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Abstract Work on coordinated multi-robot explo-

ration often assumes that all areas to be explored

are freely accessible. This common assumption does

not always hold, especially not in search and res-

cue missions after a disaster. Doors may be closed or

paths blocked detaining robots from continuing their

exploration beyond these points and possibly requir-

ing multiple robots to clear them. This paper addresses

the issue how to coordinate a multi-robot system to

clear blocked paths. We define local collaborations

that require robots to collaboratively perform a physi-

cal action at a common position. A collaborating robot

needs to interrupt its current exploration and move to

a different location to collaboratively clear a blocked

path. We raise the question when to collaborate and

whom to collaborate with. We propose four strategies

as to when to collaborate. Two obvious strategies are

to collaborate immediately or to postpone any collab-

orations until only blocked paths are left. The other

two strategies make use of heuristics based on build-

ing patterns. While no single strategy behaves optimal

in all scenarios, we show that the heuristics decrease
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1 Introduction and Motivation

Coordination in multi-robot systems during the explo-

ration of unknown environments has been widely

discussed in the literature [12, 17]. Though explo-

ration missions in which robots have to interact with

the environment to continue exploration, especially

ones where multiple robots have to collaborate, have

received less attention. Heterogeneous robots may col-

laborate to make use of their individual specializations

[9] while homogeneous robots may join forces to

overcome a single robot’s limitations [18]. In search

and rescue missions, examples include clearing a path

by opening doors, moving debris, extinguishing fires,

giving first aid to casualties or retrieving them. We

denote such collaborative efforts as local collabora-

tions. The term “local” indicates that robots need to be

in their immediate physical neighborhood, i.e., a help-

ing robot has to interrupt its current task and travel

to a requesting robot. Upon completion of the collab-

oration, the helping robot may resume its prior task.

Local collaborations have an impact on exploration

time, travel distance, and wireless connectivity.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10846-015-0277-0-x&domain=pdf
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This paper discusses two factors influencing the

decision on collaboration, namely when to collaborate

and whom to collaborate with. For example, consider

the floor plan depicted in Fig. 1. Given a partially

explored environment, robot r3 reaches a location

requiring collaboration to get to the point P1 because

the direct path is blocked. It has to decide whether to

request collaboration and if so when to do it. A well-

founded decision cannot be made with the currently

available information. If r2 continues exploration, r2

will reveal an alternative path to P1, thus making

collaboration unnecessary. If no other path exists,

however, postponing the collaboration needlessly pro-

longs the exploration time. Here, r3 is assumed to start

a collaborative action by broadcasting a collaboration

request. The robot requesting collaboration is called

rC , i.e., r3 ≡ rC . The robots receiving the request have

to determine their suitability for the collaboration: r1

has to decide whether to abort the exploration of a

room with no more paths to follow; r4 and r5 parti-

tion the communication network because they are the

only robots connecting r6; r6 has the longest distance

to travel.

The impact of the influencing factors when and

whom can be decomposed into two problems. First,

robots need to decide whether to request collaboration

or to continue exploration. Second, if a collaboration

is requested a helping robot needs to be determined.

The selection of a helping robot can be formulated as

an assignment problem in the second step.

The first problem, deciding when to collabo-

rate, becomes part of the autonomous multi-robot

exploration problem. That is the problem of mul-

tiple robots exploring an unknown environment

while typically creating a map thereof. Juliá et al.

identify autonomous exploration as an instance of

the partially observable Markov Decision Process

(POMDP) with continuous states [17]. A Markov

Decision Process (MDP) is defined as a 5-tuple(
S, A, p(s′|s, a), ra(s), γ

)
where S is a set of system

states, A a set of possible actions, p(s′|s, a) a tran-

sition model for a state to change from s ∈ S given

action a ∈ A to s′ ∈ S, a reward ra(s) ∈ R obtained

when executing action a ∈ A when in state s ∈ S, and

γ ∈ [0, 1) a discount factor for delayed rewards. The

goal is to find a policy π which determines the action

π(s) = a when in state s maximizing the gained

rewards over a horizon n:

n∑

t=0

γ tRat (st , st+1) . (1)

Using the horizon of the MDP, a decision whether

to collaborate now or later may be obtained given

the expected rewards. However, in robot explorations

(especially for local collaborations), the rewards and

transitions are initially unknown to the robot and must

be learned. Reinforcement learning allows to deter-

mine rewards and transitions but has limitations. The

reward of a collaboration significantly depends on the

environment and the current state of its exploration.

Little progress on the exploration may have significant

impact on the reward of a collaboration. Consider the

scene depicted in Fig. 1. The reward for a collabora-

tion initiated by r3 seems high. But shortly after r2 has

moved around the corner, the reward of a collaboration

vanishes because an alternative path is unveiled.

Semantic information can help to determine a pos-

sible reward. Consider the entrance to an office to

be blocked. Assuming the majority of offices has

only a single entrance, collaboration is required to

access the office and should be performed immedi-

ately. In comparison, exhibition rooms in a museum

would probably be expected to have at least a sec-

Fig. 1 White area

represents explored space,

gray unexplored. Red

crosses indicate

collaboration points. The

robots form a wireless ad

hoc network. The dashed

links indicate connectivity

between robots. Robots

share the map. r3 becomes

the requesting robot rC
once it starts a collaboration
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ond entrance, i.e., time consuming collaboration may

be postponed due to an alternative access path. But

current semantic place recognition does not yet allow

reliable detection [10].

Closed form solutions to POMDP are computa-

tionally expensive and do not scale well [17]. There-

fore, the majority of literature on multi-robot explo-

ration considers the problem as an assignment prob-

lem. Frontiers, i.e., transitions between known and

unknown space, are assigned to robots based on the

information available at time of assignment. Robots

then travel to these frontiers to increase the knowledge

of the environment. Assignment is performed with the

intention to minimize exploration time. Constraints

such as travel distance [5], path safety [11], connec-

tivity [19], and map quality [14] may be considered

during assignment.

We focus on information which can be obtained

reliably for current robot systems and do not consider

semantic knowledge. Due to the complexity of the

problem, we derive heuristics which we test in ran-

dom environments not to bias the analysis. The paper

contributes to the field of collaborative multi-robot

exploration by

– defining the problem of local collaboration,

– discussing influencing factors, and

– analyzing the performance of four collaboration

strategies by simulation.

2 Related Work

Many papers discuss collaboration in multi-robot sys-

tems during explorations [6, 7, 17, 24]. The major-

ity of papers, however, focuses on coordinating the

assignment of frontiers to robots in order to decrease

exploration time. Only few papers focus on how

collaborations between robots affect the exploration

mission itself. Singh and Fujimura consider a collab-

orative system where larger robots request the assis-

tance of smaller robots for places they cannot reach

[22]. Wurm et al. consider marsupial robot teams [23],

where carrier robots deploy smaller robots to explore

the environment. Other forms of collaboration include

managing network connectivity. Pei et al. consider

robots to relay information between a base and explor-

ing robots [21], and de Hoog et al. consider data mules

in case direct connectivity cannot be reached [16].

Nevatia et al. make use of experienced personnel to

coordinate their partially autonomous system outper-

forming a complete autonomous system. They con-

sider a search and rescue mission including humans

in the organization of a multi-robot system [20]. But

in case of major disasters, e.g., earthquakes, floods,

hurricanes, fully autonomous robot systems could free

skilled personnel required for different tasks.

In all cases it is either assumed that paths are avail-

able to complete the exploration or that the mission’s

sole objective is the exploration. In contrast, possible

use cases as motivated earlier have not been addressed

so far.

3 Local Collaborations

We start by formally defining the problem of local

collaborations described informally above.

Definition 1 For a set R of robots, local collaboration

is the process of a robot ri ∈ R to request one or more

robots rj ∈ R \ {ri}, j = (1, . . . , |R| − 1), to join in

the location of ri to collaboratively perform an action.

A local collaboration may be classified by its rela-

tive importance as to when collaboration is required:

1. Critical and urgent: Collaboration is required

immediately (without prioritization of objectives),

2. Critical and non-urgent: Collaboration is mission

critical and must be performed before the mis-

sion goal can be completed, but can be postponed

to a later point in time (with prioritization of

objectives),

3. Optional: Collaboration is optional and only

required under certain circumstances. For exam-

ple, clearing a path to a room may only become

mandatory if no other path can be found.

To give an example, these three classes reflect proce-

dures applied by firefighters [8]. In case of a burning

building, for example, as soon as casualties have been

found they are rescued due to the inherent risk of the

fire to spread (class 1). Rescuing of casualties may

only be postponed if one knows about people being

trapped with higher risk (class 2). If no initial infor-

mation is obtained concerning potential positions of

casualties, firefighters have to decide whether to clear

a path at all (class 3).
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This paper considers the third class. The decision

if and when to collaborate is the most challenging

having the most degrees of freedom. It does not

necessarily require collaborations and allows to post-

pone them until they may become obsolete. Possible

additional classes depending on a given application

(such as optional, but immediate collaboration) can be

constructed combining aspects of the aforementioned

classes. For illustration, we consider the case in which

collaborations are required to clear a path to continue

exploration. Paths may be cleared by jointly moving

debris, opening doors, or other means.

3.1 When to Collaborate?

Definition 2 An environment is modeled as an undi-

rected graph G = (V , E) with a set of vertices V

connected by a set of edges E. A set of robots R

explores an unknown environment G creating a map

G′ = (V ′, E′). A vertex v ∈ V is added to V ′ once

v is visited by a robot. An environment is said to be

completely explored if all vertices v ∈ V have been

visited, i.e., V = V ′.

Definition 3 The subset L ⊆ E denotes obstructed

edges requiring local collaborations of two or more

robots to make them passable. Once a local collabora-

tion is performed on edge l ∈ L, l is removed from L

and thus becomes passable.

In the following we consider two collaborating

robots.

Definition 4 A strategy S defines when to collabo-

rate and whom to collaborate with. We will define and

compare four different strategies.

Problem 1 Let T be the time to complete

exploration of an unknown environment, let t =

[0, . . . , T ] be the mission time, li ∈ L, i = 1, . . . , |L|

the obstructed edges with li �= lj for i �= j , and tli
be the time when robots collaborate to clear l ∈ L.

The problem is to determine when to collaborate to

minimize T , i.e.,

arg min
tl1 ,...,tl|L|

T
(
G, R, S(tl1, . . . , tl|L|

)
)
. (2)

In case of optional collaborations, it is not just a

question when to collaborate but whether to collabo-

rate at all. If a collaboration for an obstructed edge

l ∈ L turns out to be obsolete, we set tl = ∞.

The decision on whether to collaborate or not

becomes a question as to when sufficient informa-

tion is available to deduce required collaborations. For

example, consider r6 in the map excerpt depicted in

Fig. 1. Robot r6 has to decide whether to request col-

laboration to clear the path or whether another yet

undiscovered path may be found. An obvious choice

to deem a collaboration necessary is to postpone

any collaborations until only blocked paths remain.

If areas behind a blocked path have not yet been

explored, collaboration is required. But in comparison

to r3, no other robot may unveil an alternative path in

the foreseeable future. If no alternative path to P2 was

found, comparably high travel costs would be required

to return to r6’s current position to clear the path. If an

alternative path to P2 was discovered, an unnecessary

collaboration would waste time and resources.

In order not to have to explore the whole area

around a point of interest, we consider different types

of patterns found in buildings [1] and propose two

heuristics applicable by robots to determine when to

collaborate. The first heuristic makes use of repeti-

tive building structures. For example, in a multistory

building, robots may use already explored floors as a

reference map when exploring other floors assuming

similar or identical structure between the two floors.

Other examples include identical apartments in apart-

ment or residential houses. Having picked a frontier

with a blocked path, robots decide to collaborate if no

other path can be found between a robot’s current posi-

tion and the frontier in the reference map. We assume

a topological world representation where vertices V

represent rooms and edges E paths between rooms.

Heuristic 1 An environment G consists of disjunct

parts Gi ∈ {G1, G2, . . . , GN } with corresponding

Vi, Ei with identical or similar structure. Robots hav-

ing completed Gj progress to the unknown Gk (j, k =

1, . . . , N;j �= k). Gj and Gk have identical struc-

ture and robots are assumed to be aware of this. Let

vk(1), vk(2) ∈ Vk be two rooms connected by an

obstructed edge l ∈ L of which one is a frontier and let

vj (1), vj (2) ∈ Vj be the corresponding pair of rooms
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in Gj . Further, let the set Pvj (1),vj (2) be all known

routes between vj (1) and vj (2). A robot will immedi-

ately request collaboration if |Pvj (1),vj (2)| = 1, i.e.,

if only one path is known to the frontier. Otherwise, a

robot will postpone the collaboration expecting to find

an alternative route which may not be obstructed. In

case only obstructed paths are available, the strategy

selects the path with the least number of alternative

paths, i.e., arg min
v(1),v(2)

|Pv(1),v(2)|.

Note that robots do not have partial knowledge of

the environment but belief thereof. Two floors may

be completely different so that yet unexplored space

is assumed to be unknown. The drawbacks of this

heuristic are as follows: firstly, it requires parts of an

environment to be already explored and, secondly, it is

not universally applicable requiring building patterns

on a large scale. The second heuristic makes use of

smaller patterns in the form of repetitive room struc-

tures, e.g., an office building where rooms often have a

similar structure with a single door facing to the corri-

dor. The degree of a vertex v ∈ V ′ models the number

of paths between a room v and other rooms. From the

distribution of degrees robots may infer the probabil-

ity to find an alternative path to a blocked one. The

distribution is estimated considering already explored

rooms.

Heuristic 2 Let X be a random variable modeling

the degree of vertices v ∈ V ′, xv the number of

already known blocked paths into a room v ∈ V ′, and

p ∈ [0, 1] a threshold. A robot will request collabora-

tion if either P [xv ≥ X] ≤ p or no unblocked paths

are left.

3.2 Whom to Collaborate with?

Whenever a robot requests support for collaboration,

a helping robot needs to be determined.

Problem 2 Let rC be a robot requesting collabora-

tion. A helping robot r is determined by maximizing a

utility value u(r), i.e.,

arg max
r∈R\{rC }

u(r) (3)

In the following we discuss the impact of travel

overhead, preemption of exploration, and connectivity

between robots.

3.2.1 Travel Overhead

A collaborating robot has to travel to a requesting

robot for collaboration. The travel distance between

these robots is considered to determine the suitabil-

ity of the helping robot [17]. The shorter the travel

distance the better.

3.2.2 Preemption of Current Exploration

We discuss whether robots should abort their cur-

rent exploration task immediately once collaboration

has been requested. Consider r3 in Fig. 1 request-

ing a collaboration. Robot r1 is close to complete the

exploration of a room which does not lead to any

yet unexplored rooms. If r1 completes the exploration

before departing for the collaboration, it will not have

to return to same room. Otherwise, r1 will have to

come back if it departs immediately for collaboration

spending additional resources while traveling.

González-Baños and Latombe suggest to derive the

information gain I corresponding to a frontier’s size

to determine their relative importance [14]. Instead of

the gain, we consider the approximated time T̃ (r) ∈

(0, ∞) it takes robot r to explore its current frontier.

The time is approximated by the size of the frontier

and is finite if the frontier is completely surrounded by

obstacles or already explored space. For example, the

yet unexplored space close to r1 in Fig. 1 is bounded.

Therefore, T̃ (r1) is finite. In comparison, the size and

thus the exploration time for frontiers of r2, r3, r5, and

r6 cannot be determined. We set T̃ (r) = ∞ for r ∈

r2, r3, r5, r6.

Accordingly, let T̂ (r) ∈ [0, T ) be the approximated

travel time for robot r to reach the requesting robot

rC . The time is approximated by the travel distance

and the robot speed. We define up(r) = T̃ (r)/T̂ (r) as

the preemption value. Robots are ranked to participate

in collaboration in descending order of up(r). Robots

with infinite T̃ (r) or T̂ (r) = 0 are selected first

(up = ∞). Additionally, by setting a threshold for up

the overhead of travel time to exploration time can be

controlled. Robots preempt their exploration in favor
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of collaboration only if up is above a threshold. For

example, a threshold of 1
2

stalls collaborations if the

travel time is twice the exploration time. Therefore,

the helping robot has time to complete exploration of

its current frontier. After the collaboration, it may con-

tinue at a new frontier and does not have to return to

its previous location.

3.2.3 Connectivity

Wireless connectivity is important for at least two

reasons. Firstly, robots must be able to request col-

laborating partners. It may be of great importance to

reach a robot with capabilities required for a specific

task, especially in heterogeneous systems. Secondly,

coordination can have a big impact on exploration

time [2] requiring some form of communication. The

selection of a collaborating robot may have a big

impact on network connectivity. The robot selected

for collaboration travels from its current location to

the location of rC , thus misses in the communication

network. The intention is to identify the robot whose

movement will decrease the connectivity of the net-

work least. Consider the network depicted in Fig. 2a.

The edges indicate connectivity between robots. r4 is

selected for collaboration, i.e., travels to rC’s location.

Figure 2b illustrates the network once r4 has reached

rC and how the network is disconnected.

We use the Fiedler value as a measure for network

connectivity [13]. Maximizing the Fiedler value leads

to increased network connectivity. A Fiedler value

of zero indicates a disconnected network allowing to

derive articulation points. We determine the impact

of a robot on network connectivity by removing one

robot at a time from the network and computing the

resulting Fiedler value. The most suitable candidate is

r6 because its removal has no impact on the resulting

network connectivity. r1 is preferred to r3 because the

Fig. 2 Network connectivity between robots a before and b

after r4 has reached the requesting robot

removal of r3 reduces the number of paths between

the network’s left hand side and its right. r4 and r5 are

identified as articulation points. Their removal discon-

nects the network and, therefore, are the least prefer-

able robots to select. We only select robots which are

not articulation points for local collaborations to not

partition the network.

4 Strategies and Simulation Model

4.1 Collaboration Strategies

We refine the previous definition of a strategy to

explore an unknown environment to distinguish four

different strategies: The strategies SH1 and SH2 imple-

ment the strategies defined in Heuristic 1 and 2,

respectively. Further, we compare them to the Immedi-

ate strategy SI which calls for immediate collaboration

once an edge l ∈ L is discovered and no alterna-

tive path is already known. The strategy Postpone SP

delays collaborations as long as possible; robots are

not engaged in any collaborative actions as long as

there are freely accessible, unknown areas.

The collaboration threshold p for SH2 is set to 0.15.

Note that p = 1 equals SI, p = 0 equals SP. Col-

laborations are stalled until the collaborating robot has

finished its exploration if up(r) ≤ 1, i.e., if a robot

spends the same time traveling back and forth to the

collaboration as it requires to finish its exploration, it

stalls the collaboration. For SH2 we assume the robot

is aware of the exact room layout, though unaware

of possibly required collaborations. This leads to an

upper bound of the strategy’s performance.

Additionally we compare the four strategies with

the case W without the need for collaborations, i.e., all

paths are freely accessible, to illustrate the impact of

local collaborations on system performance.

4.2 Simulation Model

The focus of the evaluation is set to comparing the

behavior and performance of the different strate-

gies. We implement a dedicated simulator. Simulation

of the strategies using the Robot Operating System

(ROS) and publicly available ROS packages for coor-

dinated multi-robot exploration [4] fail to perform this

task. The mapping and map merging for large environ-



J Intell Robot Syst (2016) 82:325–337 331

ments are not yet robust enough to obtain meaningful

results with respect to the local collaboration strate-

gies. Planning, navigation, and map errors prevent

robots from completing the exploration process or to

navigate to each other. Instead, we focus on com-

paring the strategies in the absence of above errors

without loss of generality. All strategies depend on a

reliable global map to be able to navigate towards each

other. Therefore, mapping or positioning errors have

the same effect on all strategies. Robots are assumed

to be able to position themselves reasonably well and

exchange maps. With respect to the heuristics robots

are capable of detecting paths between rooms and are

aware of repetitive structures Gi . For the simulation

of SH1 we assume an identical floor plan, i.e., robots

are assumed to already have explored a part G0 when

continuing to G1. The analyzed exploration times only

consider the time to explore G1. While this is unfair

with respect to the other strategies, it gives an upper

bound on the performance of SH1.

The environment and its layout have significant

impact on the performance of a collaboration, i.e.,

which paths are available between rooms and which

are blocked. Scenarios in which one strategy outper-

forms the other can easily be constructed. To avoid

biasing the analysis of the strategies, the robots oper-

ate in randomly generated, unknown environments.

Robots are capable of detecting rooms represented by

vertices v ∈ V positioned in a grid connected with

a varying number of entrances per room. Entrances

are blocked with a given blocking rate. Entrances and

collaboration points are positioned randomly. Figure 3

illustrates two randomly generated environments G

with a total of 16 rooms each. Tests with larger

environments yield qualitatively comparable results.

We assume all collaborative actions to take 50 time

steps corresponding roughly to the exploration of two

Fig. 3 Schematic presentation of randomly generated envi-

ronments with 4 × 4 rooms and blocking rate a 0.5 and b

0.3. Edges indicate connectivity between rooms. Red crosses

indicate blocked paths requiring collaboration

rooms, which are of size 25 square units each. While

action times may be expected to have different dura-

tions in real deployments, they do not allow systematic

evaluation of the strategies. Two strategies may select

different collaborations to the same room. If action

durations were different, either strategy might per-

form better by chance of assigning action durations to

collaborations. Unless robots are capable of approx-

imating action durations of different collaborations,

unequal action durations have no systematic impact on

system performance. Since approximation of action

durations highly depends on the action, we assume

the general case in which robots are not capable of

deducing action durations.

Robots may either explore, collaborate, wait, or

travel. Exploration and travel time are proportional to

a room’s size and dimensions, respectively. Travel-

ing robots are not assumed to simultaneously explore.

Robots can only travel in rooms that are explored.

Movement during exploration is half the speed while

traveling to consider the map building process. At

the beginning of a simulation, all robots start in the

same room at the fringe of the environment. Robot

interference is considered by decreasing the explo-

ration efficiency when multiple robots are in the same

room. Each simulation is performed twenty times per

environment. We determine the mean values and the

0.05- and 0.95-quantiles. Individual tests with more

repetitions lead to comparable results.

The robots may be coordinated in a central or dis-

tributed way. In this simulation all controllers are

completely distributed. Robots share their maps and

communication topology every time step if commu-

nication is possible. Global maps are constructed free

of errors impacting coordination. The Fiedler value is

computed by each robot based on the topology infor-

mation it currently has available. Each robot tracks

its frontiers. Any known room that has not been fully

explored is a frontier. Frontiers are assigned by max-

imizing the utility value of a frontier f for robot r

according to the utility function u(r, f ) = α1d(r, f )+

α2c(r), which considers the approximated travel dis-

tance to reach a frontier from r’s current position

and the predicted connectivity c between robots at r’s

future location. The weights are set to α1 = α2 = 0.5.

While they influence system behavior, the weights

have no impact on the comparison of the strategies.

The connectivity is approximated by the distances
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between robots and the well-known simple path loss

model

PL(d) [dB] = PL(d0) + 10 γ log10

(
d

d0

)
+ Xσ (4)

and parameterized according to real-world measure-

ments in an industrial building [3]. The path loss

exponent γ is set to 3.8, the reference path loss is

PL(d0) = 45 dB at the reference distance d0 = 2 m.

The normally distributed random variable Xσ , model-

ing shadowing, has a variance of 10 dB. Connectivity

between two robots is assumed if the received power

Prx = Ptx − PL(d) , (5)

where d is the distance between robots. Finally,

c(r) =

{
1 if Prx ≥ � + δ

0 otherwise,
(6)

where � the minimal receiver threshold and δ ≥ 0

a margin to improve reliability of connectivity at the

new position.

Coordination is organized explicitly by tracking all

other agents. Current and future locations of other

robots, as far as known, are not considered as fron-

tiers. To determine the robot to join in a collaboration,

we utilize a market economy [24], but in principle any

coordination algorithm may be used. The bid is com-

puted considering travel overhead, information gain,

and connectivity with equal weights.

5 Evaluation of Collaboration Strategies

5.1 General Performance Comparison

Figure 4 shows the exploration time for the four

exploration strategies for two, three, and four robots

and compares them to the case without collaborations

required. Simulation results include 50 environments

randomly generated with identical parameters. Each

environment is simulated 20 times. The mean value

and its 0.05- and 0.95-quantiles are computed over all

50 · 20 = 1000 experiments for each strategy. Due to

the nondeterministic order of traversed frontiers and

the strong dependency of a strategy’s performance on

the environment, the distribution of exploration time

stretches over a wide range.

It can be seen that local collaborations have sig-

nificant impact on exploration time, independent of

the collaboration strategy and the number of robots.

Fig. 4 Exploration time for 50 randomly generated environ-

ments

Compared to exploration in which all paths are freely

accessible (Fig. 4 W ), exploration time increases by

up to 135 % for three robots and action duration of

50 time steps. Additional exploration time is due to

the action time required for each collaboration and

additional travel time of robots when joining a col-

laboration. Simulations with action duration of 0 time

steps (not depicted) have an exploration time that is

at least 20 % higher due to increased travel distances.

The same applies for varying collaboration rates. With

increasing rate, the exploration time increases.

With increasing team size, the exploration times

continuously decrease for all four strategies as one

expects. Increasing the number of robots to six has

no significant impact on mean exploration time com-

pared to four robots. Adding additional robots slows

down exploration due to robot-to-robot interference.

Also, mapping errors and additional processing time

for increased number of robots may slow down explo-

ration time [4]. Hayes suggests a model to approx-

imate team sizes and their impact on search tasks

[15].

On average, SI yields the longest exploration time

and the maximal 0.95-quantile, independent of the

number of robots. The strategies SP, SH1, and SH2

outperform SI for mean exploration time and 0.95-

quantile. With increasing number of robots, especially

the heuristics SH1 and SH2 significantly reduce mean

exploration time and its 0.05- and 0.95-quantiles.

Compared to SI, SH2 decreases the mean exploration

time by approx. 40 % and 35 % for three and four

robots, respectively. SH2 also outperforms SI and SH1.

Mean, 0.05- and 0.95-quantiles of the exploration time

are decreased by 15 % compared to SI. Note that all
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Table 1 Relative frequency in percent each strategy performs (a) best (minimal exploration time) and (b) worst (maximal exploration

time) in 1000 randomly generated environments

(a) (b)

Relative frequency (%) Relative frequency (%)

Number robots SI SP SH1 SH2 Number robots SI SP SH1 SH2

2 20 28 28 24 2 80 6 6 8

3 20 14 20 44 3 98 2 0 0

4 18 18 20 44 4 92 6 2 0

strategies completely explore the environment having

the same exploration area.

It is obvious that no single strategy may perform

best in all scenarios. Environments can easily be con-

structed for a specific strategy to outperform the other

strategies. Table 1 summarizes how often each strat-

egy performs (a) best and (b) worst compared to the

others in the 1000 experiments. For example, for two

robots SH2 yielded the shortest (best) exploration time

in 24 % of the randomly generated environments, the

longest (worst) exploration time in 8 %.

While for two robots all strategies perform approx-

imately equally often best, for three and four robots

SH2 dominates in almost half of the cases. In cases

where SH2 does not perform best, it still performs

comparable to the other strategies yielding a minimal

0.05-quantile. Only for two robots SH2 performs worst

in 8 % of the environments, for three and four robots

it never performs worse than the other strategies. In

comparison, while SI outperforms the other strategies

in 20 % of the cases, the mean exploration time and

the 0.95-quantile are high. In other words, if SI does

not perform best, it will perform much worse than the

others. In 80 % and more, SI performs worst.

Both heuristics decrease the mean exploration time

and its 0.05- and 0.95-quantiles. They perform best

more often than the two obvious strategies and less

often worse. SH2 yields shortest exploration time and

performs worst least.

5.2 Heuristic 1

We elaborate the behavior of SH1 in more detail.

Figure 5 shows the exploration time for the environ-

ment depicted in Fig. 3a. The high exploration time for

SI is due to a higher number of collaborations. Figure 6

shows the mean number of collaborations performed

during the 20 simulations. While the minimum num-

ber of collaborations required to fully explore the

environment is six, SI leads to eight partly redun-

dant collaborations extending the exploration time. In

comparison SP and SH1 aim to reduce the number

of collaborations at the expense of additional travel

overhead.

In the example of the environment in Fig. 3a, both

SP and SH1 continue to explore until only blocked

paths are available. While robots in SP aim for the

closest collaboration, SH1 selects the collaboration

with the least number of alternative routes; assum-

ing the more alternative routes available, the higher

the likelihood of not having to collaborate. While

it decreases the probability of redundant collabora-

tions, it increases travel distance as depicted in Fig. 7.

With increasing collaboration duration, the time taken

for traveling becomes neglectable compared to the

collaboration time, and SH2 outperforms SP.

So far we assumed the reference map for SH1

to be identical with the yet unknown environment.

Fig. 5 Exploration time in the environment depicted in Fig. 3a
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Fig. 6 Total number of collaborations performed for the envi-

ronment depicted in Fig. 3a

Derivations between the reference map and the actual

floor plan not changing the number of routes between

rooms have no impact. However, wrong information

on the degree of a vertex may lead to immediate,

unnecessary collaborations or collaborations may be

postponed though no alternative path is actually avail-

able. For example, using the environment depicted in

Fig. 3b as a reference map for the environment in

Fig. 3a increases the mean exploration time by 15 %

for two, three, and four robots due to an additional,

unnecessary collaboration.

5.3 Heuristic 2

Figures 8 and 9 indicate exploration time and number

of collaborations, respectively, for the environment

depicted in Fig. 3b. For two and three, robots SP, SH1,

and SH2 require the same number of collaborations;

Fig. 7 Travel distance by robot for the environment depicted in

Fig. 3a

Fig. 8 Exploration time for the environment depicted in Fig. 3b

for four robots SH1 requires up to three. Despite the

same number of collaborations, however, SH2 outper-

forms SH1 and SP for three and four robots. The same

can be seen in the previous example (Fig. 5).

This improvement can be explained by the time

steps when explorations occur. Figure 10 shows the

average time steps when the first and second collabo-

rations take place. For example, the first collaboration

for SI and two robots happens on average at 83 time

steps. The second collaboration after 173 time steps.

It can be seen that for SH1 the first collaborations

occur earlier than for the other strategies, for two

robots 75 time steps or 28 % earlier. Clearing paths

allows to push forward into regions which cannot

be reached otherwise. This increases the number of

frontiers from which agents can select. Increasing the

number of frontiers increases the performance of the

utility function which selects the most suitable fron-

tier from the currently known ones — especially if the

Fig. 9 Total number of collaborations performed for the envi-

ronment depicted in Fig. 3b
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Fig. 10 Mean time steps tcoll when the first and second collab-

orative action occurred (environment Fig. 3b)

number of frontiers falls below the number of robots.

We assume robots operate best without interfering

with each other. If collaborating increases the num-

ber of frontiers above the number of robots, frontiers

can be assigned more efficiently speeding up explo-

ration. Collaborations happen much earlier for SI than

for the other two strategies. These early collaborations

turn out to be unnecessary and do not improve frontier

assignment to make up for the collaboration overhead.

Otherwise the strategies show similar performance

in exploration time compared to Figs. 4 and 5 with the

exception of SI and three robots taking significantly

longer than for two robots. The reason for SI to slow

down exploration is twofold. Firstly, for three robots

the average number of collaborations is 5.5 compared

to 5.0 for two robots. This leads to longer exploration

times. Secondly, we assume two robots are required

for collaborative actions for which three is a bad

match. If the third robot requires a local collaboration

while the other two robots are already collaborating,

it has to wait until another robot is available. While

waiting the robot does not continue to explore.

The average cumulative travel distance depicted

in Fig. 11 supports these results of better frontier

selection. For example, all four robots jointly trav-

eled on average 747 steps in case of SI. For three and

four robots the travel distance for the strategy SH2 is

decreased compared to the other strategies due to not

having to track back to previously visited collabora-

Fig. 11 Cumulative travel distance for the environment

depicted in Fig. 3b

tion points and improved frontier assignment by the

utility function.

The total travel distance increases with increasing

number of robots. Paths which have to be followed by

all robots because alternative paths are not available

contribute multiple times to the total distance. This is

a general trade-off in multi-robot systems.

6 Conclusions

Multi-robot exploration with local collaboration

requires robots to physically join another robot at its

location to assist in a collaborative task. We classified

collaborative actions and derived heuristics to judge

the necessity of collaboration with limited knowledge

of the environment.

Considering collaborations that become mandatory

under certain circumstances, e.g., when having to clear

a path to be able to explore a blocked area, four

strategies were compared that decide as to whether

to collaborate and if so when. All strategies allow

fully autonomous exploration of indoor environments.

Their efficiencies significantly depend on the layout

of a building having trade-offs with respect to number

of required collaborations and travel distance. In ran-

domly generated environments, however, it shows that

the strategies using the heuristics reduce exploration

time benefiting from building patterns learned during

an exploration. The strategies including the heuristics

also decrease travel distance which is important for

resource limited systems.
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