP projects using computerized methods, the modal tool applied was the
RTextTools package (Jurka et al., 2013). As|Jurka et al. (2013) note, RTextTools is rec-
ommended for data sets no larger than around 30,000 documents. The memory demands
of the methods it utilizesﬁ can lead to long processing times even on newer desktop com-
puters. With larger data sets, for example those including a hundred thousand or more
observations, this limitation can lead to prohibitively long processing time and crashes.

This leads to the core of our argument about the challenges facing data collection
and data maintenance efforts in the the wider fields of public administration and pub-
lic policy studies. Budget constraints limit opportunities to launch large-scale human
data collection, and computing power and time constraints limit the scope for applying
sophisticated automated coding tools on a broad scale — both because these methods
are demanding on computing resources and they are complex enough to require expert
knowledge.

The answer we propose to these challenges is two-fold. First, we advocate human-
computer collaboration in the coding. This eases budget constraints by speeding the
coding process and dramatically reducing the amount of human coder time required to
build large policy data sets. Furthermore, including computers in the work flow means
humans do less actual coding and move primarily into the role of applying expert knowl-

edge to improve computer coding — reinforcing the role of expert knowledge in the coding

4 These include many advanced methods we do not discuss: e.g. support vector
machines, multinomial logistic regression (maximum entropy), or neural networks (Jurka

et al., 2013).

process. In the next section, we present this work flow in detail.

The second part of our proposal for overcoming the difficulties facing policy data
coding is to recommend one particularly transparent, fast, and mathematically simple
approach to computer coding, namely a multiclass Naive Bayes algorithm with Bernoulli
features. We describe in general terms how to apply it in the next section, and our
motives for choosing Naive Bayes and a detailed explanation of the method are discussed
later. We also provide and describe free purpose-built software for implementing it which
includes tools to help analysts scrutinize computer results so they can refine the codings
the computer provides and improve their accuracy.

After introducing the work flow and our preferred method, we illustrate our human-
computer hybrid method of coding policy agendas data with a brief description of the
process of coding a relatively large policy agendas data set. The data consist of the
text of all items appearing on Danish municipalities’ city council meeting agendas over
a period of several years. Furthermore, we check the performance of our recommended
computer coding method against a well-known benchmark data set, the titles of U.S.

bills, maintained by the U.S. Congressional Bills Project (Adler and Wilkerson, |2015)).

COLLABORATING WITH A MACHINE

We describe here a general work flow for human-computer collaboration in text classifica-
tion aimed at newcomers to computerized text analysis. We will use examples of coding
policy agendas data into subtopics, though the procedure applies to any task involving
categorizing public administration or public policy text. Researchers with the resources
and expertize to apply more sophisticated classification methods may find those achieve
greater computer accuracy than our method. However, even in those cases, we consider

our proposal a useful starting point before moving on to apply more advanced tools] The

® For interested readers, we briefly discuss more sophisticated computer classification
methods in appendix, including the state of the art in human-computer collaborative

approaches.

process we propose consists of three stages: the human-coding stage, the collaborative

stage, and finally the pure machine-coding stage.

Stage one: 'To begin any supervised machine classification, a set of human-coded doc-
uments is necessary. This is called the “training set.” The human-coding stage refers
to preparing the training set. For our examples, taken from CAP, this process is the
standard coding procedure laid out in the master codebook and accompanying materi-
alsﬁ For our method, the distribution of codings, or classes, in the training set should
resemble the distribution in the uncoded data, so it is best to start with a random sample.
As a rule, larger training sets are better, especially in the context of CAP coding since
there are around 200 subtopics — some occurring very rarely. As we show later, at least
500 items is a reasonable starting point, though several thousand training items provide
a much stronger start. With an initial set of correctly coded documents in hand, the

computer can get involved.

Stage two: The second, collaborative, stage is iterative. This stage is repeated until
the desired level of accuracy is achieved. In this stage, the computer “learns” from
the training data and then classifies all uncoded documents. Once uncoded data has
been assigned a (preliminary) class, the analyst takes a random sample from this newly
machine-coded data and human coders review it for accuracy. Early on this accuracy
can be quite poor. Human coders make corrections where needed. The random sample
for human review can be of any size — though larger samples yield larger increases in
computer performance.

This human coder review accomplishes three tasks. First, it checks the computer’s
performance on virgin data — i.e. data the computer has not seen — to measure out-of-
sample predictive success. Second, information gleaned from examining the computer
output can be used to refine the information the computer uses to classify documents,

boosting the accuracy of subsequent machine coding. We discuss procedures for this later.

6 Find the CAP master codebook at: http://www.comparativeagendas.net/pages/

master-codebook

http://www.comparativeagendas.net/pages/master-codebook
http://www.comparativeagendas.net/pages/master-codebook

Third, the human-reviewed data is added to the training set, growing the information
used to train the computer.

Following human review, the analyst trains the computer again using the enlarged
training set, boosting the accuracy of the next machine coding. New computer-assigned

codes are generated and the collaborative step is repeated.

Stage three: When the accuracy of the computer-assigned codes converges to a level
within the acceptable bounds for normal reliability checks, the collaborative stage ends
and computer-only coding begins. In this final stage, the computer classifies all remaining
virgin data and coding is considered complete. This step can be augmented with a final
human review. To make the final human review more efficient, the analyst can concentrate
on reviewing only classes in which the computer performs less well. We provide assessment
tools to identify problematic classes.

To sum up, consider how working with the computer speeds and strengthens the cod-
ing process. First, in our experience, computer coding achieves accuracy rates approach-
ing 50% within a few iterations of stage two. By accuracy, we refer to the proportion of
virgin documents the computer assigns to the correct class. Some classes will be easier
to identify than others, so computer classification often identifies certain classes with
near perfect accuracy. Second, we find human coders are able to review computer-coded
data more quickly than they can code virgin data, and they perform even better as they
review more accurate computer classifications. This yields three benefits: a) reassigning
human coders to review computer codes directly speeds coding; b) human reviewers work

)

increasingly quickly as coding proceeds; and ¢) human review of “easy” classes can move
extremely quickly.
Finally, computer classification solves the problem of updating data sets. The trained

computer classifier can be stored for later and used to classify new data as it appears

with minimal additional time and effort.

CLASSIFYING WITH LIMITED COMPUTING POWER

The choice of classification method, as in standard statistical modeling, is first motivated
by inferential goals. In our case, we face a familiar problem with many possible solutions.
The aim is to classify documentd| into classesf| based only on the documents’ text.
Therefore, we first assume each document’s class is some function of its words. A wide
variety of models and machine learning algorithms can model document classes as a
function of words (Grimmer and Stewart], 2013; |Jurka et al.; 2013} Munzert et al., [2015)).
Three characteristics of much agendas and policy data influence our choice: (1) the
number of possible classes; (2) the number of different words that are relevant; and (3)
the number of documents in the data. All three are quite large for the standard CAP
country project and for many policy studies applications.

Classifying text implies treating words or phrases as numerical data (Grimmer and
Stewart|, 2013). That is, we begin by generating a matrix in which documents are obser-
vations (rows). The variables or columns (called features in the language of classification
methods) are indicators, counts, or some other measure of the appearance or salience of
words or phrases in documents. The data have as many columns as there are words or
phrases in the entire corpus of documents. A data set of tens of thousands of documents
can easily generate as many, or more, features as observations. This can leave a statisti-
cal model unidentified, or at least constitute a hefty computational burden and therefore
create long processing times for many models.

Furthermore, many policy studies applications code documents into many classes. For
example, the CAP codebook maps agendas into around 200 subtopics. Discrete choice
models can be estimated with so many classes (Train, 2009)), but estimating such a model
using data the size of standard CAP data sets can be computationally unmanageable.
Classifying multiclass data is computationally easier with algorithmic approaches, but

many of these perform poorly with highly unbalanced classes (Japkowicz and Stephen,

" We use the terms document or observation interchangeably here to refer to a single

text, legislative bill title, budget category, etc. in the data.

8 i.e. subtopic, major topic, or other category

10

2002)) — that is, when certain classes appear very frequently and others very rarely. This
is an endemic problem for much policy data. Political attention is never distributed
evenly across all policy areas, and certain policy areas appear very often while others
come up rarely. Therefore, our method must perform well despite classifying unbalanced
data.

A final factor in choosing a classification method are constraints imposed by re-
searchers’ time and budget. To be useful to applied scholars, a classification method
should produce results quickly on a desktop computer without requiring the use of, say,
cloud computing or other advanced computing tools to achieve results quickly. This
narrows the field of choices substantially. A variety of sophisticated approaches are ap-
plicable to classify policy text, but sophistication comes at costs in time and computing
resources. For example, support vector machines, neural networks, and other tools are
popular and proven text classification tools, but can make massive memory demands on
the computer even for small jobs.

With this in mind, we advocate Naive Bayes as a computationally frugal text clas-
sification algorithm. The Naive Bayes classifier (NB) estimates the probability that a
document, d, comes from class ¢ as a function of its words and/or phrases. Probabili-
ties are estimated via Bayes’ rule. Training data (i.e. coded documents) establish prior
probabilities of observing certain classes (P(c)), certain documents (P(d)), and certain
documents in each class (P(d|c)). Combining this prior information allows us to estimate

the probability that new documents fall into each class:

NB is not a single method. Rather, it comes in various forms for different purposes and
data types (Metsis, Androutsopoulos and Paliouras, [2006). Their commonality is that
document features are assumed to vary independently of one another, net of the class
in which they appear. This assumption is the naive part. It is likely, for example, that
documents mentioning nurses also mention hospitals. Nevertheless, ignoring associations

between features makes the algorithm fast and efficient.

11

Varieties of NB are widely applied to classify text (Lewis, [1998; McCallum and Nigam),
1998; Hovold, 2005} |Kibriya et al., |2005; Schneider, 2005; |Chen et al., 2009). These
implementations vary in the form of priors, distributional assumptions, measurement of
features, and means of selecting which features of the training data to use — resulting in
some variety in their computational intensity. We adapt a particularly efficient version
of NB for multiclass data — that is, data falling into more than two classes (O’Neil and
Schutt|, 2013)).

Details of our own estimation are found in appendix [Al In short, we represent each
document as a vector of 1s and 0Os for each feature appearing in any document — a 1
means a feature appears in the document one or more times, and a 0 means the feature
does not appear in the respective document. Then, we calculate the prior probabilities
of observing each class (.) and of observing each feature in each class (6;.). With these
priors, we can calculate the posterior probability that a new document falls into class c,
given its features. We calculate this for each document and every possible class.

Several points merit discussion. As in other NB applications (see Schneider], 2005),
we find performance is best when considering only the appearance or absence of features,
discarding information about additional appearances of the same word in a single doc-
ument. Note also the estimation of éjc and 6,. Prior class probabilities, éc, are simply
the number of training documents in class ¢ divided by the number of training docu-
ments. However, we smooth values of prior word-in-class probabilities, éjc, to eliminate
zero and one prior probabilities (Frank and Bouckaert, 2006|). Smoothing éjc is necessary
because some features appear extremely rarely in certain classes. Consider an example.
If training data contain no documents about foreign policy mentioning doctors then the
prior probability that new documents containing the word doctors pertain to foreign pol-
icy would be zero. This means new documents about foreign aid for medical assistance
that mention doctors would have zero probability of relating to foreign policy. This is
obviously mistaken and smoothing prevents these mistakes.

This approach to NB text classification has several advantages for researchers classi-

fying relatively large and highly unbalanced multiclass data — exactly the type commonly

12

studied in policy and public administration. Foremost are speed and accuracy. NB es-
timates class and feature priors — 6. and éjc, respectively — by simply tabulating over
the training data and smoothing. This process is very fast relative to fitting a statistical
model or using complex algorithms. Once NB is trained, predicting classes for a large set
of new documents requires a quick matrix multiplication and some addition. This pro-
cess is quite fast. At the same time, NB’s wide application in text classification problems
attests to its accuracy.

A final benefit is that the algorithm is completely transparent. This transparency is an
important virtue compared to other and more sophisticated machine learning methodsﬂ
Analysts can easily track associations between features and classes and see how NB arrives
at its answers. This is helpful for troubleshooting, justifying the face validity of computer
codes, and tuning the algorithm to improve performance. In the next sections, we will
present empirical examples from policy agendas data to demonstrate its performance.
Before moving on to applications, however, we briefly discuss how analysts can optimize

the performance of this basic algorithm.

TUNING FOR PERFORMANCE

Text classification for policy data aims to accurately forecast documents’ classes. As
such, the only principled guide to making decisions about the analysis is to determine
what yields better accuracy. In our case, at least two such choices merit discussion: (1)
regularization of posterior probabilities, and (2) selection of features. We consider them
in turn and discuss how to optimize predictive performance.

As described above, NB classifies documents into classes by calculating posterior
probabilities that a given document belongs to each class. That is, for each classified
document, it returns a vector of probabilities as long as the number of categories. One
standard way to classify documents is to select the class with the highest posterior prob-

ability for each document (Lewis, [1998). However, any number of alternatives might be

9 One of the most promising alternatives is likely “active learning” combined with

support vector machines (SVM) and we discuss this alternative in appendix.

13

useful. One method we implement is to take the ratio of the posterior probabilities to the
simple class priors for each classified document and then to classify documents into the
class with the highest ratio — i.e. the class whose probability increased the most relative
to the class prior after observing the document. This regularization helps ameliorate the
difficulty of classifying highly unbalanced multiclass data by removing some bias toward
high frequency classes.

Additional gains in predictive accuracy can be achieved by refining the terms included
in the analysis — that is, by deleting or merging certain features. NB generally performs
better when using fewer, more informative, features. We refine training features in three
ways. First, we apply standard refinements such as removing so-called stop words and
stemming. Stop words refer to common words unlikely to vary by class, such as articles,
prepositions, pronouns, etc. Stemming refers to transforming words into their root, so

PRENA4

that, for example, “pass,” “passed,” and “passing” are treated as instances of the same
word: “pass.”

Second, in line with our human computer collaboration approach, we recommend
applying expert human knowledge to refine words in the training vocabulary. This can
vary in sophistication. On the unsophisticated side, it is often useful to delete features like
months of the year, days of the week, many geographic locations, numbers, punctuation,
etc. Something more advanced might involve merging acronyms and abbreviations with
their spelled out forms. Refinements requiring expert knowledge might involve merging
words used interchangeably in policy discussions, merging features naming the same
agency or program, or standardizing policy language that has evolved over time. Such
refinements must be made with care because deleting features that convey information can
as easily damage as improve accuracy. Likewise, merging terms that convey inconsistent
information can harm accuracy. With any refinement, it is recommendable to test for
what increases performance[l’] NB’s transparency is helpful in applying expert judgment

to feature refinements. As we will demonstrate, analysts can easily view which classes

10 For a more detailed discussion of refining language for text analysis, see Lucas et al.

(2015).

14

features relate to and trace how features contributed to the codings assigned by the
computer.

Third, and finally, it is useful to delete the least informative features from the training
data. We do so by calculating the “mutual information” between features and classes —
i.e. the degree to which the variation in feature appearance discriminates classes from
one another — using the measure described in McCallum and Nigam (1998).[11-] In the
examples that follow, we drop around the least informative 75% of features remaining in
the training set after the above refinements.

Making the best tuning choices requires trial and error and in appendix [C] we briefly

discuss the two standard approaches to validate one’s choices.

ILLUSTRATIVE CASE: DANISH CITY COUNCIL AGENDAS

We illustrate how this process works in practice with an example of a policy studies data
collection project. The Causes and Policy Consequences of Agenda Setting (CAPCAS)
project investigates why societal problems gain or lose attention on political agendas and
how this agenda-setting process matters for policy decisions. Project data consist of the
text of all agenda items discussed in all Danish municipalities’ city council meetings over a
period of around seven years. Following past agenda setting studies, CAPCAS converted
all agenda text to digital format and trained human coders to apply numeric codes to
each item corresponding to a version of the comparative agenda setting project codebook
modified for local government. The data include over 200,000 agenda items, each about
one sentence long. Given the size of the task, two years of the four-year project were
originally budgeted to data preparation.

In the first year, the project assembled the complete uncoded data and hand coded
24,000 randomly selected observations. At this time, CAPCAS began considering com-
puter classification. Budget and time constraints were primary motivations. Although
there were sufficient resources to use human coders as planned, the process was slow and

the project aimed to increase its scope. By adding the agendas of city council committees,

' See appendix |C| for full details.

15

of which there are several per city, CAPCAS could achieve a more nuanced understanding
of the agenda setting process in the councils. However, this required coding an unreason-
able additional number of agenda items: around half a million.

After an initial investment in choosing and refining a computerized method, the
project aimed to classify the additional data at virtually zero marginal cost. Since a de-
tailed coding scheme and initial training data already existed and classification methods
had been applied in political science already (Yu, Kaufmann and Diermeier], 2008; Hillard,
Purpura and Wilkerson, 2008} |Workman, 2015; [Burscher, Vliegenthart and De Vreese,
2015), this became a major focus.

As reviewed above, computational simplicity and transparency led to the selection
of NB for classification. The final data set was too large by the standards of desktop
computing to apply more complex tools. At this scale, some tools proved unusable due
to long processing times, and even with quite small subsets of the data certain methods
struggled to handle the highly unbalanced multiclass agendas data. Even with CAPCAS’
large initial training data, many subtopics and many words appeared very infrequently.
Thus, we developed the system of moving from computer classification to human review
to expert refinements to improve the classiﬁerF_ZI

Using the workflow and method described above, the project completed council agenda
coding six months early and under budget, and an additional approximately 500,000 city
council committee agenda items were added to the data. We demonstrate here the clas-
sifier’s accuracy on around 200,000 agenda items from approximately 9,600 Danish city
council meetings in all 98 municipalities. We divide the corpus in three parts: training

with around 120,000 items and dividing remaining data into test and holdout data. Dan-

12 Human refinements were especially important in this non-English language text.
Standard word stemming tools for Danish text made many errors, stemming many spe-
cialized terms incorrectly. Important mistakes had to be corrected and features with
identical meaning but dissimilar spelling grouped into single features. This eventually
resulted in around a 20% reduction in the number of features (from around 55,000 to

around 44,000 for the main council agendas data).

16

ish language word stemming and human feature refinements developed in the CAPCAS
project are applied. We further refine features by eliminating those below about the 84th
percentile of mutual information with the training set classes. This threshold was chosen
by optimizing predictive accuracy on the test data. To demonstrate the usefulness of this
step, figure [1| plots accuracy rates over different thresholds of mutual information for re-
moving features. For illustrative purposes, we also plot accuracy both using our suggested
regularization of posterior probabilities (ratio of posterior to prior class probabilities) and
using the standard approach of assigning documents to classes with maximum posterior

probability.

Subtopic accuracy by feature selection threshold

..'_.'
> 0.69 o
o) R A
® TR %]
= F o
3 -] CiT =
g Method et A g
] Maximum o
B 067 — Posterior E 2
° i o o
8 .. Ratioto 0 %
et Prior _.-"' £
g bt o
£ 0,651 o *
o a
."'.
0.63- | | | ' -
0.25 0.50 0.75 iRt 1 i
Threshold for selecting features Ty
.-'|-.
Actual subtopics
[| 25
| | 24
. . . 2
Major topic accuracy by feature selection threshold 22
........ 21
0784 T Tt 20
19
18
3 | 7 8
T 076+ 16 'S
3 15 2
g Method | 145
iy Maximum 13 g
o} — Posterior 12 2
B 0.744 1 8
S ... Ratioto 08
bt Prior I 9 '-GE’
< =
?0_) 8 o
5 0.724 7
o] 5
H 5
H 4
0.70 > 3
v v v 2
0.25 0.50 0.75 ... 1
0

Threshold for selecting features

Actual major topics

Figure 1: Accuracy of CAPCAS classifier
Note: Upper panels are for subtopics. Lower panels are for major topics. Left panels
plot accuracy over proportion of training features removed. At each point, the algorithm
removes all features below the respective quantile of mutual information. Right panels
plot graphical confusion matrices of subtopic classification accuracy. Darker portions
indicate more data. The dark diagonals indicate that accuracy is reasonably strong.

17

The right panels of figure [I] show graphical confusion matrices: computer classifi-
cations are plotted against the true classifications and the boxes are shaded by row to
indicate where data are concentrated. Off-diagonal shaded areas indicate mistakes. The
visualization is helpful in drawing attention to the computer’s weaknesses, suggesting
ways to refine features. For example, in the major topics plot (bottom right panel of
figure , the non-policy related class 0 gets mistakenly classified as topic 6 and real
instances of 6 are often mistakenly classified into 14, 10, and 9. These observations can
guide feature refinements. In the subtopic plot (top right), the block patterns of misclas-
sifications around the diagonal are instances of subtopics mistakenly classified into other
subtopics within the same major topic.

The left panels of figure[I| plot classification accuracy against the proportion of training
features retained for training the classifier. The threshold plotted on the x-axis indicates
the quantile of mutual information below which features are dropped. Note that the
optimal threshold varies between the two tests. For suptopics, the model benefits from
using only around the top 40% of features by mutual information, while for major topics
performs best when using nearly the top 75% of features.

As can be seen in the top left panel, overall test accuracy for subtopics reaches 70%
in this demonstration, and matches the accuracy we record on our holdout data. Note
that prior to the final collaborative coding step, accuracy rates of 80% were achieved,
comparing favorably to intercoder-reliability rates between human coders. This test in-
cludes both human and machine-coded data, and therefore the results here suffer lower
accuracy from propagating human and computer errors into the coding. Accuracy rates
within many subtopics reach or exceed 95%. The two lines in the left-hand panels de-
note accuracy when using normal posterior probabilities to assign codings or when using

regularized ratios of posterior to prior probabilities.

To demonstrate the performance of NB on more familiar data, we replicate the agenda
coding of U.S. Congressional bills (Hillard, Purpura and Wilkerson, 2008). As data, we

use the titles of the approximately 457,000 bills introduced in the U.S. Congress between

18

1947 and 2008 using data from the Congressional Bills Project (Adler and Wilkerson,
2015)[3] Features were refined by removing English stop words and stemming, but no
expert knowledge was applied to further refine features. We divide the corpus randomly
into three, training the algorithm on around 274,000 bills (around three-fifths of the
data), testing on about 91,000, and measuring accuracy on a holdout data set of around
91,000.

Again, features with low values of mutual information are removed. Figure[2|reiterates
that NB benefits from removing less informative features. When coding subtopics (top left
panel), our results indicate the best subtopic performance is achieved when eliminating
the lowest 89.7% of training features by mutual information. For major topics (bottom
left panel), the algorithm only uses a little more than 50% of features to achieve the best
result. |Hillard, Purpura and Wilkerson| (2008)) record an accuracy rate, i.e. proportion
of test documents correctly labeled, of around 71% using NB to classify subtopics. Our
algorithm replicates this performance. For illustrative purposes, we again plot accuracy
using both forms of posterior: regularized by ratio of posterior to prior and by maximum

posterior probability.

IMPROVING HUMAN COMPUTER COLLABORATION

We recommend several tools for improving automated coding and present some examples
here supporting our argument about the benefits of human and machine collaboration.
Table (1| lists a sample of classes in the U.S. bills training data along with two measures of
coding accuracy on the test data: the true frequency of classes in the test data, and the
top five classes the algorithm mistakenly assigned to this class in the test data. These
accuracy measures are the true positive rate and the positive predictive value. True

positive rate is defined as the number of times the computer correctly predicted a class

13 Views expressed are those of the authors and not those of the National Science

Foundation.

19

Suptopic accuracy by feature selection threshold ! e

0.00 025 050 075
Threshold for selecting features

0.751 s
A
L
> #
[} *
= -
g 0.70 | ,/ : g
.70 4 P a
§ Method A 5
> Maximum L5 2
D — Posterior 2
o [ra o
8 ... Ratioto o L
= Prior A1 %
£ 0.65+] 3
s iz o
8
/.A 3
0.60 i
T T T T A
0.00 0.25 0.50 0.75 o
Threshold for selecting features - i
’ Actual subtopics
99
. . . 21
Major topic accuracy by feature selection threshold B 20
0.75 19
18
- 16
° 15 8
© Q.
= [=]
3 0.70- 142
g Method 135
Maximum
-ac) — Posterior 12 g
o i 10 ©
8 ... Ratioto ko]
b Prior 8 35
£ 0.65+ ;0
S o
o 6
& 5
4
0.60 3
2
1

d N MY ON~N®OON®MYNON®©D QO
- -«

o o
R I N &

Actual major topics

Figure 2: Accuracy of U.S. bills classifier
Note: Upper panels are for subtopics. Lower panels are for major topics. Left panels
plot accuracy over proportion of training features removed. At each point, the algorithm
removes all features below the respective quantile of mutual information. Right panels
plot graphical confusion matrices of subtopic classification accuracy. Darker portions

indicate more data. The dark diagonals indicate that accuracy is reasonably strong.

divided by the number of times the class truly appears in the test data. Positive predictive
value is defined as the number of times the computer correctly predicted a class divided
by the number of times the computer correctly predicted that class. Higher true positive
rates indicate the algorithm is better at detecting the respective class. Higher positive
predictive values indicate the algorithm is better at discriminating the class from others.
This tool is useful for allocating human coder time to checking machine codings.
Classes with both high true positive rates and high positive predictive value are well-
recognized by the algorithm and not often mistaken for other classes. These classes are

strong candidates for being accepted as correct without human coder attention when

coding virgin data. An example in table [I| would be class “1807” (Tariff & Imports)

20

Class | True Positive Positive True Top Mistaken Classes
Rate Predictive Value | Frequency | (1) | (2) | 3) | (4) | (5)
9999 0.968 0.993 39876 2006 | 900 | 1699 | 2103 | 1807
1807 0.873 0.945 7690 401 | 1800 | 1802 | 803 | 1604
2006 0.86 0.672 913 104 | 1699 | 1608 | 2002 | 1210
501 0.847 0.822 811 2004 | 1609 | 302 | 503 | 505
107 0.845 0.482 5887 503 | 2001 | 601 | 1521 | 2009
2030 0.845 0.925 556 2003 | 1609 | 2099 | 2006 | 2101
1521 0.819 0.708 1658 107 | 2002 | 503 | 1501 | 2007
1003 0.816 0.739 1961 107 | 2004 | 1210 | 1609 | 1002
801 0.811 0.746 613 704 | 107 | 800 | 806 | 802
529 0.419 0.842 229 530 | 504 | 503 | 505 | 1520
1201 0.412 0.497 1266 1209 | 1210 | 1204 | 2004 | 2000
1305 0.2 0.487 380 107 | 1699 | 502 | 601 | 1301
498 0.151 0.903 186 709 | 405 | 404 | 400 | 402
2100 0.087 0.219 644 2103 | 2104 | 2101 | 2000 | 2008
1099 0 0 30 1002 | 1007 | 1001 | 107 | 1006
1308 0 0 64 107 | 1208 | 322 | 1301 | 1304

Table 1: Accuracy by category, U.S. bills (excerpt)

or “9999.” Note that “9999” is the catch-all class for bills not related to substantive
policy. A high true positive rate and positive predictive value for this class is, therefore,
important for classifier performance. Classes with only high positive predictive values
are also strong candidates for being accepted without human coder intervention, because
when the algorithm does predict the respective class it is often correct. An example in
table |1 would be class “498” (Research & Development).

Classes with lower true positive rates indicate the analyst should refine the training
features or apply human reviewer attention. Consider, for example, class “2100” (General
public lands) in table |1} All five of the top mistaken classes are within the same major
topic: 21 (Public lands). This indicates that the general subject of these items is clear,
but specific features associated with the subtopic are less obvious. Directing attention to
the specific words differentiating subtopic 2100 from others may help refine the training
features to achieve greater accuracy. On the other hand, class “1305” (Social welfare
volunteer organizations) in table 1] is often mistaken for classes outside its own major
class. Though attention to the training features will likely improve accuracy, this class
may require special attention from human reviewers.

Finally, the frequency with which classes appear as mistakes can be informative about

where additional feature refinements and human coder effort will improve accuracy. For

21

example, class “107” (Tax code) frequently appears as a top mistaken class — 102 times
in the full table. This accords with its lower positive predictive value of .482. This
indicates the class is strongly associated with certain features appearing often in bill
titles associated with other classes. This is corroborated by referring to our second
assessment tool. Table [2|lists the top predicting words for each class. The word “now” is
strongly associated with class “107,” but this feature likely appears often in other classes.

Removing “now” from the training data may improve the positive predictive value for

class “107” and the overall predictive accuracy of the algorithm[]

Top predicting words

Class_ (1) @) @) @)
101 cost-of-liv inflat automat index depreci
107 unmarri old marri enjoy now

110 stabil inflat price april prenotif
201 desegreg racial lynch segreg race

341 cigarett tobacco smoke cigar nicotin
400 farmland farmer stockyard feed packer
530 immigr alien visa nonimmigr | deport
601 higher cours tuition pursu degre
705 clean emiss carbon 0zon dioxid
710 sanctuari coastal wetland spill dump
803 gas petroleum | crude oil pipelin
900 immigr citizenship | alien unus visa
1001 | mass commut transit buse instrument
1003 | aviat airport airlin airway aeronaut
1203 | narcot marihuana | methamphetamin | substanc cocain
1205 | prison parol inmat correct bail
1401 | neighborhood | grantsinaid | apart block repair
1501 | deposit depositori | bank save thrift
1522 | copyright patent trademark infring invent
1524 | tourism travel tourist tour hostel
1605 | disarma weapon prolifer nonprolifer | nuclear
1701 | space aeronaut flight astronaut | superson
1927 | terrorist terror antihijack murder piraci

Table 2: Top words by category, U.S. bills (excerpt)

Table [2] lists a sample of subtopics in the training data along with the five training
features most associated with each. Associations between features and classes are deter-
mined with respect to features. If, instead, we considered feature association with respect
to classes, then certain very common features would be strongly associated with many

categories. This would be uninformative about which features are most uniquely associ-

14 We provide software for generating both of these assessment tools together with code

for implementing our NB classifier.

22

ated with individual categories — i.e. which features discriminate most strongly among
categories. As can be seen in this example, the features associated with particular classes
often strongly indicate their subject matter. This is a good sign. This tool is useful for
refining training features. Features that are clearly less informative about the class with
which they are associated are good candidates for elimination from the training data or
merging with a related term.

As examples, compare the features associated with classes “110” (Price control) and
“1203” (Illegal drugs). Class “110” includes the name of a month: “april.” Since months
are not unambiguously associated with particular classes, this feature would be a strong
candidate for deletion from the training data. On the other hand, all features listed as
strongly associated with class “1203” give a clear sense of the class subject and therefore

are strong candidates for retention.

IMPROVING RETURNS ON RESEARCH BUDGETS

We return finally to our core motivation for adopting computer classification techniques:
maximizing returns on research budgets. Several key decisions influence researchers’
ability to get the most from their budgets. Here we provide a basic guide to some crucial
decisions: setting the size of training sets; allocating human resources to coding versus

review; and updating existing data with newly arrived data.

Training set size: As a general rule, classification accuracy improves with larger train-
ing sets. However, these accuracy boosts have diminishing returns. To illustrate, we
rerun the U.S. bill titles classifier using differing sized training sets to code holdout data.
Figure [3| plots accuracy by size of training set. At each size, we run the classifier ten
times, randomly reselecting a training set of the respective size each time. We tune all
classifiers on the same test data and record classification accuracy on the same holdout

data. Boxplots summarize performance across all ten trials for each size.

Note two features of figure Bl First, performance varies more when training sets are

23

0.7+ ——

I

Subtopic Classification Accuracy
(10 trials per size level, Ratio to Proir)
o
13

I
~
f

500 1,000 2K 5K 10K 15K 25K 50K 100K 150K 200K

Figure 3: Accuracy of U.S. bills classifier by training set size
Note: Boxplots of classification accuracy for ten randomly selected training sets at each
size level.

smaller. Second, accuracy improves more quickly when increasing the size of smaller
training sets than when increasing the size of larger training sets. Thus, adding 5,000
training observations to a training set of size 1,000 improves accuracy much more than
adding the same 5,000 training observations to a training set of size 50,000. Lastly,
note this figure is only a guide — actual accuracy increases by training set size may vary

depending on the data.

Allocating human coder effort: Using human coders to code virgin data or to review
computer classification impacts the return on research budgets. Our experience indicates
it is best to shift human effort from virgin coding to reviewing computer results as quickly
as possible. Two pieces of empirical evidence are relevant. The first comes from the
CAPCAS project budget, and the second from a lab experiment we conducted.

CAPCAS human coders were trained undergraduate research assistants. Based on
internal calculations, coders received a contract in which they were paid for one hour of
work for every 100 virgin items they coded. Actual efficiency varied. Early on, students
reporting spending more than one hour to code 100 items, but after some experience all
reported spending a little less than an hour per 100 items.

Coding commenced with producing a training set of 24,000 agenda items, at a cost of

24

240 coder hours. After this, coders were reassigned to validating computer codes and we
agreed on a simple hourly wage for this work. The project paid a total of 440 coder hours
to validate the remaining 176,000 items in our main data set. Thus, our data set of more
than 200,000 agenda items was coded at a grand total cost of 680 coder hours — almost
a 75% cost reduction from the originally budgeted 2,000 coder hours. Human coder self
reports indicated the main efficiency gain came from the ability to group review material
into large chunks of very similar agenda items, making the task of reviewing simpler than
the task of coding virgin unsorted data.

To interrogate this apparent jump in efficiency, at the end of the project we paid
the same research assistants to participate in a controlled experiment aimed at quanti-
fying the efficiency gains from using human experts to validate computer codes relative
to coding virgin data. We defined four treatment conditions. In each, coders received
100 agenda items to code. The control condition was a random sample of 100 unsorted
virgin agenda items. Three test conditions involved some level of computer assistance: 1)
computer classification hidden, but items are sorted by computer classification; 2) com-
puter classification visible, but items appear in random order; 3) computer classification
visible, and items are sorted by computer classification. All coders performed each task
in random order.

Comparing the three test conditions to the control condition reveals advantages to
computer coding. Relative to the control condition, we noted a statistically significant
five percent improvement in average speed when coders had some computer assistance
— an improvement likely to increase quite dramatically with the size of the task. We
also found no evidence that the consistency or accuracy of human coding was lower when
helped by the computer: human consistency and accuracy were equal between the control
task and each test condition. This finding is important because it indicates human coders
were not influenced by seeing the computer codes.

It is important to reiterate that this experiment used small samples and experienced
coders. All coders had around eight months experience performing virgin coding and

validating computer coding. Thus, we consider this a hard test for finding a significant

25

improvement in speed. Considering this evidence, and our actual experience, we consider
it strongly advisable for researchers to use human coders to validate computer coding

rather than to code virgin data whenever possible.

Efficiently updating existing data sets: Updating data cheaply is an important and
promising application of computer classification. In short, we recommend researchers
use temporally recent observations to code new data since language, issue salience, and
other important features of policy can vary over time. Classification is generally most
accurate when training using chronologically recent data.

We demonstrate with the U.S. bills data in figure [d] We classify all bill titles from
years 2000 through 2014, one year at a time, taking training data from several time
windows. We first classify each year’s bills with training data consisting only of bills
from the preceding five years, then we use training data consisting only of bills from
between six and ten years earlier, etc. To avoid confounding the results with varying
training set sizes, we train the classifier using 15,000 randomly sampled bill titles from
the respective time windows. Classifiers were tuned on the bills omitted from the training

data in each time window.

(<]
~
h

o
o
i

Data
Major
Topics
« Subtopics

(15 trials: 2000-2014, Max Posterior)
o
13

Mean Major Topic Classification Accuracy

0.4-

U
115 6—‘10 1ll15 16120 21125 All
yearsago yearsago yearsago yearsago years ago years

Figure 4: Classification accuracy by years used for training
Note: Points are mean accuracy across 15 trials. Each trial codes one year of data. Years
span 2000 to 2014. Training sets each consist of 15,000 bill titles randomly sampled from
the respective time window. Colored dots indicate results for major and minor topics.

26

The conclusion from figure [4]is that classification accuracy is greatest when using bills
temporally closer to the new observations. This is what we should expect also because the
factors driving the policy agenda change over time (Mettler, 2016]). Note, further, that
average classification accuracy on “future” bills is lower here than we would expect for
training sets of 15,000 items, based on figure[3] This indicates that, although temporally
recent training data is more informative than temporally distant data, it is still better
to code a multi-year data set by creating a training set from a simple random sample of
all data when there is no existing corpus of coded data. Classifying a new data set in

chronological order is likely to yield decreased computer accuracy.

CONCLUSION AND DISCUSSION

This paper argues that limits on budgets, time, and computing power require policy
studies scholars to think outside the box about how to execute large data collection and
coding projects. These have historically been a core data source for the field, and should
continue to be. However, tightening research budgets and expanding government data
make this an increasingly challenging task. We argue the way forward is to adopt a
strategy for coding data that leverages human and computer strengths: humans supply
some coding and expert knowledge to refine the computer classifications in order to build
policy data quickly and accurately.

The findings reported here indicate that our workflow, combined with our implemen-
tation of NB, is one promising way of addressing these challenges. The CAPCAS project
was able to produce a data set three times larger than originally envisioned and did so
under budget and in far less time than was originally allocated for human coding. We
consider this a strong recommendation of our method and a hopeful indication for future
policy studies data collection projects.

It is important to stress that there is no obvious substitute for expert domain knowl-
edge and careful human supervision of computer classification. Some scholars have recom-

mended using machine translated data to conduct large-scale multilingual text modeling

27

by translating data from multiple languages into English.ﬁ In the context of policy data,
this could imply it is possible to harness the vast amount of policy agendas data already
coded to automatically code data cross-nationally. An additional analysis of legislative
bills from eight countries, however, showed that this is likely not a viable strategy. More
particularly, using the titles of legislative billsm we trained our Naive Bayes classifier
using data from each country and in turn use each to classify the agenda subtopics of
each other country[’"| The results from this exercise demonstrate that its success rate is
currently quite low, topping out at 28.2% accuracy when using Danish legislative data
to code Swiss laws. Accuracy increases slightly by refining features for high mutual in-
formation with subtopics, but never reaches even 40%@ The poor performance may
be attributable to the quality of machine translation, variation in legal systems across
countries, varying application of codes across countries, or varying wording used to de-
scribe subtopics across countries. Nevertheless, these results suggest that, at least with
regard to coding agenda subtopics, there is not yet an easy substitute for applying expert
knowledge to develop coding tools for use within single countries.

In conclusion, we would also reiterate that there are powerful alternative machine
learning methods that agenda setting scholars may benefit from applying. We include a

discussion of these in appendix [E]

15 See [Lucas et al.| (2015).
16 Data available at http://www.comparativeagendas.net/.
17 For this analysis, data from Denmark, Belgium, Spain, France, Hungary, and

Switzerland were translated to English language. Data were translated using the Google
Translate API, via the translateR package. Data from the U.S. and the U.K. were left in
the original language. The resulting English text was stemmed, stopwords were removed,
and all training features were used to train the classifier.

18 See full results in appendix @

28

http://www.comparativeagendas.net/

REFERENCES

Adler, E. Scott and John D. Wilkerson. 2013. Congress and the politics of problem solving.

Cambridge University Press.

Adler, E. Scott and John Wilkerson. 2015. “Congressional Bills Project: 1947-2008, NSF

00880066 and 00880061.” http://congressionalbills.org/.

Baumgartner, Frank R. and Bryan D. Jones. 2016. “U.S. Policy Agendas Project. Support
from National Science Foundation grant numbers SBR 9320922 and 0111611 and distributed
through the Department of Government at the University of Texas at Austin.” http://wuw.

comparativeagendas.net/us.

Baumgartner, Frank R., Bryan D. Jones and Peter B. Mortensen. 2017. Theories of the Policy
Process. 4th ed. Boulder, CO: Westview Press chapter Punctuated Equilibrium Theory:

Explaining Stability and Change in Public Policymaking, pp. 55-101.

Burscher, Bjorn, Rens Vliegenthart and Claes H. De Vreese. 2015. “Using Supervised Machine
Learning to Code Policy Issues: Can Classifiers Generalize across Contexts?” The ANNALS

of the American Academy of Political and Social Science 659(1):122-131.

Carpenter, Daniel P. 2001. The forging of bureaucratic autonomy: Networks, reputations and
policy innovation in executive agencies, 1862-1928. Princeton, NJ: Princeton University

Press.

Chen, Jingnian, Houkuan Huang, Shengfeng Tian and Youli Qu. 2009. “Feature selection for

text classification with Naive Bayes.” Ezxpert Systems with Applications 36:5432-5435.
Cover, Thomas M. and Joy A. Thomas. 1991. Elements of Information Theory. John Wiley.

Frank, Eibe and Remco R. Bouckaert. 2006. Knowledge Discovery in Databases: PKDD 2006:
10th European Conference on Principles and Practice of Knowledge Discovery in Databases
Berlin, Germany, September 18-22, 2006 Proceedings. Berlin, Heidelberg: Springer chapter

Naive Bayes for Text Classification with Unbalanced Classes, pp. 503-510.

Green-Pedersen, Christoffer and Peter Bjerre Mortensen. 2013. “Danish Policy Agendas

Project.” http://www.agendasetting.dk.

29

http://www.comparativeagendas.net/us
http://www.comparativeagendas.net/us

Green-Pedersen, Christoffer and Stefaan Walgrave, eds. 2014. Agenda setting, policies, and

political systems: A comparative approach. University of Chicago Press.

Grimmer, Justin and Brandon M. Stewart. 2013. “Text as Data: The Promise and Pitfalls of

Automatic Content Analysis Methods for Political Texts.” Political Analysis 21(3):267-297.

Hillard, Dustin, Stephen Purpura and John Wilkerson. 2008. “Computer-Assisted Topic Clas-
sification for Mixed-Methods Social Science Research.” Journal of Information Technology €

Politics 4(4):31-46.

Hovold, Johan. 2005. Naive bayes spam filtering using word-position-based attributes. In CEAS

2005 - Second Conference on Email and Anti-Spam. Palo Alto, California USA: .

Hsu, Chih-Wei, Chih-Chung Chang and Chih-Jen Lin. 2003. “A practical guide to support
vector classification.”.

URL: http://www.csie.ntu.edu.tw/éjlin/papers/quide/quide. pdf

Jakobsen, Mads Leth Felsager and Peter B. Mortensen. 2015. “How politics shapes the growth

of rules.” Governance 28(4):497-515.

Japkowicz, Nathalie and Shaju Stephen. 2002. “The class imbalance problem: A systematic

study.” Intelligent Data Analysis 6(5):429-449.

Jones, Bryan D. 2016. “The Comparative Policy Agendas Projects as measurement systems:

response to Dowding, Hindmoor and Martin.” Journal of Public Policy 36(1):31-46.

Jones, Bryan D., Laszl6 Zalanyi and Péter Erdi. 2014. “An integrated theory of budgetary
politics and some empirical tests: the US national budget, 1791-2010.” American Journal of

Political Science 58(3):561-578.

Jurka, Timothy P., Loren Collingwood, Amber E. Boydstun, Emiliano Grossman and Wouter
van Atteveldt. 2013. “RTextTools: A Supervised Learning Package for Text Classification.”

The R Journal 5(1):6-12.

Kibriya, Ashraf M., Eibe Frank, Bernhard Pfahringer and Geoffrey Holmes. 2005. Al 200/: Ad-

vances in Artificial Intelligence: 17th Australian Joint Conference on Artificial Intelligence,

30

Cairns, Australia, December 4-6, 2004. Proceedings. Berlin, Heidelberg: Springer chapter

Multinomial Naive Bayes for Text Categorization Revisited, pp. 488-499.

Kremer, Jan, Kim Steenstrup Pedersen and Christian Igel. 2014. “Active learning with support

2

vector machines.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery

4(4):313-326.
Lantz, Brett. 2015. Machine Learning with R. 2 ed. Packt Publishing.

Lewis, David. 2003. Presidents and the politics of agency design. Stanford, CA: Stanford

University Press.

Lewis, David D. 1998. Machine Learning: ECML-98: 10th European Conference on Machine
Learning Chemmitz, Germany, April 21-28, 1998 Proceedings. Berlin, Heidelberg: Springer

chapter Naive (Bayes) at forty: The independence assumption in information retrieval, pp. 4—

15.

Lucas, Christopher, Richard A. Nielsen, Margaret E. Roberts, Brandon M. Stewart, Alex Storer
and Dustin Tingley. 2015. “Computer-Assisted Text Analysis for Comparative Politics.”
Political Analysis 23(2):254-277.

March, James G., Martin Schulz and Xueguang Zhou. 2000. The Dynamics of Rules: Change

in Written Organizational Codes. Stanford, CA: Stanford University Press.

McCallum, Andrew and Kamal Nigam. 1998. A Comparison of Event Models for Naive Bayes
Text Classification. In Learning for Text Categorization: Papers from the AAAI Workshop,
AAAI Press.

Metsis, Vangelis, Ion Androutsopoulos and Georgios Paliouras. 2006. Spam Filtering with Naive
Bayes - Which Naive Bayes? In CEAS 2006 - Third Conference on Email and Anti-Spam.

Mountain View, California USA: .

Mettler, Suzanne. 2016. “The Policyscape and the Challenges of Contemporary Politics to

Policy Maintenance.” Perspectives on Politics 14:369-390.

Munzert, Simon, Christian Rubba, Peter Meifiner and Dominic Nyhuis. 2015. Automated Data
Collection with R: A Practical Guide to Web Scraping and Text Mining. John Wiley & Sons

Ltd.

31

O’Neil, Cathy and Rachel Schutt. 2013. Doing Data Science: Straight Talk from the Frontline.

O’Reilly Media.

Ostrom, Elinor with Cox, Michael and Edella Schlager. 2014. As Assessment of the Institu-
tional Analysis and Development Framework and Introduction of the Social-Ecological Sys-

tems Framework. Boulder, CO: Westview Press.

Plazek, David J. and Alan Steinberg. 2013. “Political Science Funding Black Out in North Amer-
ica? Trends in Funding Should not be Ignored.” PS: Political Science € Politics 46(3):599—

604.

Schneider, Karl-Michael. 2005. Computational Linguistics and Intelligent Text Processing: 6th
International Conference, CICLing 2005, Mexico City, Mexico, February 13-19, 2005. Pro-
ceedings. Berlin, Heidelberg: Springer chapter Techniques for Improving the Performance of

Naive Bayes for Text Classification, pp. 682-693.

Schohn, Greg and David Cohn. 2000. “Less is more: Active learning with support vector
machines.” Proceedings of the Seventeenth International Conference on Machine Learning

(ICML-2000) pp. 839-846.

Schulz, Martin. 1998. “Limits to Bureaucratic Growth: The Density Dependence of Organiza-

tional Rule Births.” Administrative Science Quarterly 43(4):845-876.

Thesen, Gunnar. 2013. “When good news is scarce and bad news is good: Government responsi-
bilities and opposition possibilities in political agendasetting.” Furopean Journal of Political

Research 52(3):364-389.

Tong, Simon and Daphne Koller. 2001. “Support Vector Machine Active Learning with Appli-

cations to Text Classification.” Journal of Machine Learning Research 2:45-66.

Train, Kenneth. 2009. Discrete Choice Methods with Simulation. 2 ed. Cambridge University

Press.

True, James. 2009. “Historical Budget Records Converted to the present functional categoriza-
tion with actual results for FY 1947-2008.”.

URL: http://comparativeagendas.s3.amazonaws.com/adhocfiles/Budget-Codebook-Comprehensive.pdf

32

van Witteloostuijn, Arjen and Gjalt de Jong. 2007. “The Evolution of Higher Education Rules:
Evidence for an Ecology of Law.” International Review of Administrative Sciences 73(2):235—

255.

Vlachos, Andreas. 2004. Active Learning with Support Vector Machines PhD thesis The Uni-

versity of Edinburgh.

Vliegenthart, Rens, Stefaan Walgrave, Frank R. Baumgartner, Shaun Bevan, Christian Breunig,
Sylvain Brouard, Laura Chaqués Bonafont, Emiliano Grossman, Will Jennings, Peter B.
Mortensen, Anna M. Palau, Pascal Sciarini and Anke Tresch. 2016. “Do the media set
the parliamentary agenda? A comparative study in seven countries.” Furopean Journal of

Political Research 55(2):283-301.

Workman, Samuel. 2015. The Dynamics of Bureaucracy in the U.S. Government: How Congress

and Federal Agencies Process Information and Solve Problems. Cambridge University Press.

Yesilkagit, Kutsal and Jgrgen G. Christensen. 2010. “Institutional design and formal auton-
omy: Political versus historical and cultural explanations.” Journal of Public Administration

Research and Theory 20(1):53-74.

Yu, Bei, Stefan Kaufmann and Daniel Diermeier. 2008. “Classifying Party Affiliation from

Political Speech.” Journal of Information Technology € Politics 5(1):33-48.

Zhou, Xueguang. 1993. “The Dynamics of Organizational rules.” American Journal of Sociology

98(5):1134-1166.

33

APPENDIX
NOT FOR PRINT PUBLICATION

34

A APPENDIX: MULTICLASS NAIVE BAYES WITH
BERNOULLI FEATURES

Documents are represented as vectors of binary indicators for the appearance or absence of
features: d; = {fi1, fo, ..., fj}. The probability of observing feature j (f;), in a document
belonging to class c is distributed Bernoulli: é]fg(l = éjc)(l_fj). The éjc values are prior
probabilities of observing feature 7 in a document from class ¢. The hat over it indicates
it is estimated from the training data. Likewise, 6,, is the prior probability of observing
class ¢, unconditional on its features. Both estimates are based on the empirical frequency
of classes and features in the training documents. By the independence assumption, the
prior probability of observing document 7 in class c is thus:

Af’L N —Jiq
P(dile) = [[052 (1 = 0;0)" %)
J
Our outcome of interest is the probability a new document falls into class ¢, given its
features. We calculate this probability for every possible class. To do so, we consider

the (log) odds of observing each class, ¢, relative to one reference class,). We drop the
unconditional probability of observing document i, as it does not affect this ratio:

Plcdi) _ P(dife)P(c)
P(0|d;) P(d;|0)P(0)

Pleld) _ TLOK (=)' x 6,
P((]d;) H.éf”(l — éj@)(l—fij))

7750
P(cld)\) (1= 6j9) L — b f.
log<P<mdi>) - zj:[f“(log(} (1_éjc>>“og<1_éj@)> “Og(é@>

The training step involves calculating all priors (éc and éjc) from the training data.
The classification step, involves using the expression above to calculate the posterior
probability each classified document falls into each class.

D>

>

35

B APPENDIX: EXPERIMENTAL RESULTS ON HUMAN
REVIEWER SPEED AND ACCURACY

This appendix presents the results of our experiment to check the speed and accuracy
implications of our approach to using human coders to review computer codings. Par-
ticipants were student workers employed as human coders on the CAPCAS project. All
had more than six months experience coding local government policy agendas, both with
and without computer assistance.

The experiment consisted of 12 trials, with the first two discarded as warm-up rounds.
Each trial presented the student with a data set of 100 randomly selected local government
agenda items. The student applied codes to these agendas as quickly as possible. Each
data set was randomly sorted into one of four treatment categories. The first category,
the control or baseline, listed agenda items in random order with no computer coding
visible. The second treatment category listed agenda items ordered by their computer
codes, but the computer codes themselves were hidden from the participant. The third
category listed agenda items in random order with a computer code visible next to each.
The fourth and final category listed agenda items with a computer code visible next to
each and items were sorted by computer coding — putting agendas with similar content
near each other.

Model 1
T2: Ordered —2.75"
(0.14)
T3: Computer coded —1.35"
(0.10)
T4: Ordered & computer coded —1.54***
(0.10)
FE Coder 1 3.25%**
(0.09)
FE Coder 2 6.32%**
(0.09)
FE Coder 3 9.56™**
(0.09)
Task number (time trend) —0.30
(0.16)
Constant 13.47%*
(1.32)
Num. obs. 4000
Num. groups: Data set 10
Var: Data set (Intercept) 2.20
Var: Residual 3.99

***p < 0.001, **p < 0.01, *p < 0.05

Table A.1: Linear model of time spent coding, random effects by data set

Table analyses the time participants took to complete each trial. The outcome

36

variable is the participant’s time, in minutes, to complete all 100 codings. The explana-
tory variables of interest are the three treament categories: T2, T3, and T4. Each of
these three is an indicator variable taking on a one for observations under the respec-
tive treatment condition and a zero otherwise. The control category (T1) is the baseline
category and is, therefore, excluded from models. Controls included are fixed effects for
coders, a time trend for the number of the trial, and random effects by data set.

The results clearly indicate that all three treatment categories are associated with
reduced human coder time, as we have argued. Notably, the treatment associated with
the greatest speed increases was the use of ordered data sets without computer codes
visible (T2). We can only speculate on the reasons for this difference. Having trained
the coders to second-guess the computer-generated codings, we suspect that viewing the
computer codes added an additional layer of complexity to the task of coding agenda
items.

Importantly, as table shows, none of the treatment or control variables show a
statistically significant relationship to the accuracy of the coding. The outcome variable
here is a binary indicator for the accuracy of each coded item: correctly coded items
take on the value of one and incorrect items are coded zero. Items were considered
correct if the experiment participant’s classification agreed with that of the authors.
Importantly, not only are the coefficient estimates on all three treatments in the model
statistically indistinguishable from zero, but they also represent effect sizes so small as
to be substantively meaningless. To illustrate, the model in table predicts that the
baseline participant assigned to the control treatment in round five has about a 74.4%
probability of coding a given agenda item correctly (ignoring random effects for the
moment). If we calculate predicted accuracy for the same participant under treatment
two, the point prediction is a 77% probability of a correct coding. For treatment three the
point prediction is 75.7% and for treatment for it is 75.4%. Thus, table tells us that
there is likely no statistical relationship between accuracy and any treatment condition,
but our best guess is that if there is a relationship it is positive but small enough to be
meaningless.

Taken together, these results support our conclusion that human coder time is best in-
vested in checking computer codes and that trained coders should not experience reduced
accuracy in the process.

37

Model 1

T2: Ordered 0.14
(0.16)
T3: Computer coded 0.07
(0.10)
T4: Ordered & computer coded 0.05
(0.10)
FE Coder 1 0.19
(0.11)
FE Coder 2 0.01
(0.10)
FE Coder 3 —0.16
(0.10)
Task number (time trend) —0.00
(0.02)
Constant 1.08***
(0.15)
Num. obs. 4000
Num. groups: Data set 10
Var: Data set (Intercept) 0.00

**%p < 0.001, **p < 0.01, *p < 0.05

Table A.2: Logit model of coding accuracy, random effects by data set

38

C APPENDIX: MUTUAL INFORMATION AND OPTIMAL
TUNING

We calculate mutual information using the measurement presented in [McCallum and
Nigam (1998)), originally from Cover and Thomas (1991)). This has the following form.
Random variable C' represents classes and random variable W; takes on values f; € {0,1}
indicating the absence or presence of word w; in a document (0 = word is absent, 1 =
word is present).

Quoting |McCallum and Nigam| (1998): “Average mutual information is the difference
between the entropy of the class variable, H(C'), and the entropy of the class variable
conditioned on the absence or presence of the word, H(C|W;).”

Formally, they express this as:

H(C;Wy) = H(C)— H(C|W,)
= =) P(log(Pe)+ Y P(fi) Y Plelflog(P(c|f:)

ceC fre{0,1} ceC

_ P(Ca ft)
= % e ses(o)

ceC fre{0,1}

The values P(c), P(f:), and P(c, f;) are prior probabilities of seeing class ¢, seeing
term (or word) ¢, and seeing both class ¢ and term t. These are calculated by tabulating
over the training data. The probability of observing class ¢ is simply the frequency of
class ¢ in the training data divided by the total number of training observations. The
probability of observing term ¢ is simply the frequency of term ¢ divided by the number of
training observations. The joint probability of observing ¢ and t is calculated by summing
up the times a document in class ¢ includes term ¢ and then dividing by the number of
training observations.

Summing over categories then yields the average mutual information for each term in
the training data. Since Naive Bayes works best when uninformative terms are removed
from the data, eliminating terms with low mutual information can be a helpful step in
boosting classification accuracy. Dropping features with low information is part of the
process of “tuning” the model for getting better classification.

Tuning should be done systematically. Therefore, in all of our applications we se-
lect an optimum threshold for mutual information by training a model and testing its
performance repeatedly. This iterative process is a necessary step in any application of
machine learning, so we briefly discuss two standard approaches to this: holdout and
cross-validation (see, for an accessible discussion Lantz, 2015, pp. 336-343).

In holdout validation, the analyst randomly splits training data into three parts:
training, test, and holdout data. Tuning choices are optimized by repeatedly training
the computer using the training subset under different conditions, then testing accuracy
by classifying the test data under each setting. Omnce optimal accuracy is achieved,
accuracy is checked by classifying the holdout subset under the optimal settings. The
accuracy achieved on the holdout data estimates the classifier’s performance on virgin
data. Cross-validation, often called k-fold cross-validation, begins by randomly splitting
the full training data into k subsets, or “folds.” The classifier is iteratively trained using

39

k — 1 subsets and tested on each held out subset. This process repeats k times, until each
subset is used to check classifier accuracy. Overall accuracy is measured by averaging
performance across the k folds. Tuning choices are optimized by repeating k-fold cross-
validation under different tuning settings until reaching peak accuracy.

A threshold for feature inclusion is some minimum value of mutual information —
terms with mutual information values less than or equal to this threshold are excluded
from the training step. In our tuning, we select many different thresholds until finding
the optimal setting for classification success on a test data set.

The same procedure applies to all other tuning choices. For example, how does one
decide between regularized or simple posterior probabilities? Should punctuation be
deleted or kept? Should a particular feature be removed from the training data? All of
these need systematic validation.

Before moving on to computer-only coding (stage three) from collaborative coding
(stage two), we recommend analysts always do a final thorough tuning by validating
modeling choices using either holdout- or cross-validation.

40

D APPENDIX: CROSS-NATIONAL CODING OF CAP BILL
TITLES

Given the notable scope for applying computer codings to policy agendas data, it is
reasonable to consider whether it might be possible to harness the vast amount of policy
agendas data already coded to automatically code data cross-nationally. After all, |Lucas
et al.[(2015) recommend using machine translated data to conduct large-scale multilingual
text modeling by translating data from multiple languages into English. We put this
possibility to the test here. Using the titles of legislative bills in eight countries|"] we
train our Nalve Bayes classifier using data from each country and in turn use each to
classify the agenda subtopics of each other country. Results on accuracy from each trial

are reported in table

Test Data

DK BE ES FR HU CH Us UK
Denmark 0.239 0.189 0.134 0.242 0.281 0.117 0.243
Belgium | 0.162 0.147 0.132 0.172 0.115 0.058 0.145
Spain | 0.181 0.160 0.093 0.190 0.146 0.085 0.118
Training France | 0.068 0.114 0.059 0.101 0.063 0.024 0.047
Data Hungary | 0.209 0.227 0.242 0.162 0.198 0.114 0.160
Switzerland | 0.219 0.151 0.196 0.098 0.201 0.078 0.145
United States | 0.240 0.184 0.125 0.148 0.201 0.225 0.212

United Kingdom | 0.260 0.247 0.165 0.103 0.186 0.220 0.124

Table A.3: Machine coding accuracy on translated data

For this analysis, data from Denmark, Belgium, Spain, France, Hungary, and Switzer-
land were translated to English language "] Data from the U.S. and the U.K. were left in
the original language. The resulting text was stemmed and all training features presented
in the respective test data were used to train the classifier. The results demonstrate that
the success rate for this is currently quite low, topping out at 28.2% accuracy when us-
ing Danish legislative data to code Swiss laws. Accuracy increases slightly by refining
features for high mutual information with subtopics, but never reaches even 40%.

19 Data available at http://www.comparativeagendas.net/.
20 Data were translated using the Google Translate API, via the translateR package.

41

http://www.comparativeagendas.net/

E APPENDIX: ADVANCED CODING METHODS

There are a variety of powerful alternative machine learning methods that policy and
public administration scholars may benefit from applying. The most promising is likely
“active learning” combined with support vector machines (SVM). SVM represents doc-
uments as points in multidimensional space — one dimension per feature in the data.
In the barest terms, classification is done by drawing surfaces (hyperplanes) that divide
this multidimensional space separating, as homogenously as possible, classes from one
another 1] The algorithm finds hyperplanes with the largest margins — that is, with the
maximum distance between the classes they divide.

Active learning is a principled method for selecting exactly which documents to ask
human coders to classify. It proceeds from the assumption that coding documents is costly
— an appropriate one for policy studies. The goal is to start with a small training set, and
then to add new training data as efficiently as possible so classification accuracy improves
quickly with minimal investments in human coding. Generally, the work flow proceeds
similarly to our proposal. It begins with human-coded training data to classify all virgin
data. The difference is that, with active learning, information from the classification
step is used to select which virgin observations a human coder should classify in order to
achieve the biggest accuracy boost.

Criteria for selecting new virgin observations for human coding depend on the clas-
sification method. For multiclass SVM, these include selecting observations on or near
the margins around hyperplanes, observations on or near important areas of the margins,
batches of observations with the most diversity in these measures, or various other rules*]

Combining SVM with active learning is among the most sophisticated approaches to
human-computer collaborative classification currently in use, and it can perform demon-
strably better than Naive Bayes. It is worth briefly considering the drawbacks to utilizing
it, however. The first is the obvious technical hurdles facing efforts to code policy data
using more sophisticated methods. These are not insurmountable: multiclass SVM can
be implemented in R, Python, and other statistical software packages. More important
is the black box nature of SVM output. Due to the algorithm’s complexity, tracing how
SVM arrives at the classifications it produces is not feasible. As long as it predicts ac-
curately, this is not necessarily a problem for the scientific study of policy processes.
However, SVM and other methods will perform more quickly and accurately given data
with more informative features — i.e. they still benefit from expert human tuning. Given
the transparent and interpretable results Naive Bayes produces, we recommend policy
scholars planning to apply more sophisticated methods still begin with our method as a
means of pruning features and learning about their data.

21 See, for example, Lantz| (2015, pp. 239-248) or the useful introduction by Hsu,

Chang and Lin (2003)) and documentation for their 1ibsvm software.
22 See, for examples, |Vlachos (2004)), Schohn and Cohn|(2000), Tong and Koller (2001)),

and (Kremer, Steenstrup Pedersen and Igel, |2014]).

42

	AU cover200219
	Collaborating with the machines - PSJ_PREPRINT
	Appendix: Multiclass Naïve Bayes with Bernoulli features
	Appendix: Experimental results on human reviewer speed and accuracy
	Appendix: Mutual information and optimal tuning
	Appendix: Cross-national coding of CAP bill titles
	Appendix: Advanced coding methods

