
Technical Report #: BUW-CSCW-2006-02 April 2006

CollaborationBus:
An Editor for the Easy Configuration
of Complex Ubiquitous Environment

Tom Gross, Nicolai Marquardt
Faculty of Media, Bauhaus-University Weimar, Germany
({tom.gross, nicolai.marquardt}(at)medien.uni-weimar.de)

Computer-Supported Cooperative Work Group
Faculty of Media

Bauhaus-University Weimar

Contact:
Prof. Dr. Tom Gross
Faculty of Media
Bauhaus-University Weimar
Bauhausstr. 11, Room 113
99423 Weimar, Germany

E: tom.gross@medien.uni-weimar.de
T.: (++49-3643) 58-3733
F: (++49-3643) 58-3709

W: http://www.uni-weimar.de/
medien/cscw/

Gross, T. and Marquardt, N. CollaborationBus: An Editor for the Easy Configuration of Complex Ubiquitous
Computing Environments. Technical Report # BUW-CSCW-2006-02, Computer-Supported Cooperative
Work Group, Faculty of Media, Bauhaus-University Weimar, Bauhausstr. 11, 99423 Weimar, Germany,
Apr. 2006.

— 1 —

CollaborationBus:
An Editor for the Easy Configuration
of Complex Ubiquitous Computing Environments

Tom Gross, Nicolai Marquardt
Faculty of Media, Bauhaus-University Weimar, Germany

({tom.gross, nicolai.marquardt}(at)medien.uni-weimar.de)

Abstract. Early sensor-based infrastructures were often developed by experts with a thorough

knowledge of base technology for sensing information, for processing the captured data, and

for adapting the system’s behaviour accordingly. In this paper we argue that also end-users

should be able to configure Ubiquitous Computing environments. We introduce the

CollaborationBus application: a graphical editor that provides abstractions from base technology

and thereby allows multifarious users to configure Ubiquitous Computing environments. By

composing pipelines users can easily specify the information flows from selected sensors via

optional filters for processing the sensor data to actuators changing the system behaviour

according to the users’ wishes. Users can compose pipelines for both home and work

environments. An integrated sharing mechanism allows them to share their own compositions,

and to reuse and build upon others’ compositions. Real-time visualisations help them

understand how the information flows through their pipelines. In this paper we present the

concept, implementation, and early user feedback of the CollaborationBus application.

Author Keywords. Ubiquitous Computing; editor; configuration.

ACM Classification Keywords . H.5.2 [Information Interfaces and Presentation]: User

Interfaces – Graphical User Interfaces, User-Centred Design; H.5.3 [Information Interfaces and

Presentation]: Group and Organisation Interfaces – Computer-Supported Cooperative Work.

1 Introduction

Early sensor-based infrastructures were often developed by experts with a thorough

knowledge of base technology for sensing information, for processing the captured data,

and for adapting the system’s behaviour accordingly [Baldwin et al. 2004b; Girod et al.

2004; Salber et al. 1999; Sobeih et al. 2005; Talja 2002]. In this paper we argue that also

end-users should be able to configure Ubiquitous Computing environments. There are

some research projects providing easy-to-use configuration interfaces for non-expert users

to create sensor-based Ubiquitous Computing applications, yet mostly only for the private

— 2 —

home [Barkhuus & Vallgarda 2003; Dey et al. 2004; Humble et al. 2003; Mavrommati et

al. 2004; Sohn & Dey 2003]. Furthermore, most systems lack integrated facilities for the

collaborative exchange of users’ configurations. Only some systems—typically complex

configuration tools [Baldwin et al. 2004b; Madden et al. 2005]—provide enhanced

visualisations of the data flow and sensor-network data [Buschmann et al. 2005] to

support users while creating or configuring applications.

In this paper we introduce CollaborationBus: a graphical editor that provides adequate

abstractions from base technology and thereby allows multifarious users—ranging from

novice to experts—to easily configure complex Ubiquitous Computing environments.

By composing pipelines users can easily specify the information flows from selected

sensors via optional filters for processing the sensor data to actuators changing the system

behaviour according to the users’ wishes. Whenever the sensors capture values that are in

the range indicated by the users, the actuators perform the specified actions. All pipeline

compositions are stored in the respective user’s personal repository. A central interface

allows users to control their respective repository—they can create new pipeline

compositions, or edit, activate or deactivate existing ones.

An integrated sharing mechanism allows users to share their own pipeline

compositions with others users. In an analogous manner they can add others’

compositions to their own repository, and build new compositions based on these

compositions.

Real-time visualisations display relations between incoming and outgoing events of the

pipeline, and let the user interactively adjust and keep track of the information flow

through their pipelines. They help the users understand the information flow through their

compositions, which can become quite complex consisting of sets of sensors, filters, and

actuators.

In this paper we present the concept, implementation, and early user feedback of the

CollaborationBus application. First, we develop scenarios of configurations for

Ubiquitous Computing environments and derive requirements. Then we present the

concept and user interface of CollaborationBus, and describe its implementation. We

continue with a discussion of related work. Finally, we report on early user feedback, draw

conclusions, and report on future work.

2 Requirements

In this section we develop scenarios of configurations for Ubiquitous Computing

environments and derive requirements for the CollaborationBus editor.

2.1 Application Scenarios

Users should be able to configure environments in their private homes as well as in their

workplaces.

2.1.1 Smart Telephone

In a first scenario users wish to control the sound volume of their music players and starts

their calendar application in dependence of their office telephones’ state. A simple binary

detection sensor attached to the telephone is the first input source of this pipeline. The

— 3 —

second input source checks whether the user is currently logged in at the office computer.

The condition modules check the telephone sensor state as well as the login information.

Finally, the user wants to specify the desired information flow: if the pipeline detects that

the phone is used, an AppleScript OS scripting file is started to mute the volume of the

Mac, the sensor board infrared control is used to mute the sound system, and another

AppleScript starts the iCal calendar application, so that the user can input new

appointments during the phone call. When the phone call ends, the application will fade-in

the music again after a few seconds.

2.1.2 Personal Notification Selection

In this second scenario, users want to get information about the current activities of their

project colleagues and friends. User can add an instant messenger state sensor as a source

of the pipeline, and some further movement and noise sensors as additional sensor value

sources. Then users can add keyword filters to check the sensor data of the instant

messaging sensor to match the names of the project colleagues or project descriptions. As

actuators the users specify that all events are collected and sent as an email once a day. If

the message occurrence reaches a specified occurrence threshold, the CollaborationBus

system will additionally send the user a summary message to his mobile phone via the

SMS-Gateway.

2.1.3 Informal Group Awareness

In a final scenario, programmers in tow remote labs wish to obtain more information about

the activities of the members in the other labs. They have the idea of a universal info

channel of the lab activities as an RSS feed that can be integrated in tickertape displays or

in screensaver visualisation. They create a new pipeline composition and add the following

information sources: the current lab members logged in at the server, the lab members in

the instant messenger chat, the current CVS submits of the developers, the current

temperature of the two labs, as well as the average values of the movement and noise

sensors in the two labs and the coffee lounge. As actuator component they add an RSS

feed generator, and publish the RSS file to a server. Now, the lab members can access this

RSS feed and add it to their favourite notification display (e.g., a Web browser, or a

screensaver). This summary of group events and activities can help users to find out more

about the whole development team, and can facilitate the informal and spontaneous

communication between the colleagues.

2.2 Functional Requirements

The following functional requirements were derived from various application scenarios

(three of them were described above), and from a detailed study of related work (some

examples of related work are presented below).

• Provide adequate abstraction for various applications domains: Configuration

editors should allow users to integrate a variety of software and hardware sensors

capturing information, and software and hardware actuators adapting the behaviour

of the environment accordingly. The integration of existing and new sensors and

actuators should be easy. Various configurations should be possible—ranging from

configurations for home environments as well as for work environments.

— 4 —

• Support diverse users with heterogeneous knowledge, ranging from novice to

experts: Configuration editors should facilitate the immediate utilisation. For this

purpose, they should provide a pre-defined library of common configurations and

configuration assistants that allow the users—especially novice users—to use the

editor immediately and to incrementally explore its functionality. Additionally,

configuration editors should offer guided compositions. Therefore, the user

interface and the functionality provided should be restricted to significant and

needed functions; functions that are not adequate or not needed should be disabled

(e.g., if a sensor captures data in the form of text strings, calculations such as

average should be disabled). Finally, configuration editors should provide details on

demand. For this purpose—especially more experienced users—should be able

move from more abstract to more fine-grained layers, and to see and manipulate

details.

• Support the exchange of configurations among users: Configuration editors should

allow the sharing of configurations among users. The sharing of configurations is

useful for workgroups and friends, because it allows users to build on the results of

other users, and gives less experienced users the chance to benefit of the knowledge

of more experienced users.

3 Concept

In this section we describe CollabortationBus’ key concepts for a generic approach, for

pipelines, for a diverse user experience, and for collaborative sharing.

3.1 Generic Approach

The approach of CollaborationBus is generic—it works across multiple applications

domains, temporal patterns, and complexity patterns.

3.1.1 Spanning Application Domains

Sensor- and actuator-based applications in the private home differ from those in the

cooperative work domain. While we try to integrate a common, universal user interface and

metaphors for users of both domains, these domains can vary in their use of hardware and

software sensors as illustrated in Table I.

Smart Home Applications (cf. a in Table I) are mainly built with hardware sensors and

actuators, where the developed sensor-based applications adapt the home environment

automatically to the requirements of the private users. While computer applications

provide appropriate functionality for the configuration and creation of these applications,

the computer and its applications should disappear during the everyday execution of the

sensor-based applications. In order to support the development of appropriate applications,

the CollaborationBus editor supports a variety of hardware sensors and actuators, and the

editor is only needed for composing the setting.

In contrast to these mainly hardware-based applications, most Collaborative Work

Applications are based on both hardware and software sensors and actuators (cf. d in

Table I). Since computers are in general part of the workplace, software sensors and their

events (e.g., appointments, emails, tasks, project activity) and software actuators (e.g., for

— 5 —

sending emails, displaying messages on the computer screen) can be used to create

sensor-based applications for awareness and information-flow of workgroups. At the

same time, the integration of hardware—both sensors and actuators—and their physical

user interfaces can facilitate the interaction with these applications. This results in tangible

user interfaces for applications at the workplace (e.g., physical sliders so set the presence

in an instant messaging systems; LCD displays for displaying important email messages;

audio signals to inform about the current project’s state). CollaborationBus supports the

creation and configuration of all these free combinations of physical user interfaces with

software events as a main feature and allows users to create their envisioned interfaces

themselves.

Home actuators Office actuators

H
o

m
e

se
n

so
rs

a) Smart Home Applications: often
connections between hardware sensors
and actuators (e.g., to control electrical
devices (power plugs) in dependence of
observed sensor values, or to control
multimedia home devices)

b) Home Awareness Applications:
mixed use of software and hardware
sensors and actuators (e.g., to observe
the private home from the work office,
or to display state of family members at
home)

O
ff

ic
e

se
n

so
rs

c) Office Awareness Applications:
mixed use of software and hardware
sensors (e.g., to summarise information
of projects and to inform people at
home about the working activity.

d) Collaborative Work Applications:
common are applications based on
software sensors and actuators (e.g., to
observe computer logins, instant
messenger presence, and other
activities)

Table I. Applications with sensors/actuators in home and work environments.

In between these two domains are applications that bridge the gap between the private

home and the business work (cf. b and c in Table I). Home Awareness Applications (cf. b

in Table I) support connections to family members and friends at the workplace. For

instance, ambient displays let the users perceive the information in multi-sensory ways.

This includes that users can configure their sensor-based applications at home as well as at

their office; thus a universal application interface is required.

Office Awareness Applications bridges the gap between the home and the work

environment (cf. c in Table I) by informing users about events from the office while they

are at home. Users define their own information channels that connect home environment

with their work environment (e.g., project report summaries that are generated and

delivered to the private home, important email or instant messages that are forwarded to the

private home). Here, the configuration editor requires in most cases a variety of software

sensors in the work environment that are connected to physical actuators in the private

home.

On a whole both environments—the home and the work environment—have become

increasingly intertwined in the recent years (e.g., telework). Therefore, utilities need to

allow the building of universal sensor-based applications spanning both ambiences and the

integration of software sensors and actuators as well as hardware sensors are needed.

3.1.2 Spanning Temporal Patterns

In any application domain various patterns with regard to capturing ongoing data and

starting actuators can be identified:

• Recurrent, permanent (e.g., applications with ongoing collection of data)

— 6 —

• Recurrent, occasionally (e.g., applications depending on day-time, during the

holidays, at night)

• One-time (e.g., applications with call-back if the required person is reachable)

The software needs adequate methods to support any of these temporal patterns, and

should provide a structured overview of the current configurations of a user. Another

important aspect is to enable the easy re-use of created configurations in the past: a copy

method and templates can speed up the creation process. Systems supporting all these

temporal patterns are needed.

3.1.3 Spanning Complexity Patterns

Each setting can have a specific complexity pattern ranging from simple sensor-actuator

tuples to networks of sensors and actuators:

• One sensor, one actuator (e.g., one binary sensor controls one actuator)

• Sensor, filters, actuator (e.g., only react to certain temperature values of a temperature

sensor)

• Multiple parallel sensors, filters and actuators (e.g., create summaries of various

sensor sources, control a set of actuators)

• Complex network of components (e.g., determine the current activity or even mood

of a person)

The CollaborationBus editor supports any application domain, and any temporal

pattern described above. It supports any complexity pattern, except for complex networks.

Complex networks are typically not configured with a graphical editor, but rather

developed with programming languages; therefore, here a graphical editor is would not be

used anyways.

3.2 Pipelines

In CollaborationBus all relations between sensor and actuators are handled with a pipeline

metaphor.

Pipelines are compositions that include several components: at least one sensor and one

actuator component, and additionally further filter components for processing sensor

values (e.g., to delimit the forwarded values, or to convert data formats). All components

inside of a composition are connected via pipelines that forward events between them.

Pipelines can be nested in various ways: several parallel sub-pipelines can be added (this

represents the OR condition); sequences of sensor sources can be created (AND

condition); or negations can be specified (NOT condition).

Sensors are the sources of any initial event in a pipeline. They can either be hardware

sensors (e.g., sensors for temperature, movement, light intensity) or software sensors (e.g.,

sensors for unread emails, mouse activity, shared workspace events, open applications).

Actuators are at the sink-side of the pipeline composition. Hardware actuators affect the

real environment of the users (e.g., activate light sources or devices), while software

actuators only influence the computer system (e.g., display screen messages, start

applications).

Filters for processing the captured data are between sensors at the one side and

actuators at the other are. The filter components can process all incoming events of a

sensor source. Each filter component represents a single condition or transformation

based on the incoming event value. Filters typically generate data of particular formats

— 7 —

(e.g., integer values, Boolean values, strings). There are universal filter types that can be

applied to any type of sensor data and specific filter types that can only be applied to

particular types of sensor data. The respective filter types can do the following processing:

• Universal (e.g., count the event occurrence, create event summary reports)

• Numerical processing (e.g., numeric threshold, interpolation, average)

• String processing (e.g., search for specified keywords)

• Binary processing (e.g., negation, conjunction)

• Transformations (e.g., numeric value to string message, binary value to numeric)

Filters can be assembled in many different combinations. This includes, for example,

an adaptive behaviour to changed conditions of the sensor sources (e.g., modified upper or

lower limit of a temperature sensor, or a changed scale of values) by transmitting these

changed conditions to all pipeline components. Each component can decide if a

modification of the component settings is necessary, and eventually display a confirmation

dialog. The components also include a variety of transformation methods (e.g., for

generating a short message to the mobile phone (SMS) a string message can be entered,

and the values of the respective sensors can be attached).

With CollaborationBus users can easily connect local sensors and actuators or sensors

and actuators from remote locations and build new configurations in a few seconds. Each

pipeline composition includes all these components—sensors, actuators, and filters—and

defines a complete information flow through them. All compositions of a user are stored

in a personal repository. This repository includes all data to dynamically instantiate the

included pipeline compositions.

3.3 Experience for Diverse Users

The CollaborationBus editor can be used by users with diverse levels of technical

background. Users’ knowledge can range from no experience at all to very thorough

technical knowledge. Figure 1 shows various user types ranging from novice users with

no experience to more experienced users and to experts. It shows the methods that are

available and can be used in dependence of the existing knowledge. It also shows the user

interfaces and support tools that are offered for the respective user types (the user

interfaces and supporting tools are described below).

Novice users with no prior technical knowledge can start using CollaborationBus by

loading and adapting pre-configured application configurations that are part of the

CollaborationBus distribution. As they progress, they can use the integrated sharing tool

to load other users’ configurations and to use them as templates for their own

configurations. They can, furthermore, modify and enhance the application configurations

and templates.

More experienced users can create their own application configurations, and execute

them in order to learn more about intra-pipeline event forwarding.

Expert users can create the envisioned system-behaviour by developing the required

software in a high-level programming language. Typically, for these activities they use

toolkits, platforms, libraries, and development and debugging environments to facilitate and

speed up the development process.

Taking these diverse user types into consideration is a core concept of

CollaborationBus and its user interface (the latter is described below).

— 8 —

Figure 1. User experience levels, and adequate tools to support users.

3.4 Collaborative Sharing

Users can build their own personal pipeline compositions from scratch, or build on shared

compositions from colleagues and friends. Three types of sharing are possible:

• Sensor and event sharing: users either share the events of their own sensors, or the

processed events of their sensors.

• Actuator sharing: users share the control of a personal actuator with other users, so

that other users can send commands to the actuator and control the system

behaviour.

• Pipeline sharing: users share complete more or less complex pipeline compositions

with others.

The first sharing method lets users create their own configuration in dependence of

remote located sensors of other users. The second sharing method lets users control the

actuators of other users (leading to new challenges of potentially concurrent access to

actuators). And the third sharing method lets users exchange and re-instantiate complete

pipeline compositions, requiring a unified description format and exchange protocol for

pipeline compositions. In the latter case the recipients of the compositions can change this

released pipeline composition to fit to their requirements. Because each user creates a new

instance of this pipeline composition, the changes of other users are not affecting the

original composition.

With all sharing methods security and privacy issues have to be considered. Adequate

levels of abstraction and control over access privileges of the own information sources are

needed. In order to restrict the shared information, users can choose the sharing of abstract

templates. In these shared pipeline compositions, the original sensors and actuators of a

user are not included in the sharing entry. Thus, the abstract template of a composition

contains mainly the configuration of all filter components between the sensors and

actuators. Using this abstract template, other users can insert their own sensors in the

placeholders at the beginning of the pipeline composition, and their own actuators at the

end. This let them use the knowledge of the processing filter components of the

— 9 —

composition, while at the same the user who shares his pipeline composition does not

share his own sensors and actuators.

4 User Interface

The CollaborationBus provides three major graphical user interface (GUI) components:

the Login and Control GUI; the Editor GUI; the Shared Repository GUI; and the Real-

Time Visualisation GUI.

4.1 Login and Control GUI

The Control GUI is the central access point for all users to their personal repository of

configurations. In order to get to their Control GUI, users have to login first. Figure 2

shows the Login and the Control GUIs.

Figure 2. Login GUI and Control GUI.

After login, users can see the Control GUI with the listing of their pipeline

compositions, including an indicator of the current state of each pipeline composition

(rectangle to the right of the pipeline name): Off (grey), Running (green) or In Edit Modus

(orange).

All functions for modifying the repository and its compositions are available from

within this interface: Add, Remove, Rename, and Clone pipeline compositions (via the

Commands button). Users can Start and Stop the threaded execution of each composition

— 10 —

(via the Start/Stop button). And, they can use the Share method to upload the selected

composition directly to the shared repository (via the Commands button).

While the basic functions for the personal repository are available in the Control GUI,

the underlying filter composition of each of the pipelines is only available in the Editor

GUI that can be opened for each of the pipeline compositions. Figure 3 shows the Editor

GUI. In the top area the user can choose several buttons for loading the Pipelines (via the

Pipelines button), change the Preferences (via the Preferences button), etc. In the middle

area the respective pipeline with its sensors, conditions, and actuators is shown (each

individual item is represented as a rectangular box). In the bottom area the properties of

the currently selected pipeline part (rectangular box) are shown and can be altered.

Figure 3. Editor GUI.

In order to create a new pipeline composition, users can first discover the available

sensor sources (e.g., movement sensor, temperature, sensor telephone sensor, instant

messenger status sensor) of the infrastructure in a graphical sensor browser (the browser

can be started by pressing the ‘+’-sign to the right of ‘Sensors and Conditions’), and add

the sensors they need to the pipeline. Then they can specify rules and conditions (these

can also be viewed by pressing the ‘+’-sign to the right of ‘Sensors and Conditions’) for

the sensor values by adding sets of filters and operators. For each sensor types with the

according sensor value type, specific filters and operators can be selected (e.g., an event

value threshold, a counter for number of occurrences). Finally, the actuators can be

specified by selecting them in the graphical actuator browser (the browser can be started

by pressing the ‘+’-sign to the right of ‘Actuators’). Here, the editor provides the option

to specify the mapping between the pipeline output and the actuator commands (e.g., if the

— 11 —

pipeline output is a message, it can be displayed; if the pipeline output is a simple

temperature value, the corresponding sound volume can be set).

4.2 Shared Repository GUI

The collaborative sharing mechanism described above is integrated in the Control GUI and

in the Editor GUI. In order to make a pipeline composition available for others, users have

two options. They can either select the Share method in the Control GUI (via the Shared

button; cf. Figure 2). Here the default settings for sharing are used and no additional

parameters are needed. Or they can choose the Sharing command in the Editor GUI (via

the Sharing button; cf. the top area in Figure 3) to specify further settings for the shared

composition. Further settings include description, category, and type of sharing (cf. three

types of sharing above). Finally the users can upload the pipeline composition.

In order to use one of the shared pipeline compositions, the user can access the Shared

Repository GUI from within the Control GUI. Figure 4 shows the Shared Repository

GUI. By selecting one of the available compositions in the list at the left side, the

information for this entry is displayed at the right side of the dialogue (description, owner,

category, type of sharing, used sensor sources and actuators).

Users can then download the respective composition.

Figure 4. Shared Repository GUI.

4.3 Real-Time Visualisation GUI

In the assembly of pipeline compositions with a variety of components it can be difficult to

keep track of the intra-pipeline communication between the components and the

processing of the forwarded pipeline events. The Real-Time Visualisation GUI of the

CollaborationBus provides a variety of graph visualisations that can either display the

forwarded values of each component of the pipeline (e.g., useful for interpolation and

threshold filters) or the quantity of forwarded values (e.g., useful for gate filters, counters

or timers).

— 12 —

Figure 5 shows the Real-Time Visualisation GUI with a time plot visualisation on the

left (showing the absolute values of 4 temperature sensors), and an overview of the

pipeline events on the right (showing the number of occurrences of events in a specific

pipeline).

Figure 5. Real-Time Visualisation GUI (with time plot visualization, and overview of the pipeline

events).

With these visualisations, the user obtains an inside view of the pipeline processing.

The command Start Pipelines (via the Start Pipelines button) activates all components of

the respective pipeline(s) and registers for the respective sensor events, starts the

processing of threads, prepares the actuator modules, and generates and dynamically

updates the visualisations. When any of the components of a pipeline is changed (e.g., a

threshold, or an interpolation settings), the implication to the processing can be recognised

immediately. Thus the adjustment and fine-tuning of component parameters becomes

easier.

In order to enable the testing of pipeline composition, we have, furthermore, integrated

an input interface for simulated sensor events. It allows the users to manually insert sensor

values to test and verify the pipeline composition without having to wait for real sensor

values from the sensors.

5 Implementation

Figure 6 provides an overview of the software architecture of CollaborationBus. All sensor

and actuator components are connected to the SensBase infrastructure, which provides

adapters for the connection of sensors and actuators, a central registry of all connected

— 13 —

components and a database for persistent storage of sensor event data. SensBase was

implemented with the Sens-ation platform [Gross et al. accepted]. SensBase provides

inference engines that can transform, aggregate, and interpret sensor values. A variety of

gateways (e.g., Web Service, XML-RPC, Sockets) provide interfaces for the retrieval of

sensor descriptions, event data, actuators, and so forth.

Figure 6. CollaborationBus software architecture.

The CBServer uses these gateways to register for the sensor values needed for the

users’ pipeline compositions. These compositions are inside of the Personal Repository

of each user and include the complete description of all assembled components (in

serialised XML format, for platform independency and easy exchange of pipeline

composition descriptions). The CBServer can serialise and de-serialise these XML

descriptions, and validate and process these descriptions. In the Shared Repository the

published pipeline compositions are stored. Furthermore, the CBServer manages a

directory of all available sensors and actuators, as well as filter components, and submits

them to the client application when needed.

The CBClient implements the GUIs described above.

CollaborationBus is implemented in Java with Swing libraries for the GUIs. Several

libraries are used for XML [W3C 2005a] processing (e.g., for the serialisation of pipeline

compositions [XStream 2005], for parsing sensor descriptions, for creating XPath

expressions [W3C 2005b]); for remote connections (e.g., SOAP

[The Apache Software Foundation 2005] and XML-RPC [Winer 19999] connections);

and for GUI enhancements.

6 Related Work

This chapter gives an overview of research related to the composition of sensor- and

actuator-based applications. We introduce examples of programming tools for Ubiquitous

gross
Placed Image

— 14 —

Computing applications, software for controlling sensor networks, and collaborative

sharing between users.

6.1 Programming Ubiquitous Computing Applications

Several research projects address the challenge to allow end-users to create and configure

intelligent applications the in-home environment.

With iCAP, Sohn and Dey introduce an application that allows end-users to rapidly

prototype Ubiquitous Computing applications [Sohn & Dey 2003]. Similar to

CollaborationBus, it uses rule-based conditions; especially the disjunction and junction of

rules in their ‘sheets’ is similar to our parallel and sequential pipelines (yet we think that

workflow-adapted pipelines stimulate a better understanding of rule compositions than

free arrangements). iCAP does not support sharing, or real-time visualisations.

Irene Mavrommati et al. have introduced an editing tool for the creating device

associations in an in-home environment [Mavrommati et al. 2004]. Their editor connects

various components called e-Gadgets to realise Ubiquitous Computing scenarios at home

(similar to our connected processing components). Yet, it does not support workplace

environments.

The jigsaw editor of Jan Humble et al. [Humble et al. 2003; Rodden et al. 2004]

demonstrates another application for getting control over the technological home

environment. The metaphor of specifying the applications’ behaviour by assembling

pieces of a jigsaw puzzle sounds intuitive. Yet, we would like to give the users more

control over their application than the encapsulated in jigsaw pieces allows.

Some systems are based on mobile devices to control configurations from every

location at every time. This includes systems for PDAs [Mavrommati et al. 2004], mobile

phones [Barkhuus & Vallgarda 2003], and TabletPCs [Humble et al. 2003]. These mobile

systems often provide only limited access to complex configuration methods. We have not

created a version for mobile devices yet, but a lightweight mobile version of

CollaborationBus would certainly be highly complementary to the existing version.

Another approach for configuring Ubiquitous Computing environments is

programming by demonstration. This method requires an extended period of observation

of relevant sensor values. In a later definition and learning phase, the users specify relevant

sensor events in the event timeline, so that algorithms from artificial intelligence can detect

patterns in the observed sensor values and automatically execute desired actuators [Dey et

al. 2004]. Programming by demonstration tools hide most specific details of the

underlying mechanisms from the users. On the one hand this reduces the barrier for non-

technical users to configure Ubiquitous Computing environments, but on the other hand

restricts the influence and control methods for users.

The related work applications mentioned so far address the development of complete

sensor-based applications in a rather abstract way. In the eBlocks project [Cotterell &

Vahid 2005; Cotterell et al. 2003] a user interface for building sensor-based applications

and configuring Boolean condition tables is introduced. As the authors show in their

evaluation, users still need support in building these Boolean tables (e.g., support by

different colours or written text [Cotterell & Vahid 2005]). Therefore, we introduced

pipelines to allow the easy combination of Boolean AND, OR, and NOT conditions,

simply by adding components to a pipeline processing stream or by adding a new parallel

pipeline.

— 15 —

The Phidgets created at the GroupLab by Saul Greenberg et al. [2001] facilitate the

development of physical user interfaces. It provides a range of sensor and actuator

elements for developers of sensor-based applications. The use of Phidgets requires few

hardware skills, but considerable programming knowledge.

6.2 Sensor Network Composition Software

A variety of applications for the compositions of sensor-based networks is available

[Baldwin et al. 2004a; Park et al. 2000]. For instance, the VisualSense modelling and

simulation framework as part of the PTOLEMY II project [Baldwin et al. 2004a; Baldwin et

al. 2004b] is a toolkit for the control over fine granular sensor network communication

and processing. The GUI includes functionality for processing component assembly, and

for graph visualisations to display the processed values of components.

Since the evaluation of the communication in sensor networks can be difficult for

newly created applications, several special complex development environments have been

presented (e.g., SensorSim [Park et al. 2000], EmTOS [Girod et al. 2004], TinyDB

[Madden et al. 2005], and J-Sim [Sobeih et al. 2005]). These tools provide adequate

development environments for expert users (because they including programming

languages, operator sets, mathematical processing libraries, visualisation tools, etc.). The

integration of visualisations for the event flow inside of sensor-network arrangements is

interesting for our purpose [Buschmann et al. 2005]. However, users with a non-technical

background probably have difficulties in using these applications.

6.3 Collaborative Sharing

While in CSCW collaborative sharing of location information, files, workspaces, software

and patterns is wide-spread [Greif & Sarin 1987], an approach to sharing sensor- and

actuator-based applications among users is still missing. In [Greif & Sarin 1987] design

issues of CSCW applications that use data sharing are examined. This includes proposals

for access control, adding meta-information, version history, and methods for handling

updates and concurrency difficulties. Further common classifications of sharing between

users are described in [Olson et al. 2004; Olson et al. 2005]. They have found common

groups with similar sharing preferences, and patterns in the sharing behaviour of users.

Integrating support for these clustered groups could facilitate the usage of sharing

mechanisms.

Hilbert and Trevor describe the importance of personalisation as well as shared devices

for Ubiquitous Computing applications [Hilbert & Trevor 2004]. With the modification of

applications to the personal needs, the use of these applications becomes easier for users.

7 Conclusions

In this paper we have introduced the CollaborationBus editor that allows the any users to

create sensor-actuator relations.

— 16 —

7.1 Summary

Even novice users can easily specify complex Ubiquitous Computing environments with

the CollaborationBus editor, without having to deal with complex configuration settings or

programming details. The CollaborationBus encapsulates and hides the details of the

underlying base technology (e.g., the sensor infrastructure, the sensor and actuator

registration, the sensor event registration). At the same time, more experienced users can

control the pipeline composition configuration in any technical detail they need and get

any detail on demand.

Furthermore, users can share their pipeline compositions with colleagues and friends

via a shared repository. Users can also decide how accurate they want to share (e.g.,

complete compositions, abstract template, only the processed event value). With a

minimum effort, each user can browse the shared repository and download shared pipeline

compositions and adapt the used shared repository template to fit to their needs (by

specifying their own personal properties of the pipeline). This way the CollaborationBus

features an incrementally growing library of ready-to-use pipeline compositions that form

a diverse network of collaborative sensor-actuator-relations.

7.2 Evaluation

While the evaluation of the CollaborationBus GUI and functionality as well as the

produced pipeline compositions is of vital interest to us, a formal user evaluation is still

missing. Nevertheless, we have collected several user opinions at the public demonstration

of CollaborationBus to many visitors at the Cooperative Media Lab Open House 2005

from 14 to 17 July 2005, where the visitors had the chance to try out the CollaborationBus

software in detail (with a huge set of connected sensors and actuators).

Most of the visitors quickly started to create their own compositions, and to select

desired sensors, actuators and filters. At the same time, they hesitated to change the

configuration of the filter components, and were somehow not completely confident about

whether they change the right parameters. A helpful support in this case was the Real-

Time Visualisation GUI; in particular, the activation of the graph views of all pipeline

events. It supported users in understanding the effect of parameter changes.

The most popular function of the tool was the integrated sharing mechanism. Users

enjoyed browsing the large set of ready-to-use pipeline compositions in the shared

repository. Often they used one of the shared compositions as template, modified

parameters in the compositions or built a new configuration on the basis of this

composition and sometimes shared this composition again. They also liked the idea of

sharing their own compositions with others.

A typical barrier of users when creating sensor-based applications with

CollaborationBus was that they worried about privacy issues. Many of the visitors said,

that it is an important criterion influencing their decision to use such as systems was to

exactly know all outgoing or shared personal data and to be able to quickly and easily

change the settings.

— 17 —

7.3 Future Work

Currently all components of the CollaborationBus system have been implemented. In the

future we would like to evaluate the created pipeline compositions of the users (especially

those in the shared repository), and identify common patterns in the created compositions.

From that we would like to develop assistive functions that provide users suggestions for

reasonable compositions.

The configuration interface of the filter components in the Editor GUI can also be

improved to become more intuitive for the user. A graphical mapping could allow users to

drag and drop the desired input and output commands and the component configuration.

A final important aspect related to security is the introduction of a system-wide

authorisation and authentication system in order to further secure the access to the sensor

values and pipeline compositions. For this purpose the CollaborationBus repository

storage and the sensor value access could be integrated in the security system of the SENS-

ATION platform.

Acknowledgments

We thank the members of the Cooperative Media Lab—especially Tareg Egla, and Christoph Oemig—for

inspiring discussions on the concepts and implementation of CollaborationBus, and for providing the

PRIMI and Sens-ation platform.

References

Baldwin, P., Kohli, S., Lee, E.A., Liu, X. and Zhao, Y. Modelling of Sensor Nets in Ptolemy II. In

Proceedings of the Third International Symposium on Information Processing in Sensor Networks -

IPSN 2004 (Apr. 27-27, Berkeley, CA). ACM, 2004a. pp. 359-368.

Baldwin, P., Kohli, S., Lee, E.A., Liu, X. and Zhao, Y. Visualsense - Visual Modeling for Wireless and

Sensor Network Systems. Report Number: UCB ERL Memorandum UCB/ERL M04/8, Ptolemy

Project, Apr. 2004b.

Barkhuus, L. and Vallgarda, A. Interactive Poster: Smart Home in Your Pocket. Presented at The Fifth

International Conference on Ubiquitous Computing - UbiComp 2003 (Oct. 12-15, Seattle, WA).

2003.

Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S.P. and Kroeller, A. SpyGlass: A Wireless Sensor

Network Visualiser. SIGBED Review 2, 1 (Jan. 2005). pp. 1-6.

Cotterell, S. and Vahid, F. A Logic Block Enabling Logic Configuration by Non-Experts in Sensor

Networks. In Extended Abstracts of the Conference on Human Factors in Computing Systems -

CHI 2005 (Apr. 2-7, Portland, OR). ACM, 2005. pp. 1925-1928.

Cotterell, S., Vahid, F., Najjar, W. and Hsieh, H. First Results with eBlocks: Embedded Systems

Building Blocks. In Proceedings of the 1st IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis - CODES+ISSS 2003 (Oct. 1-3, Newport

Beach, CA). IEEE Computer Society Press, Los Alamitos, CA, 2003. pp. 168-175.

Dey, A.K., Hamid, R., Beckmann, C. and Hsu, D. A CAPpella: Programming by Demonstration of

Context-Aware Applications. In Proceedings of the Conference on Human Factors in Computing

Systems - CHI 2004 (Apr. 24-29, Vienna, Austria). ACM, 2004. pp. 33-40.

— 18 —

Girod, L., Stathopoulos, T., Ramanathan, N., Elson, J., Estrin, D., Osterweil, E. and Schoellhammer, T.

A System for Simulation, Emulation, and Deployment of Heterogeneous Sensor Networks. In

Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems -

SenSys 2004 (Nov. 3-5, Baltimore, MD). ACM, 2004. pp. 201-213.

Greenberg, S. and Fitchett, C. Phidgets: Easy Development of Physical Interfaces Through Physical

Widgets. In Proceedings of the ACM Symposium on User Interface Software and Technology -

UIST 2001 (Nov. 11-14, Orlando, FL). ACM, N.Y., 2001. pp. 209-218.

Greif, I. and Sarin, S. Data Sharing in Group Work. ACM Transactions on Office Information Systems

5, 2 (Apr. 1987). pp. 187-211.

Gross, T., Egla, T. and Marquardt, N. Sens-ation: A Service-Oriented Platform for the Development of

Sensor-Based Infrastructures. International Journal of Internet Protocol Technology (IJIPT)

(accepted).

Hilbert, D.M. and Trevor, J. Personalizing shared ubiquitous devices. ACM interactions 11, 3 (May/June

2004). pp. 34-43.

Humble, J., Crabtree, A., Hemmings, T., Akesson, K.-P., Koleva, B., Rodden, T. and Hansson, P.

Playing with the Bits - User-Configuration of Ubiquitous Domestic Environments. In Fifth

International Conference on Ubiquitous Computing - UbiComp 2003 (Oct. 12-15, Seattle, WA).

Springer-Verlag, Heidelberg, 2003. pp. 256-264.

Madden, S.R., Franklin, M.J., Hellerstein, J.M. and Hong, W. TinyDB: An Acquisitional Query

Processing System for Sensor Networks. ACM Transactions on Database Systems 30, 1 (2005).

pp. 122-173.

Mavrommati, I., Kameas, A. and Markopoulos, P. An Editing Tool that Manages Device Associations in

an In-Home Environment. Personal Ubiquitous Computing 8, 3-4 (July 2004). pp. 255-263.

Olson, J.S., Grudin, J. and Horvitz, E. Towards Understanding Preferences for Sharing and Privacy.

Report Number: MSR-TR-2004-138, Microsoft Research, 2004.

Olson, J.S., Grudin, J. and Horvitz, E. A Study of Preference for Sharing and Privacy. In Extended

Abstracts of the Conference on Human Factors in Computing Systems - CHI 2005 (Apr. 2-7,

Portland, OR). ACM, 2005. pp. 1985-1988.

Park, S., Savvides, A. and Srivastava, M.B. SensorSim: A Simulation Framework for Sensor Networks.

In Proceedings of the 3rd ACM International Workshop on Modelling, Analysis, and Simulation

of Wireless and Mobile Systems - MSWiM 2000 (Aug. 11, Boston, MA). ACM, ACM, 2000. pp.

104-111.

Rodden, T., Crabtree, A., Hemmings, T., Koleva, B., Humble, J., kesson, K.-P. and Hansson, P.

Between the Dazzle of a New Building and its Eventual Corpse: Assembling the Ubiquitous Home.

In Proceedings of the Conference on Designing Interactive Systems: Processes, Practices,

Methods, and Techniques - DIS 2004 (Aug. 1-4, Cambridge, MA). ACM, 2004. pp. 71-80.

Salber, D., Dey, A.K. and Abowd, G.D. The Context Toolkit: Aiding the Development of Context-

Enabled Applications. In Proceedings of the Conference on Human Factors in Computing Systems -

CHI'99 (May 15-20, Pittsburgh, PA). ACM, N.Y., 1999. pp. 434-441.

Sobeih, A., Chen, W.-P., Hou, J.C., Kung, L.-C., Li, N., Lim, H., Tyan, H.-Y. and Zhang, K. J-Sim:

A Simulation Environment for Wireless Sensor Networks. In Proceedings of the 38th Annual

Symposium on Simulation (Apr. 2-8, San Diego, CA). IEEE Computer Society Press, 2005. pp.

175-187.

Sohn, T. and Dey, A.K. Interactive Poster: iCAP: An Informal Tool for Interactive Prototyping Context-

Aware Applications. In Extended Abstracts of the Conference on Human Factors in Computing

Systems - CHI 2003 (Apr. 5-10, Fort Lauderdale, Florida). ACM, N.Y., 2003. pp. 974-975.

Talja, S. Information Sharing in Academic Communities. New Review of Information Behaviour

Research 3 (2002). pp. 143-159.

The Apache Software Foundation. WebServices - Axis Architecture Guide. World Wide Web

Consortium, http://ws.apache.org/axis/java/architecture-guide.html, 2005. (Accessed 17/9/2005).

W3C. Extensible Markup Language (XML). W3C Recommendation. World Wide Web Consortium,

http://www.w3.org/TR/1998/REC-xml-19980210, 2005a. (Accessed 17/9/2005).

— 19 —

W3C. XML Path Language (XPath). W3C Recommendation. World Wide Web Consortium,

http://www.w3.org/TR/xpath, 2005b. (Accessed 17/9/2005).

Winer, D. XML-RPC Specification. http://xmlrpc.scripting.com/spec, 19999. (Accessed 17/9/2005).

XStream. XStream - Java Object XML Serialisation. World Wide Web Consortium, http://xstream.

codehaus.org/architecture.html, 2005. (Accessed 17/9/2005).

