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Collaborative Beamforming for Wireless Sensor Networks with
Gaussian Distributed Sensor Nodes

Mohammed F. A. Ahmed, Student Member, IEEE, and Sergiy A. Vorobyov, Senior Member, IEEE

Abstract—Collaborative beamforming has been recently in-
troduced in the context of wireless sensor networks (WSNs)
to increase the transmission range of individual sensor nodes.
The challenge in using collaborative beamforming in WSNs is
the uncertainty regarding the sensor node locations. However,
the actual sensor node spatial distribution can be modeled by
a properly selected probability density function (pdf). In this
paper, we model the spatial distribution of sensor nodes in
a cluster of WSN using Gaussian pdf. Gaussian pdf is more
suitable in many WSN applications than, for example, uniform
pdf which is commonly used for flat ad hoc networks. The
average beampattern and its characteristics, the distribution of
the beampattern level in the sidelobe region, and the distribution
of the maximum sidelobe peak are derived using the theory of
random arrays. We show that both the uniform and Gaussian
sensor node deployments behave qualitatively in a similar way
with respect to the beamwidths and sidelobe levels, while the
Gaussian deployment gives wider mainlobe and has lower chance
of large sidelobes.

Index Terms—Ad hoc networks, sensor networks, antennas
and propagation, resource allocation and interference manage-
ment.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have recently be-
come a practical technology and increasingly being

introduced to different applications [1]. In many WSN ap-
plications, it is required to transmit the acquired data over
long distances using transmission resources available only at
sensor nodes. However, this can be power costly for individual
sensor nodes due to their limited power resources [2]. The
transmission range extension in WSNs can be achieved using
collaborative beamforming [3], [4]. Specifically, WSN can be
deployed in a form of disjointed sensor node clusters where
all sensor nodes within one cluster act collaboratively as dis-
tributed antenna array. Each sensor node broadcasts its data to
other sensor nodes in a cluster, and the same data symbols are
transmitted by all sensor nodes synchronously. The individual
signals from sensor nodes arrive in phase and constructively
add at the intended destination which can be a neighboring
cluster or a base station. Collaborative beamforming concen-
trates the radiation power in a certain direction and reduces
the power lose in other directions. Moreover, collaborative
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beamforming distributes power consumption over all sensor
nodes.

The beampattern characteristics of collaborative beamform-
ing have been recently derived in [3] using the random array
theory (see [5], [6]), and assuming that sensor nodes in
one cluster of WSN are uniformly distributed. However, the
actual sensor node distribution depends on the deployment
method. Indeed, to cover a wide area, large numbers of sensor
nodes must be deployed simultaneously in an ad hoc way
which cannot guarantee uniform distribution over the area. An
example of such application is rural areas monitoring when the
deployment is done by dropping a group of sensor nodes from
an airplane. The spatial distribution of sensor nodes in this
case is argued to be Gaussian [7] – [9]. Indeed, the sensor
nodes actual locations are affected by different factors such
as wind, the releasing mechanism, speed, height, etc. The
displacement from the targeted location due to each of these
multiple factors can be modeled as a random variable and the
effective displacement is the sum of these random variables.
Therefore, according to the central limit theorem, the actual
location will follow Gaussian distribution.

In this paper, Gaussian probability density function (pdf) is
used to model the spatial sensor node distribution in a cluster
of WSN. The average beampattern and its characteristics
are derived under this assumption. The distribution of the
beampattern level in the sidelobe region and the distribution
of the maximum sidelobe peak are also found. The beampat-
tern characteristics derived in the case of Gaussian pdf are
compared to the corresponding characteristics in the case of
uniform spatial sensor node distribution.

II. AVERAGE BEAMPATTERN AND ITS CHARACTERISTICS

A. System model and beampattern definition

We consider the geometric model introduced in [3] for a
cluster of N sensor nodes co-located in (x, y) plane. The
rectangular sensor nodes coordinates (xk, yk), k = 1, . . . , N ,
are chosen randomly according to Gaussian distribution
with zero mean and variance σ2

o . The corresponding spher-

ical coordinates
(
rk =

√
x2
k + y2

k, ψk = tan−1( yk

xk
)
)

have

Rayleigh and uniform distributions, respectively, i.e., frk
(r) =

r
σ2

o
exp

− r2

2σ2
o , 0 ≤ r <∞ and fψk

(ψ) = 1
2π ,−π ≤ ψ < π.

Let the destination base station be located in (x, y) plane
at coordinates (A, φ0). Without any loss of generality, we
can set φ0 = 0. The Euclidean distance between the kth
sensor node and a point (A, φ) is defined as dk(φ) �√
A2 + r2k − 2rkA cos(φ− ψk) ≈ A− rk cos(φ−ψk), where

A� rk in the far-field region. Introducing the location vectors
r = [r1, r2, . . . , rN ] ∈ [0,∞)N and ψ = [ψ1, ψ2, . . . , ψN ]
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∈ [−π, π)N for a cluster of randomly located sensor nodes,
the array factor can be defined as

F (φ/r,φ) =
1
N

N∑
k=1

ejϕkej
2π
λ dk(φ) (1)

where λ is the wavelength and ϕk is the initial phase of the
kth sensor carrier frequency. It is assumed here that mutual
coupling effects among different sensor nodes are negligible.1

Synchronizing the carriers of the sensor nodes with initial
phase ϕk = − 2π

λ dk(φ0), we can rewrite the array factor as

F (φ/r,φ) =
1
N

N∑
k=1

ej
2π
λ [dk(φ)−dk(0)]

≈ 1
N

N∑
k=1

exp
{
j
2π
λ

[−rk cos(φ− ψk)]
}

=
1
N

N∑
k=1

e−j4πr̃k sin( φ
2 ) sin(ψ̃k)

=
1
N

N∑
k=1

e−jαzk (2)

where r̃k = rk

λ , ψ̃k = (ψk − φ
2 ), α = α(φ) = 4π sin(φ2 ), and

the random variable zk � r̃k sin(ψ̃k) is Gaussian distributed
with zero mean and variance σ2 = σ2

o

λ2 , i.e.,

fzk
(z) =

1√
2πσ

e−
z2

2σ2 , −∞ < z <∞. (3)

For each realization of z = [z1, z2, . . . , zN ] ∈ (−∞,∞)N ,
the far-field beampattern can be found as

P (φ/z) = |F (φ/z)|2 =
1
N

+
1
N2

N∑
k=1

e−jαzk

N∑
l=1,l �=k

ejαzl .

(4)

B. Average beampattern

The average beampattern is defined as

Pav(φ) = Ez [P (φ/z)] (5)

where Ez [·] denotes the average over all realizations of z.
In the case of Gaussian sensor node distribution, the average
beampattern can be derived by substituting (3) and (4) in (5)
as

Pav(φ) =
1
N

+
(

1 − 1
N

) ∣∣∣e−α2σ2
2

∣∣∣2. (6)

The term 1/N in (6) represents the value of the average beam-
pattern in the sidelobe region. It can be seen that the average
beampattern has no nulls and no sidelobes. The mainlobe of
the average beampattern is represented by the second term in
(6), and it decays exponentially with a rate proportional to the
variance σ2. Note that although the average beampattern (6) is
similar to the one derived for the case of uniformly distributed

1Note that mutual coupling does not affect the beampattern, but can cause
a power loss for a cluster of WSN. However, the power loss caused by mutual
coupling of sensor nodes with low power (that is typically the case for WSN)
can be indeed neglected.

sensor nodes [3], in the latter case, the Bessel function of the
first kind results also in nulls and sidelobes. The presence
of sidelobes in the average beampattern increases the chance
of sidelobes with high peaks in a sample beampattern for a
specific realization of sensor node locations.

C. The case of truncated Gaussian spatial distribution

For the average beampattern (6), it is assumed that the
sensor node spatial distribution has infinite support. However,
sensor nodes which are located far away from the cluster
center require higher power for communicating with other
sensor nodes. Therefore, it might be more practical to neglect
these sensor nodes and consider only the sensor nodes inside
a disk of radius L. Using the Gaussian spatial distribution (3)
where −L ≤ z ≤ L, and equations (4) and (5), the average
beampattern can be rewritten as

Pav (φ) =
1
N

+
1
N2

N∑
k=1

e−
α2σ2

2

∫ L

−L

1√
2πσ

e−
(zk+jασ2)2

2σ2 dzk

×
N∑

l=1,l �=k
e−

α2σ2
2

∫ L

−L

1√
2πσ

e−
(zl−jασ2)2

2σ2 dzl. (7)

Observing that∫ L

−L

1√
2πσ

e−
(z+jασ2)2

2σ2 dz = 1 − 2Q
(
L+ jασ2

σ

)
(8)

where Q (x) =
∫∞
x

1√
2πσ

e
t2

2σ2 dt is the Q-function, we can
rewrite (7) as

Pav (φ) =
1
N

+
1
N2

∣∣∣e−α2σ2
2

∣∣∣2 N∑
k=1

(
1 − 2Q

(
L+ jασ2

σ

))

×
N∑

l=1,l �=k

(
1 − 2Q

(
L− jασ2

σ

))
. (9)

Moreover, applying the Chernoff bound to (9), i.e., using the
inequity Q

(
L+jασ2

σ

)
≤ 1

2 exp
{
− (L+jασ2)2

2σ2

}
, we obtain that

Pav (φ) ≈ 1
N

+
1
N2

∣∣∣e−α2σ2
2

∣∣∣2 N∑
k=1

[
1 − e−

(L+jασ2)2

2σ2

]

×
N∑

l=1,l �=k

[
1 − e−

(L−jασ2)2

2σ2

]

=
1
N

+
(

1 − 1
N

) ∣∣∣e−α2σ2
2

∣∣∣2
×
[
1 + e−(L

σ )2

eα
2σ2 − 2e−

L2

2σ2 e
α2σ2

2 cos (Lα)
]

=
1
N

+
(

1 − 1
N

)
e−

L2

σ2 +
(

1 − 1
N

) ∣∣∣e−α2σ2
2

∣∣∣2
− 2

(
1 − 1

N

)
cos(Lσ)e−

(
L2

2σ2 + α2σ2
2

)
. (10)

Note that the second term in (10) does not depend on
α and, therefore, it only shifts the mean of the average
beampattern, while the last term in (10) contributes to the
mainlobe. However, for L ≥ 3σ these two terms are small
and can be neglected. It can be seen that the expression
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(10) without the second and last terms coincides with the
expression (6). Therefore, for our studies it is sufficient to
consider only the case of standard Gaussian distribution with
infinite support.

Hereafter, when comparing the cases of uniform and Gaus-
sian spatial sensor node distributions, we use σ = R̃/3 in the
case of Gaussian spatial distribution, where the normalized
radius of the cluster R̃ = R/λ is defined for uniform
distribution [3]. This assumption suggests that in the case of
Gaussian distribution, 99.73% of all sensor nodes are located
in the disk of radius R̃ and, thus, the sensor nodes’ coverage
areas in both cases are the same.

D. 3dB beamwidth

The 3dB beamwidth is defined as the angle φ3dB at which
the power of the average beampattern drops 3dB below the
maximum value at φ = 0, i.e., Pav(φ3dB) = 1

2 . In the case of
Gaussian distributed sensor nodes, the 3dB beamwidth of the
average beampattern (6) can be derived as

φ3dB = 2 sin−1

(
0.0663
σ

)
≈ 0.1326

σ
. (11)

For the sake of comparison with the case of uniformly
distributed sensor nodes, we express (11) in terms of R̃ = 3σ.
Then the expression (11) can be rewritten as

φ3dB ≈ 0.4
R̃
. (12)

Similar to the case of uniform distribution [3], the 3dB
beamwidth in the case of Gaussian spatial sensor node distri-
bution decreases when the cluster radius increases. However,
the 3dB beamwidth in the case of Gaussian distributed sensor
nodes is larger than in the case of uniform distributed sensor
nodes for the same cluster area. The only factor that affect
the 3dB beamwidth is the radius R̃. Note that it can often be
adjusted at the deployment stage to the desired value.

E. 3dB sidelobe region

The 3dB sidelobe region is the range between the angle
φSidelobe at which the mainlobe of the average beampattern
reduces to 3dB above 1/N and π, i.e., Sidelobe Region =
{φ | φSidelobe ≤ |φ| ≤ π} . In the case of Gaussian distributed
sensor nodes, φSidelobe can be derived by substituting (6) in
Pav(φSidelobe) = 2

N . After some straightforward manipula-
tions, φSidelobe can be founded as

φSidelobe = 2 sin−1

(√
ln (N − 1)

4πσ

)
. (13)

It can be seen that the sidelobe region depends on the cluster
area and the number of sensor nodes N . However, the effect
of N is small due to the logarithm and square root operations.
Hence, increasing the number of sensor nodes in the case of
Gaussian spatial sensor node distribution is not as critical for
the sidelobe region as it is in the case of uniform spatial sensor
node distribution [3]. Comparing it to the case of uniform dis-
tribution, we see that Gaussian distribution produces average
beampattern with larger sidelobe region, i.e., the mean of the
beampattern is close to 1

N over a larger area and, therefore,
the sidelobes with high peaks are less probable.

F. Average directivity

The directivity, in the context of WSNs, is changing from
one realization of sensor node locations to another. Given a
realization of sensor node locations z, the directivity can be
expressed as [3]

D(z) =

∫ π
−π P (0)dφ∫ π

−π P (φ/z)dφ
=

2π∫ π
−π P (φ/z)dφ

(14)

where P (0) = P (0/z) = 1. Then, the average directivity is
defined as Dav = Ez [D(z)] . The following lower bound on
the average directivity is typically considered [3]

D∗
av =

2π∫ π
−π Pav(φ)dφ

. (15)

Using (6) and (15), we can find the lower bound on the average
directivity in the case of Gaussian distributed sensor nodes (see
Appendix A) as

D∗
av =

N

1 + (N − 1) 1F1(1
2 ; 1;−(4πσ)2)

(16)

where 1F1(1
2 ; 1;−(4πσ)2) is the hypergeometric function of

the first kind.2 As compared to the case of uniform spatial
distribution, the hypergeometric function of the first kind in
(16) has larger value than the generalized hypergeometric
function 2F3(1

2 ,
3
2 ; 1, 2, 3;−(4πR̃)2) which is used for the

case of uniform distribution. Therefore, the average directivity
is lower in the case of Gaussian sensor node distribution, as
compared to the case of uniform distribution for the same
cluster area.

Fig. 1 shows the normalized average directivity Dav/N
and its normalized lower bound D∗

av/N for both uniform and
Gaussian spatial distributions. It can be seen that the directivity
approaches N asymptotically with increasing the normalized
radius R̃ = 3σ in both aforementioned cases. Therefore, for a
given number of sensor nodes, we can increase the directivity
by spreading the sensor nodes over a larger area.

III. RANDOM BEHAVIOR OF THE BEAMPATTERN

In this section, the complementary cumulative distribution
function (CCDF) of the beampattern level and the distribution
of the maximum sidelobe peak which characterize the random
behavior of a sample beampattern, are derived for the case of
Gaussian sensor node distribution.

A. Distribution of the beampattern level in the sidelobe region

In order to guarantee that the interference to neighboring
clusters is limited, the CCDF of the beampattern level in
the sidelobe region should be small enough for any specific
realization of sensor node locations. Following [10], the dis-
tribution function can be derived by approximating the array
factor level at a given angle φ using an uncorrelated complex
Gaussian random variable with a real part X and an imaginary
part Y , that is,

F (φ/z) =
1√
N

(X − jY ) (17)

2Note that in the case of uniform spatial distribution, the average direc-
tivity is represented in terms of the generalized hypergeometric function
2F3(

1
2
, 3
2
; 1, 2, 3;−(4πR̃)2) instead of 1F1( 1

2
; 1;−(4πσ)2).
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Fig. 1. The normalized directivity Dav
N

and the lower bound on the nor-

malized directivity D∗
av

N
for both uniform and Gaussian spatial distributions:

N = 16.

where X = 1√
N

∑N
k=1 cos (αzk) and Y =

1√
N

∑N
k=1 sin (αzk). The joint pdf of X and Y can be

written as

fX,Y (x, y) =
1

2πσxσy
exp

[
−|x−mx|2

2σ2
x

− y2

2σ2
y

]
(18)

where the means mx, my and variances σ2
x, σ2

y in the case
of Gaussian distributed sensor nodes are derived as mx =√
Ne−

α2σ2
2 , σ2

x = 1
2

(
1 + e−2α2σ2

)
− e−α

2σ2
,my = 0, and

σ2
y = 1

2

(
1 − e−2α2σ2

)
.

Figs. 2 and 3 show, respectively, the means and the vari-
ances of array factor for both uniform and Gaussian spatial
distributions. It can be seen that for fixed N the array factor
in the case of Gaussian spatial distribution has large mean
at the region near to the target direction (φ = 0), and
approaching zero with increasing φ. Thus, sidelobes of equal
level occur with equal probability over whole sidelobe region.
In the case of uniform distribution, the mean is oscillating
in the sidelobe region and, thus, the probability of high
level sidelobes in the beampattern is larger at the angles
which correspond to the mean peaks. The variance for both
distributions is equal to zero at φ = 0 and increases with the
distance from the targeted direction. Therefore, the mainlobe
of the sample beampattern matches precisely the mainlobe of
the average beampattern, and its behavior can be considered
as deterministic. This suggests that the 3dB beamwidth and
directivity do not deviated much from the average values and
thus the average beampattern is suitable for characterizing the
mainlobe of a sample beampattern. Moreover, the variance
in the case of Gaussian distribution has lower value than the
corresponding value in the case of uniform distribution [3],
and thus, the mainlobe is more stable in Gaussian case.

Because of the high value of the variance in the sidelobe
region for both Gaussian and uniform pdfs, the shape of a
sample beampattern in the sidelobe region completely deviates
from the shape of the average beampattern. Hence, the average
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Fig. 2. The mean of the array factor for both uniform and Gaussian spatial
distributions: N = 16, σ2 = 1, R̃ = 3σ.
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beampattern does not reflect the behavior of a sample beam-
pattern in the sidelobe region, and its characteristics should
be expressed in a statistical form.

The CCDF of the beampattern level in the sidelobe region
is given as

Pr[P (φ) > P0] =
∫ ∫

x2+y2>NP0

fX,Y (x, y) dx dy

= Pr[
√
X2 + Y 2 >

√
N P0]. (19)

Observing that the variances σ2
x and σ2

y approach 0.5 in the
sidelobe region and thus the beampattern level has Nakagami
distribution, the CCDF (19) can be simplified as

Pr[P (φ) > P0] = QM

(
mx

σx
,

√
NP0

σx

)

= QM

(√
2mx,

√
2NP0

)
(20)

where QM (·) denotes the first-order Marcum-Q function.
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and R̃ = 3σ = 2.

Moreover, using the fact that the variances approach equal
values, and the mean mx approaches zero, we can conclude
that the beampattern level has Rayleigh distribution and the
CCDF can be expressed as

Pr[P (φ) > P0] = e−NP0 . (21)

This approximation is very accurate in the case of Gaussian
distribution for the whole sidelobe region where the array fac-
tor has zero mean and the variances are equal to 0.5. However,
in the case of uniform distribution, this approximation is valid
only for the beampattern nulls and large values of φ.

The CCDFs (20) for both uniform and Gaussian sensor node
distributions and the Rayleigh approximation to CCDFs (21)
are shown in Fig. 4 for N=16, 256, and 1024. It can be seen
from the figure that the chance of a high beampattern level
in the sidelobe region reduces with increasing the number
of sensor nodes N , while this chance is almost independent
on the cluster area. The CCDFs for both distributions are
the same for low values of N . However, the CCDF in the
case of Gaussian distribution is lower than the CCDF in
the case of uniform distribution if N is large. The Rayleigh
approximation is valid in the case of uniform distribution only
if N is small, while it is accurate in the case of Gaussian
distribution for any value of N . Fig. 5 shows the CCDF as
a function of N for given values of power level P0. This
figure can be used to estimate the number of sensor nodes
N required for achieving a certain beampattern level with
high probability. It can be seen that for high beampattern
levels, both Gaussian and uniform spatial distributions give the
same results. However, for low beampattern levels, Gaussian
spatial distribution requires less sensor nodes then uniform
distribution.

B. Distribution of the maximum sidelobe peak

The probability that the sidelobe with a maximum peak
exceeds a given power level is referred hereafter as the outage
probability Prout [3]. It can be used to estimate the maximum
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Fig. 5. The CCDF of a sample beampattern as a function of N for both
uniform and Gaussian spatial distributions: φ = π

4
and R̃ = 3σ = 2.

possible interference to other clusters in the neighborhood or
to estimate the probability of a given interference level to these
clusters. An upper bound to the outage probability for the case
of Gaussian distributed sensor nodes can be derived similarly
to the uniform case [3]. The variances σ2

x′ and σ2
y′ can be

found as σ2
x′ = σ2

y′ = 8π2σ2, and the average number of
upward crossings at a given level a per unit interval du is
given as

E [v(a)]
du

=
a

2
√
ππσ

e−a
2
∫ ∞

0

ω′e−
ω′2

16π2σ2 dω′ = 4
√
πσae−a

2
. (22)

Integrating (22) over the whole sidelobe region, we obtain that

Prout = E [v(a)] = 2
∫ π

φSidelobe

4
√
πσae−a

2
du

= 8
√
π

[
1 − sin

(
φSidelobe

2

)]
σae−a

2
. (23)

Moreover, for low values of φSidelobe, the upper bound on
(23) can be simplified as

Prout ≤ 8
√
πσ
√
NP0e

−NP0 , NP0 >
1
2
. (24)

The expression (24) shows the relationship between the prob-
ability of maximum sidelobe level P0, the cluster size N ,
and the cluster area. It can be seen that increasing the cluster
area results in higher outage probability, while increasing the
cluster size N reduces this probability. Therefore, we can
conclude that if the interference is our main concern, it is
better to use small size clusters with large number of sensor
nodes at each cluster.

Fig. 6 shows the upper bounds on the sidelobe maximum
with a given outage probability for both uniform [3] and
Gaussian spatial distributions. It can be seen that for the same
number of sensor nodes N and outage probability Prout, the
level of interference to neighboring clusters is lower in the case
of Gaussian spatial distribution and the value of the maximum
peak in the sidelobe region increases with increasing the
normalized radius R̃ = 3σ.
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IV. CONCLUSIONS

Gaussian pdf has been proposed as a model for sensor node
spatial distribution within a cluster of WSN. The characteris-
tics of the average beampattern have been studied and com-
pared with corresponding characteristics in the case of uni-
form sensor node spatial distribution. It has been shown that
for Gaussian spatial distribution, the beampattern has wider
mainlobe and lower chance of large sidelobes as compared to
the case of uniform spatial distribution. The outage probability
achieves lower value in the case of Gaussian distribution than
similar characteristics in the case of uniform distribution. Con-
sequently, it results in smaller interference to the neighboring
clusters. Although higher directivity can be achieved if sensor
nodes are uniformly distributed, it can be increased simply by
spreading the sensor nodes over larger area. The latter can be
controlled to some extend at the network deployment stage.
The overall conclusion is that the collaborative beamforming
provides better performance characteristics when sensor nodes
deployment follows Gaussian pdf as compared to the case of
uniform pdf, while Gaussian pdf is a realistic model for sensor
nodes deployment in wireless applications.

APPENDIX A: DERIVATION OF THE LOWER BOUND ON THE

AVERAGE DIRECTIVITY D∗
av

Substituting (6) in (15), we obtain the following expression
for the lower bound on the average directivity

D∗
av =

2 π∫ π
−π

1
N + (1 − 1

N )
∣∣∣e−α(φ)2σ2

2

∣∣∣2dφ
=

2 π N

2 π + (N − 1)
∫ π
−π
∣∣∣e−α(φ)2σ2

2

∣∣∣2dφ . (25)

The integral in (25) can be found as∫ π

−π

∣∣∣∣e−α(φ)2σ2

2

∣∣∣∣
2

dφ =
∫ π

−π
e−(4 π sin(φ/2))2σ2

dφ. (26)

Introducing a new notation c = (4πσ)2 and changing the
variable u=sin(φ2 ), du

dφ = 1
2 cos(φ2 ), we can rewrite (26) as∫ 1

−1

e−cu
2 2
cos(φ2 )

du =
∫ 1

−1

e−cu
2 2√

1 − sin(φ2 )
2
du

=
∫ 1

−1

e−cu
2 2√

1 − u2
du. (27)

Changing the variable again as x = u2, dx
du = 2u, the

integral (27) becomes

2
∫ 1

0

e−cx
2√

1 − x

1
2
√
x
dx = 2

∫ 1

0

e−cx(1 − x)−
1
2x−

1
2 dx

= 2π1F1(
1
2
; 1;−(4πσ)2) (28)

where
∫ 1

0
e−cx(1 − x)b−a−1xa−1dx = Γ(b−a)Γ(a)

Γ(b) 1F1(a; b; c).
Finally, substituting (28) in (25), we obtain (16).
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