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Abstract—We propose a novel collaborative caching frame-
work to support spatial query processing in Mobile Peer-to-
Peer Networks (MP2PNs). To maximize cache sharing among
clients, each client caches not only data objects but also parts of
the index structure built on the spatial objects. Thus, we call
the proposed method structure-embedded collaborative caching
(SECC). By introducing a novel index structure called Signature
Augment Tree (SAT), we address two crucial issues in SECC.
First, we propose a cost-efficient collaborative query processing
method in MP2PNs, including peer selection and result merge
from multiple peers. Second, we develop a novel collaborative
cache replacement policy which maximizes cache effectiveness
by considering not only the peer itself but also its neighbors.
We implement two SECC schemes, namely, the periodical and
adaptive SAT-based schemes, with different SAT maintenance
policies. Simulation results show that our SECC schemes signifi-
cantly outperform other collaborative caching methods which are
based on existing spatial caching schemes in a number of metrics,
including traffic volume, query latency and power consumption.

I. INTRODUCTION

Traditional spatial query processing for mobile applications
is typically implemented based on the client-server model, in
which mobile clients issue spatial queries such as range or k
nearest neighbors (kNN) queries over a wireless network to a
server hosting a spatial database. This paper studies collabo-
rative caching for spatial query processing on Mobile Peer-to-
Peer Networks (MP2PNs). Clients in a MP2PN communicate
with each other directly or indirectly via intermediate clients
using short-range wireless communication (e.g., WiFi). Clients
can access the backend spatial database via access points (APs)
connected to the Internet. When a client is out of range of the
APs, its queries will be routed through the MP2PN to one
of the APs and then to the spatial server for processing. This
routing scheme facilitates collaborative caching, which utilizes
the caches of the mobile clients to improve the efficiency of
query processing,

Under the context of location-aware mobile applications,
mobile clients are location-aware and are mostly interested
in spatial objects in their surroundings. Thus, spatial queries
issued from the mobile clients are expected to exhibit high
spatial locality. That is, the results of a spatial query are very
likely available on mobile clients near the query client, making
collaborative caching techniques particularly promising for
spatial queries in MP2PNs. In this paper, we develop a
collaborative caching framework for supporting spatial queries
in MP2PNs.

Collaborative caching techniques have been studied previ-
ously for Internet and World Wide Web [1]. Unfortunately,
these techniques cannot be directly employed in wireless
networks, which have dynamic topology and limited re-
sources [2]. Recently, researchers have started to look into
cache model and replacement issues in collaborative caching
techniques for wireless networks [3], [4], [5], [6]. However,
their proposed techniques targeted at simple data requests and
hence cannot be applied to spatial queries. With the high
locality of spatial queries and data, we envisage the advantage
of adopting collaborative caching techniques for the support
of heterogeneous spatial query processing in MP2PNs. To the
best of our knowledge, this is the first research work towards
this vision. The following example illustrates the applications
and technical challenges of our research.

Example 1: (Park Information) Consider a large national
park, where infostations (or servers) are deployed to provide
information about the park such as restaurants and camp sites
to tourists. Since the number of infostations is small compared
to the size of the park, the wireless coverage of the infostations
is not able to cover the entire park. Tourists with mobile
clients can form an MP2PN so that spatial queries from remote
tourists can still reach the infostations via the MP2PN. This
scenario is depicted in Fig. 1. Suppose user U1 had issued
a two nearest neighbor (2NN) query Q11 to find two closest
point-of-interests (POIs) and acquired E3 and E4 from the
spatial database. Later, at a different location, he issues another
2NN query Q12, for which E2 and E3 are the answer. Since
E3 and E4 from the earlier query Q11 have been cached, he
can obtain the partial result E3 from the local cache and issue a
remainder query to find the missing answer E2 from the server,
which requires a two-hop connection (i.e., U1−U3−Server),
as shown in Fig. 1. Alternatively, U1 may find nearby peers
(called helpers) to resolve the remainder query. For example,
if U2 had cached E2 for an earlier range query Q21, U1 may
obtain E2 from U2, which only requires a one-hop connection.
�

The above example illustrates a number of challenges to
collaborative caching techniques supporting spatial queries in
MP2PNs. First, what is the operation model for employing
collaborative caching to answer complex spatial queries in
MP2PNs? Second, what information should be cached to
facilitate efficient collaborative caching and processing of
complex spatial queries? Third, how does a query client seek
help from helpers and the server (i.e., who will be involved
in query processing)? Finally, how do mobile clients replace
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Fig. 1. The Collaborative Caching Example.

cached data when their caches become full?

Responding to these challenges, we propose a collaborative
caching framework, called structure-embedded collaborative

caching (SECC), to realize our vision. SECC operates in a
paradigm similar to semantic caching [7], [8], which caches
both the search results and semantic descriptions of the
queries. When a new query is issued, only the part of the
query, called the remainder query, that does not overlap
with any cached query, needs to be processed on the server.
However, traditional semantic caching techniques are limited
to the same query types. To efficiently support heterogeneous
spatial queries, our SECC framework caches the spatial objects
as well as partial index structures built on those objects,
collectively called the cache structure of the client. Moreover,
SECC aims to i) answer the remainder queries from nearby
helpers, thus facing the challenge of identifying helpers in
the MP2PN, and ii) maximize cache effectiveness which
considers not only the query client itself but also its neighbors.
To address these issues, we propose a Signature Augment

Tree (SAT) to encode the information regarding which peers
have cached a certain object or index node and address the
problem of how a client discovers the cache structures of its
peers. Accordingly, we develop collaborative query processing
algorithms for two classical spatial queries, i.e., range and
kNN queries, based on the SECC framework. As shown in
later sections, two critical issues must be considered in the
process, including i) helper identification which is conducted
with efficient support of SAT, and ii) result merge, which
merges the partial results from different helpers. Finally, we
study the cache replacement problem in SECC and develop a
collaborative cache replacement scheme to support SECC.

We evaluate the performance of SECC using simulation
experiments. The results show that our SECC schemes sig-
nificantly outperform other collaborative caching methods
employing traditional spatial caching schemes in a number of
metrics, including MP2PN traffic size, query latency, power
consumption, and the number of peer connections. Moreover,
SAT-based SECC schemes achieve better performance in query
processing than non-SAT schemes. Finally, the results also
verify the effectiveness of our collaborative cache replacement
method.

The main contributions of this paper are four-fold:

• Propose the Structure-Embedded Collaborative Caching
(SECC) framework, which exploits the locality of spatial
queries to support heterogeneous spatial query processing
by utilizing the caches of collaborative peers.

• Design a novel Signature Augment Tree (SAT) to cost-
efficiently record the cache structures of other peers in

MP2PNs, which acts as a basis of SECC. Two imple-
mentations of SECC are developed to explore different
SAT maintenance policies.

• Provide a cost-efficient collaborative query processing
method based on SAT, including effective algorithms
for peer selection and result merge in a collaborative
environment.

• Introduce a collaborative cache replacement scheme
based on SAT, especially designed for SECC to maximize
the benefits obtainable from the caches in MP2PNs.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III gives the background
on the techniques and metrics adopted in this paper and
formalizes the query processing steps in SECC. Section IV
introduces the structure of SAT. Sections V and VI detail
the algorithms for collaborative query processing in MP2PN
and cache replacement, respectively. Section VII evaluates the
performance of SECC. Finally, Section VIII concludes the
paper and discusses future directions.

II. RELATED WORK

Caching techniques have been widely adopted in computing
systems for efficient data access. Under the client-server
model, caching of frequently accessed data on the client
reduces not only query latency but also the server workload.
Item-based caching, which caches disk pages or tuples, has
been adopted in operating systems and database management
systems [9]. In mobile computing, similar ideas have been used
in wireless data broadcast systems [10]. A caching technique
for unicast and the associated scheme for dynamic client data
replication have been proposed in [11].

An item-based caching scheme is limited to simple “equal-
ity queries” on page id or object key. It does not support
proximity queries that are required in advanced applications.
To overcome this problem, Dar et al. proposed a semantic
caching technique [12] that caches items in accordance with
a query type. The client maintains the semantic description
of the query scope and the resulting data objects in its cache,
which allows the derivation of a remainder query for retrieving
data objects not available in the cache. This work was further
extended in [13] with a formal semantic caching model, based
on which efficient query processing strategies were investi-
gated. For location-based query processing, Zheng and Lee
proposed a semantic caching technique for NN queries [7] by
keeping the validity time of the previous query results to help
answer the subsequent NN queries. This idea was improved in
[8] by defining validity regions for two common spatial query
types, namely, NN and range queries, and developing efficient
algorithms for computing validity regions.

Proactive Cache [14] and Complementary Cache [15] are
caching schemes that allow cached objects to answer different
types of queries (e.g., both window and kNN queries) by
keeping track of information beyond the cached objects,
whereas a traditional semantic caching method is designed to
support one type of queries only (e.g., only window queries).
Both proactive and complementary caches considered a mobile
client-server environment, but SECC operates on the peer-to-
peer collaborative scenario that is much more complicated than
the simple client-server model.
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Fig. 2. An example of R-tree.

Collaborative caching has been explored to improve Web
performance. An important piece of work is the Internet
cache protocol (ICP) [16], which supports communication
between caching proxies by message exchange. In the context
of ad hoc wireless networks, [17] addressed the problem of
optimal cache placement in static ad hoc wireless networks
and proposed a greedy algorithm to minimize the weighted
sum of energy expenditure and access delay. Hara proposed
several replica allocation methods to increase data accessibility
[18] and collaborative caching of broadcast data [5] in mobile
ad hoc wireless networks. The hybrid cache [3] and cluster-
based collaborative caching [6] schemes were developed to
further improve performance. Sailhan and Issarny [19] studied
query evaluation in a Internet-based mobile ad hoc network
(IMANET) and devised a cooperative caching scheme to
increase data accessibility via P2P communication among
mobile devices when the devices were out of range from the
fixed network infrastructure.

In general, existing collaborative caching techniques only
facilitate fetching of simple data items, but our work aims
at spatial queries, which are more complex and ubiquitous in
mobile applications.

III. STRUCTURE-EMBEDDED COLLABORATIVE CACHING

(SECC)

A. Preliminaries

Most spatial databases use R-tree or its variants [20] as an
access method to answer spatial queries (e.g., range, kNN,
and spatial join queries). Fig. 2 shows nine objects in a two-
dimensional space and how they are aggregated into bounding
boxes recursively to build the corresponding R-tree. In general,
a query is processed by traversing the R-tree from the root
to explore the child nodes for eligible objects. During the
process, a priority queue H is used to maintain the entries
to be explored. A generic evaluation procedure for a query
Q can be summarized as follows. (1) Push the root entries
into H; (2) Pop the top entry from H; (3) For a leaf entry,
check the corresponding object against the query and return it
as a result object if the query is satisfied; if the entry is not a
leaf, check the eligible child entries for Q and push them into
H; (4) Repeat (2) and (3) until H is empty or a termination
condition of Q is satisfied. In the rest of this paper, we will
adopt this generic model of processing spatial queries on R-
tree in SECC and use the example in Fig. 2 as a running
example to illustrate the ideas.

For R-tree-based spatial databases, proactive caching [14]
improves query performance by allowing mobile clients to
answer part of a query locally using the data objects and index
nodes in the clients’ caches. The local processing of a query
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Fig. 3. 3NN query processing in proactive caching.

in a client is similar to generic query procedure, except that
the priority queue H may contain intermediate index entries
corresponding to some uncached index nodes or objects. They
are called missing entries. Fig. 3 describes the procedure for
client uQ to process a 3NN query Q at the query point shown
in Fig. 2 with proactive caching. After query processing, if Q
is not solved, a remainder query Qr consisting of Q and the
updated priority queue Hr will be generated.

B. System Framework

The main goal of SECC is to facilitate collaborative caching
and processing of heterogeneous spatial queries among clients
in a mobile peer-to-peer network. To achieve this goal, the
clients cache both the result objects and the supporting index
nodes as in proactive caching. Query processing on SECC
consists of the following phases.

1) The local processing phase evaluates the received query
Q against the local cache of the query client using the
generic evaluation procedure as described above.

2) If Q cannot be resolved in the local processing phase,
as indicated by the existence of missing entries in
the priority queue Hr, the collaborative processing

phase is invoked for the remainder query Qr when the
query client uQ is out of the ranges of the servers
(otherwise, directly go to phase 3). It includes two steps,
i) uQ efficiently identifies helper peers according to the
locality property and merges the partial results as well
as the supporting index nodes from them in the MP2PN.
Thus, a further result can be achieved. ii) If the query
is still unsolved, the remainder query Q′

r will be routed
hop-by-hop to one of the servers via a routing scheme.
Note that each peer along the routing path will process
the query against its local cache and then forward the
updated remainder query. If the query is solved in the
middle, the routing terminates and the result as well as
the supporting index nodes are routed back to uQ.

3) In the server processing phase, the remainder query Q′′
r

which arrives at the server will be processed to complete
the answer.

4) Finally, in the cache update phase, the query client
will cache the result objects and supporting index nodes
collected from the helper peers and the server.

The two crucial issues for SECC, namely, collaborative
query processing and cache update, are discussed based on
a specially designed index structure signature augment tree
(SAT) in the rest of this paper. For clarity, this paper only
considers one type of spatial objects and common spatial
queries such as kNN and window queries, although our method
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can be easily extended to handle multiple types of spatial
objects (e.g., hotels, restaurants, gas stations, etc.) and other
query types such as spatial joins. However, we leave out the
details because of space limitation.

IV. SIGNATURE AUGMENT TREE

As described earlier, SECC supports two important func-
tions: 1) spatial query processing; and 2) cache replacement,
both in a “collaborative” fashion. In other words, a peer in
SECC not only evaluates spatial queries with assistance from
helpers in its neighborhood but also replaces spatial objects
in its cache by taking into account what are available in
the caches of neighbor peers. To perform these functions
effectively and efficiently, some knowledge about the cache
content in its neighbor peers obviously is beneficial. To meet
this need, we propose the Signature Augment Tree (SAT),
which along with its cache content provides a view of the
overall spatial object space. As discussed in Section III, a
peer in SECC actually caches a partial R-tree which is part
of the original R-tree at the server. Thus, aggregating the
partial trees of peers in the neighborhood can provide a more
detailed partial R-tree with a rich collection of data objects
and index nodes. In this section, we first describe our design
and construction of the SAT and then discuss the maintenance
issues.

A. Design of SAT

SAT is designed out of two considerations. First, it is not
cost-efficient to directly collect objects and index nodes from
other peers when it is uncertain if they are useful in future,
because it may waste much energy to transmit unnecessary
spatial data. Further, we want to keep the most valuable objects
and index nodes considering that the cache size is usually
much smaller than the dataset. Second, the size of the index
in the spatial database cannot be ignored. Thus, SAT records
both objects and index nodes of other peers and targets at
achieving the largest benefit from collaborative caching with
small transmission and storage cost.

Simply speaking, SAT aims to capture a view of the neigh-
bors’ cache content by providing information about which
peers cached which index nodes or objects. Consider a client u.
Let Cu denote the set of index nodes and objects in u’s cache
and Lu be the list of peers maintained by u. Client u maintains
two types of information in its SAT: (a) the set of peers that
contain data corresponding to index nodes or objects cached
in u, and (b) the set of peers that contain data corresponding
to missing entries in u. As shown in later sections, type (a)
information is to be used for collaborative cache replacement
and type (b) information for collaborative query processing.
Moreover, both of them are important for SAT updates.

Basically, for each index node or object n in Cu, client u
maintains a peer list corresponding to n, denoted by Lu,n,
i.e., Lu,n = {u′|u′ ∈ Lu ∧ n ∈ Cu′}. Meanwhile, for each
missing entry e in Cu, u maintains a peer tree corresponding
to e, denoted by Lu,e. This peer tree captures the peer lists
corresponding to e’s descendants which are cached by peers
in Lu. Let nidn′ denote the ID of a descendant node n′ of e.
Lu,e is comprised of {(nidn′ , Lu,n′)|n′ is a descendant node
of e}. Thus, SAT can be constructed by associating the peer

A B

c d

5 6 7

root

B

a,sa b,sb sc d,sd

A,sA

2,s2 o5 o6 o7 8,s8 9,s9

sr

sB

c

SA

Sd

Fig. 4. An example of Signature Augment Tree (SAT), in which dark nodes
denote the signatures.

list Lu,n with each index node/object n ∈ Cu and associating
the peer tree Lu,e with each missing entry e ∈ Cu

To realize the SAT, we use a bit string, called a signature

(denoted as sn
1), to encode Lu,n, the peer list corresponding

to n. If the k-th bit in sn is set, the k-th peer in Lu is
a member of Lu,n. Similarly, Lu,e is encoded as a tree
of signature nodes, each of which contains the ID and the
signature for a descendent node, This tree is thus called a
signature subtree (denoted as Se). Finally, we associate the
signatures and signature subtrees with the cached nodes and
missing entries in Cu. As a result, the extended index tree
is the Signature Augment Tree (SAT). Fig. 4 shows a possible
SAT for the query client uQ in the running example. As shown,
the missing entry A is associated with a signature tree SA and
the index node B is associated with a signature sB . Notice
that, while uQ maintains a partial R-tree in its own cache, it
has the knowledge of an enriched partial R-tree consisting of
the other partial R-trees cached in nearby peers. Consequently,
uQ is able to achieve near optimal peer selection through
collaboration with other peers.

B. Maintenance of SAT

Every client must maintain its own SAT. Since the content
of SAT not only involves its owner but also the peers being
kept track of, several factors need to be considered in SAT
maintenance, e.g., which peers are tracked in SAT, when
to update the SAT, how to do it, etc. Since an SAT main-
tenance event involves exchange of metadata about cached
content among peers, efficient representation of the exchanged
information is critical. In SECC, we propose to serialize
the structures of cached partial R-trees in peers to facilitate
exchanges occurring on a wireless channel. To generate the
serial representation, a peer, based on the depth-first traversing
order of its cached R-tree structure, sequentially generates a
stream T of tuples t = (nid, pid), where nid is the ID of
a node in the cache, and pid is the node ID of its parent.
Suppose a client uA, which has cached root, A, a, b, o2, is
kept track of by uQ in Fig. 2. Then, uA generates a tuple
stream TA = {(root,−1), (A, root), (a, A), (2, a), (b, A)}. In
this way, the cache structure of a peer can be serialized into
a tuple stream with extremely small size, which incurs trivial
transmission cost in MP2PNs.

Another issue is to decide the tracked peers whose cache
content contribute to formation of the SAT. Since there are
many peers in the network, we restrict those tracked peers
to 1-hop neighbors, i.e., those who are within the direct

1We omit u in sn since the SAT is specifically for u.
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Algorithm 1 SAT Update

Input: tuple stream T , peer position i, initial SAT r
Output: updated SAT r

SignUpdate(tuple stream T , position i, SAT r)
1: purify r;
2: let a global pointer p point to the first tuple of T ;
3: let n point to the root of r;
4: SignUpdateNode(p, i, r);
5: return r;

SignUpdateNode(pointer p, position i, SAT node n)
6: assert nidp = nidn;
7: if n has no signature then

8: create a signature sn = 0 for n;
9: end if

10: set the ith bit of sn to be 1;
11: p++;
12: while pidp = nidn do

13: if n is a signature node then

14: if a child n′ of n has ID nidp then

15: SignUpdateNode(p, i, n′);
16: else

17: create a signature node n′ with nidp and sn′ = 0;
18: let n′ be the child of n;
19: SignUpdateNode(p, i, n′);
20: end if

21: else

22: find the entry e in n which corresponds to nidp;
23: if e points to a node (or signature node) n′ then

24: SignUpdateNode(p, i, n′);
25: else

26: create a signature node n′ with nidp and sn′ = 0;
27: let e point to n′;
28: SignUpdateNode(p, i, n′);
29: end if

30: end if

31: end while

communication range. As such, no relay is needed for ex-
change of the R-tree streams. This decision comes from two
observations. First, the peers farther away from the query client
are less likely to contain the query results. Second, flooding
the exchange streams in multiple hops to far-away peers incur
much higher costs in terms of bandwidth, energy consumption,
communication collision, etc.

Next, we consider the issue of how to update the SAT at
a client u. Upon reception of an exchange stream T from
v, u will update the signatures in its own SAT r. The basic
idea is to recursively traverse r and update the signatures.
Specifically, when a tuple of T corresponds to node n that
does not exist in r, a signature node with the form (nidn, sn)
will be generated. Let v’s position in Lu is i. Algorithm 1
depicts the SAT update procedure, which takes the incoming
tuple stream T , v’s position i and SAT r as input and outputs
the updated SAT r. Initially. r is purified by clearing the bits
of the signatures which correspond to v (Step 1). Then, r is
traversed recursively to update the signatures (Steps 2-5). For
any visited node n, we claim that the current tuple p of T
corresponds to n (Step 6). The signature of n is updated by
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Fig. 5. An example of SAT update in client uQ, LuQ
= {uA, uB}. The

signatures for peer uB (caching root, B, c, d, o8, o9) have been generated.

setting the ith bit to be 1 (Steps 7-10). Then, move p to the
next tuple of T (Step 11). If p is a child of n, then consider
two cases: i) if n is a signature node, find the child n′ of n
which has ID nidp or create a signature node n′ for p, and
then, recursively update SAT n′ (Step 13-20); ii) if n is an
index node or object, find the corresponding entry e (Step
22). If e points to a node n′, then recursively update SAT n′

(Steps 23-24); otherwise, create a signature node n′ for p and
recursively update SAT n′ (Steps 25-28). These actions are
repeated until n is not the parent of p. The update procedure
for the running example is illustrated in Fig. 5.

Finally, regarding the timing of invoking SAT updates, we
explore two different SAT maintenance policies in this paper.

1. Periodical SAT maintenance. Under this policy, each peer
broadcasts the tuple stream periodically (e.g., every 10 sec-
onds) to its 1-hop neighbors. Accordingly, the receivers update
their tracked peer lists and SATs. We call the interval between
broadcasts the sampling time. To guarantee the correctness of
the SAT, a client u sets Lu as the peers from which the tuple
streams are received in the last round. In particular, the tuple
streams can be combined with periodic beacons [21], in which
case Lu always equals the 1-hop neighbors B1

u of u.

2. Adaptive SAT maintenance. Under this policy, a peer
broadcasts the tuple stream to its 1-hop neighbors adaptively,
e.g., when updates on the cache occur or the number of new
1-hop neighbors exceeds a threshold. Each time when client
u receives a tuple stream from client v, v is added into Lu

if v does not exist in Lu and the signatures of the SAT is
updated. Therefore, Lu may also contain peers which were 1-
hop neighbors of u. Specifically, when the size of Lu reaches
a the preset maximal size of Lu, the oldest peer of Lu will be
selected as a victim to be removed. Hence, we can keep the
space overhead of the signatures in SAT small.

V. COLLABORATIVE QUERY PROCESSING

In SECC, collaborative query processing is invoked when
a spatial query Q cannot be resolved locally with the cache
of the query client uQ. Hence, the remainder query resulted
from local processing is delivered to helper peers for further
processing. Two critical issues facing collaborative query
processing are: (i) to efficiently identify helper peers which
maintain the maximal number of index nodes and objects
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useful for evaluating the remainder query, nd (ii) to properly
merge the partial results and supporting index nodes returned
from the helper peers to generate the query answer. Formally,
let Qr be the remainder query and CQr

be the set of index
nodes and objects necessary for resolving Qr. Consider a
peer set BuQ

consists of peers reachable in any number
of hops by the query client uQ. Therefore, the problem of
collaborative query processing for Qr can be formulated as
building a query plan based on a subset of peers B ⊆ BuQ

with minimal processing cost such that ∀B′ ⊆ BuQ
(B′ �= B),

((∪u′∈B′Cu′) ∩ CQr
) ⊆ ((∪u′∈BCu′) ∩ CQr

).

From the above description, we can see that the cost
of collaborative query processing mainly depends on three
factors: 1) the topological relations among the helper peers
and query client in the MP2PN, 2) the distribution of index
nodes and objects among helper peers that could be used for
evaluating the remainder query, and 3) the query plan. That
is, the schedule of query processing among helper peers and
the merge plan for the partial results and index nodes.

In this paper, we adopt a greedy method for collaborative
query processing that takes into account all three factors
discussed above. In this method, helper peers are selected in
a localized and distributed fashion. The core idea is to let
collaborative query processing proceed in a number of rounds.
At round i, decisions are made independently from the (i−1)-
hop neighbors to select helper peers from the i-hop neighbors
for query processing. Moreover, when the processing results
are returned from helper peers in round i, an efficient result
merge procedure is performed to generate results for return to
the query peer. Fig. 6 illustrates the process of collaborative
query processing. Specifically, round i consists of two phases:

1. Peer selection. In this phase, the updated remainder query
in round i denoted by Qi

r is propagated from query client
uQ to all (i − 1)-hop neighbors. Upon reception of Qi

r, an
(i− 1)-hop neighbor u of uQ first processes Qi

r with its local
cache. If Qi

r is solved, u immediately returns the result and
supporting index nodes to uQ and the whole collaborative
query processing ends; otherwise, u finds helper peers based
on its SAT from its 1-hop neighbors B1

u for the updated
remainder query Qi,u

r and forward Qi,u
r to them for processing.

For example, in Fig. 6, uA, uB , uC , and uD independently
determine the helper peers from their neighbors at round 2.
Considering that the helper peers in (i − 1)-hop neighbors
have been selected in the last round, u usually can not process
Qi

r further. Therefore, it mainly plays the role of a decider
of helper peers instead of a helper peer in this round. The
details about 1-hop peer selection are given in Section V-A.
Obviously, if 1-hop peer selection guarantees that the selected
peers can contribute to the remainder queries, then the selected
peers must be i-hop neighbors of uQ, since all the peers within
i − 1 hops have processed the query.

2. Result merge. In this phase, the partial results and index
nodes generated by the i-hop helper peers and (i − 1)-hop
neighbors (if they process the remainder query further) will
be merged along with the path automatically formed during
query propagation in phase 1 (i.e., indicated by the solid
arrows in Fig. 6). In particular, each intermediate peer of
the tree will merge the results and index nodes received and
then return the improved result and index nodes (if the query

uQ
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uE

uJ

uG

uB

uH

uC

uI

uF

S

1-hop 

process

2-hop 

process

route & 

process

uD

uK

Fig. 6. SAT-based collaborative query processing. The white nodes denote
the peers and the dark node denotes the server.

is solved, the intermediate peer will immediately returns the
result and supporting index nodes to uQ). As shown in Fig. 6,
this merge process may happen in uA, uC , and uQ at round
2. The details about result merge are given in Section V-B.
Note that index merge simply removes the index nodes which
proves to be useless for the query (e.g., for a kNN query, the
index nodes with farther distance than the kth nearest object
currently found are certainly useless). Finally, at uQ, the whole
collaborative query processing ends if one of the following
situations happens, 1) The query is solved; 2) No helper peers
can be selected in the i-hop neighbors; 3) The round number
i achieves the maximum round number λ or hS −1, where hS

denotes the routing length to the nearest server. Otherwise, it
will enter the next round of query processing.

Based on the independent SATs maintained by (i − 1)-
hop neighbors, the effectiveness of peer selection at round
i may degrade as i grows because more peers with the same
contribution to the query may be selected. Moreover, the peers
farther away from the query client are less likely to contain the
query results, we set a maximum round number λ to guarantee
the quality of collaborative query processing. We call the
collaborative query processing with maximum λ rounds the
λ-hop collaborative query processing.

A. 1-hop Peer Selection

1-hop peer selection aims at finding proper peers within
one hop of peer u for the remainder query Qr. Based on
the problem formulated earlier, we have to identify the set of
index nodes and objects necessary for resolving Qr, denoted
as CQr

, to make proper decision. However, it usually incurs
significant processing and transmission overheads due to the
complexity of spatial query processing. Hence, we devise an
efficient approximation of CQr

, which does not miss any node
that is necessary for evaluating the remainder query. Since
the set of index subtrees {Ce} (including index nodes and
objects) rooted at the missing entries {e} in the remainder
query Qr can guarantee a complete answer of the remain-
der query, we have CQr

⊆ ∪e∈Qr
Ce. Thus, we can use

∪e∈Qr
Ce to approximate CQr

and apply the heuristic function
(∪e∈Qr

Ce) ∩ (∪u∈BCu) to measure how much a peer set B
may contribute to the remainder query.

Specifically, with the SAT of u (denoted as ru), we only
consider the peers of L′

u = B1
u ∩ Lu. Assuming that peers

that have poor network and workload connections have been
screened out, the selection of peers for answering a remainder
query is purely based on the cache structures of the peers. Note
that in SECC when an index node is cached, all its ancestors
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are also cached. Thus, the issue is to find minimal number of
peers B that cache all the leaf nodes of the helpful subtrees
contributed by L′

u, i.e., (∪e∈Qr
Ce) ∩ (∪u′∈L′

u
Cu′). Let SQr

denote the set of the signatures in ru which correspond to
those leaf nodes. Then, the requirement can be described as,

∀s ∈ SQr
,∃u′ ∈ B, sposu′ = 1,

where sj denotes the jth bit of signature s and posu′ the
position of peer u′ in Lu. This is a set cover problem,
for which a greedy algorithm can achieve an approximation
ratio of ln|SQr

| [22]. To illustrate this process, recall our
running example in Fig. 3, in which the remainder query
Qr = (Q, {A, 6, d, 7, 5}), the missing entries are A and d,
and hence SQr

contains the leaf signatures descended from
A and d. Suppose Lu = {uA, uB , uC , uD} equals B1

u and
SQr

= {s2 = 1001, sb = 0001, s8 = 1010, s9 = 0110}. The
greedy peer selection procedure will identify {uA, uB} as the
minimal subset covering SA and Sd and hence the selected
peers.

B. Result Merge

Suppose N partial results {Ri} are collected by an interme-
diate peer u for the remainder query Qr, where Ri = (Hi, Oi)
is obtained from cache Ci (the union of the partial R-trees
of the helper peers which generates Ri), Hi is the priority
queue containing the result entries and Oi is the result objects
available in Ci. Result merge aims at generating an improved
result R = (H, O) by merging the information of {Ri}, which
guarantees that H can be expanded to contain the final result
queue. Obviously, if R is equal to the result generated from
C = ∪0≤i≤NCi, where C0 = Cu, it is a merged result close to
the final result with respect to currently known cached nodes.
Thus, we call it the optimal merged result.

Algorithm 2 General Result Merge

Input: N partial results {Ri = (Hi, Oi)}
Output: merged result R = (H, O)

ResultMerge(Result {Ri})
1: let H = ∪1≤i≤NHi;
2: for ∀e ∈ H do

3: if ∃Hi(�e′ ∈ Hi, e′ ∈ A(e) or e = e′) then

4: remove e from H;
5: end if

6: end for

7: prune H according to the query Q
8: build O according to H;
9: return (H, O);

Since the result object set O is determined by the priority
queue H , we focus on the merge of priority queues. If the
ancestor-descendant relationship among the entries of any two
priority queues (denoted as the necessary ancestor-descendant

relationship information) is given, we are able to get the
optimal merged result. Let A(e) denote the set of entry
e’s ancestors in the R-tree. Algorithm 2 depicts the steps
for merging a set of results when the necessary ancestor-
descendant relationship information is available. Algorithm 2
guarantees the priority order when H is generated. In Step
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Fig. 7. An example of exact result merge.

7, the entries which do not satisfy the query are pruned.
For example, kNN queries require pruning, while window
queries do not result in invalid entries and hence do not require
pruning. Finally, in Step 8, only the objects from the received
results which currently satisfy the query are maintained. Based
on Algorithm 2, we have Theorem 1 (the detailed proof is
omitted due to space limitation).

Theorem 1: The merged result generated by Algorithm 2
is the optimal merged result. Let H be the merge queue in
Algorithm 2, and H ′ the final queue generated from C =
∪0≤i≤NCi. Then we have H = H ′.

According to Theorem 1, we can obtain the optimal merged
result if we have the necessary ancestor-descendant relations.
This is called exact result merge. In the running example,
consider the remainder query Qr = (Q, {A, 6, d, 7, 5}) after
local query processing. In round 1 of collaborative query
processing, suppose uQ issues Qr to both uA and uB , then
uQ will receive the partial results RA = ({2, 6, d, 7}, {o2})
and RB = ({A, 6, 7, 9}, {o9}) from uA and uB (see Fig. 5),
respectively. Fig. 7 shows the result merge by applying Al-
gorithm 2 to the running example, in which x and y denote,
respectively, the pruned entry sets of HA and HB . As shown
in the figure, there exists a mapping M which represents the
ancestor-descendant relationship among the entries. That is,
each directed edge in M denotes the fact that the starting
entry is an ancestor of the ending entry.

If the necessary ancestor-descendant relations are not given,
the optimal merged result can not be surely achieved. We
provide an example here. Consider the case that query client
uQ only contains node root, client uA contains root, A,
B, a, b, and c, and client uB contains root, A, B, c, and
d. We can still get the same HA and HB as shown in the
running example. Fig. 8 shows the result merge without the
necessary ancestor-descendant relations, which is denoted as
approximate result merge. G includes all possible ancestor-
descendant relations among the entries. For example, the
possible ancestor-descendant relations can be derived from
the containment relationship among the entries (i.e., each
containment relation can be regarded as a candidate ancestor-
descendant relation), although they are different from the
actual mapping M . Now we can infer two possible mappings
M1 and M2 from G, which lead two possible merged results
H = {2, 6, 7} and H = {2, 6, d, 7}. In this case, we cannot
decide which is the optimal merged result.

Based on the above observation, we obtain Theorem 2:

Theorem 2: The optimal merged result can be achieved iff
the necessary ancestor-descendant relations are available.

Based on Theorem 2, we can either acquire the necessary
ancestor-descendant relations to achieve exact result merge or
pursue approximate result merge (e.g., based on the contain-
ment information of the results). Since the supporting indexes
can infer the necessary ancestor-descendant relations, SECC
can obtain the optimal merged result when both the partial
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Fig. 8. An example of approximate result merge.

results and the supporting indexes are available.

VI. COLLABORATIVE CACHE REPLACEMENT (CCR)

If the cache is full when new data is admitted, cache
replacement occurs. The general cache replacement problem
can be formalized as follows. Let m denote the size of
cache C, size(n) the size of node n, and b(n) the ben-
efit of the cached node n, which can be an index node
or an object. Given an incoming node of size m′, cache
replacement aims at finding a subset C ′ ⊂ C to be replaced
such that

∑
n∈C−C′ size(n) ≤ m − m′ and

∑
n∈C−C′ b(n)

is maximized. Basically, it is a 0/1 Knapsack problem. A
greedy algorithm which removes the worst nodes (including
objects) with minimal b(n)/size(n) proves to be an effective
method (for the unbounded knapsack problem, it is the 2-
approximation algorithm).

SECC requires a collaborative cache replacement scheme,
since the replacement decision made by a client not only relies
on the client itself but also its neighboring clients because
a required item may be got from the neighbors as well.
In this paper, due to the fact that a client has the highest
priority on its own resources and clients are independent from
each other, we devise a locally optimal cache replacement
algorithm, which takes into consideration the cache structures
of the nearby peers (i.e., 1-hop neighbors). Let C ′′ denote the
incoming nodes. Formally, the local optimization problem can
be described as,

P : Maximize
∑

n∈C∪C′′

b(n) × xn

s.t.
∑

n∈C∪C′′

size(n) × xn ≤ m, xn ∈ {0, 1}

Note that in traditional cache replacement methods, the in-
coming nodes will always replace some existing cached nodes,
but our method considers the overall benefit of a cache and
does not distinguish the incoming nodes from the previously
cached nodes. As we will show later, with a greedy algorithm,
this generalized form generates the same replacement policy
as a traditional replacement policy in the client-server model.
However, in SECC, the situation is quite different since the
caches in nearby peers have great impacts on the solution.

We define the benefit of a cached node as the cost of
retransmitting the node via the wireless channel when the node
is requested by a future query. Let p(n) denote the access
probability of cached node n. It can be estimated according
to the following formula:

p(n) = (
1

T − last access time(n) + 1
)α (1)

where last access time(n) is the time when node n was
last accessed and T is the time of the current query, which
are represented logically by the sequence ids of the respective
queries, and α (α > 0) a factor determined by the properties
of the query client (e.g., the speed and the query pattern). For
the client-server model in which the communication cost is
constant, the benefit, denoted by bS(n), can be measured by:

bS(n) = p(n)size(n)cS , (2)

where cS denotes the transmission cost of a unit data from
the server. Define the unit benefit Δb(n) = b(n)/size(n). We
have ΔbS(n) = p(n)cS . For incoming nodes, since p(n) = 1,
ΔbS(n) = cS , which is no less than any previously cached
node. With a greedy algorithm, the generalized form of cache
replacement generates the same victims as the traditional
method.

In SECC, the benefit of a cached node is due to savings
on the cost of accessing the server via a multi-hop routing
(denoted as bS(n)) and on the MP2PN (denoted as bM (n)).
bS(n) is the same as in Eqn. 2. bM (n), however, is more
complicated, because retrieving the missing nodes in MP2PN
may lead to duplicates when multiple peers are selected. Due
to the fact that 1-hop neighbors have more stable connections
to the query peer and play a more important role in the
collaborative query processing (because of the locality of the
spatial queries) compared to other peers, we only consider
them to maximize the savings of the collaborative caches.

Let N(n) denote the number of 1-hop neighbors selected
to retrieve n in peer selection. Then,

N(n) ≤ ones(sn),

where sn is the signature maintained by the query peer for
node n and ones(sn) denotes the number of ones in sn. Let
β (0 < β < 1) be the probability that a requested neighbor
cannot return node n (e.g., because the neighbor cannot be
accessed or its cache has been changed). Therefore, β depends
on the properties of the local networks, e.g., variation of
client connections and cache updates. If node n is not cached,
retrieving n on MP2PN incurs an overall data size sizeM (n):

sizeM (n) = size(n)

N(n)∑
i=1

iC
N(n)
i (1 − β)iβN(n)−i, (3)

where C
N(n)
i is the number of combinations of selecting i ele-

ments from a set of N(n) elements and C
N(n)
i (1−β)iβN(n)−i

denotes the probability of returning i nodes from the N(n)
collaborative neighbors. Eqn. 3 can be simplified to:

sizeM (n) = (1 − β)N(n)size(n) (4)

Based on this, bM (n) can be computed as:

bM (n) = p(n)sizeM (n)cM , (5)

where cM denotes the transmitting cost of a unit data from
1-hop neighbors in the MP2PN. Considering the probability
βN(n) that none of requested neighbors returns node n when
sn �= 0, the expected benefit b(n) can be represented as:

b(n) =

{
bS(n), sn = 0
βN(n)bS(n) + bM (n), sn �= 0
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Using ones(sn) to estimate N(n), the unit benefit Δb(n)
can be computed as:

Δb(n) =

{
p(n)cS , sn = 0
p(n)(βones(sn)cS + (1 − β)ones(sn)cM ), sn �= 0

From the above formula, we can observe that although an
incoming node n may have high access probability p(n), it
does not necessitate a high unit benefit Δb(n).

In this paper, we use the connection length in the MP2PN to
reflect the benefit of a cached node. Let hS be the connection
length from the query peer to the nearest server in the MP2PN
(assume that it is provided by the routing scheme). Therefore,
cS = hS and cM = 1. Thus, Δb(n) can be rewritten as:

Δb(n) =

{
p(n)hS , sn = 0
p(n)(βones(sn)hS + (1 − β)ones(sn)), sn �= 0

Moreover, since in SECC if the cached node n is removed
all of its cached descendant nodes are removed, our cache
replacement strategy compares the value Δb(n) for each
cached leaf node (including incoming objects and supporting
index nodes) and removes those with the smallest Δb(n) to
free up memory space. The detailed algorithm is described in
Algorithm 3, where δ = hS . In our implementation, we treat
α and β as empirical values and use the last access time
associated with each cached node to estimate the access
probability p(n) based on Eqn. 1.

Algorithm 3 Cache Replacement

Input: SAT cache C, cache size m, incoming nodes C ′′

Output: new SAT cache C
CacheReplacement(SAT cache C, Nodes C ′′)

1: keep a priority queues H whose key is Δb(n);
2: for each leaf node n in C ∪ C ′′ do

3: if sn = 0 then

4: Δb(n) = p(n)δ;
5: else

6: Δb(n) = p(n)(βones(sn)δ + (1 − β)ones(sn));
7: end if

8: put n into H;
9: end for

10: while
∑

n∈C∪C′′ size(n) > m do

11: pop n from H;
12: remove node n from C ∪ C ′′;
13: if n is its parent np’s last child then

14: create signature subtree S based on (nidn, sn) and⋃
e∈n Se;

15: attach S to the corresponding entry of np;
16: if snp

= 0 then

17: Δb(np) = p(np)δ;
18: else

19: Δb(np) = p(np)(β
ones(snp )δ + (1− β)ones(sn));

20: end if

21: push np into H;
22: end if

23: end while

24: return C;

TABLE I
SYSTEM PARAMETER SETTINGS

Parameter Value Parameter Value
Client # 200 Object # 2000

Server # 5 Trans. rate 100kbps
Pause time 0 ∼ 10s Trans. range 200m
Speed 1 ∼ 2m/s Trans. overhead 32B
Tuple size 4B Avg. think time 50s
Cache size 2 ∼ 5% Page size 1KB
Kmax 5 Areawnd 10000m2

VII. PERFORMANCE EVALUATION

A. Simulation Model

We built an event-driven simulator to evaluate the per-
formance of SECC. It simulates a Wi-Fi-based MP2PN and
captures the states of the simulated nodes (including the clients
and the servers). We assume that the servers are powerful
enough to satisfy concurrent query requests from the clients.

The simulated mobile environment is composed of 5 fixed
servers and 200 mobile clients, randomly scattered in an
area of 2000m × 2000m. All mobile clients move within
this area and follow the random waypoint mobility model.
Query arrival is modeled as a Poisson process. That is, after a
client completes its current query, it waits for an exponentially
distributed random period, called thinking time, before it
issues a new query. We implemented two basic types of
spatial queries, namely, range query and kNN query, which
were randomly picked for execution in the experiments. The
window of a range query is centered at the client’s current
position with average size Areawnd. The value of k for a
kNN query is randomly chosen from 1 to Kmax. The dataset
contains 2000 objects randomly distributed in the area. The

average object size |o| is 3.05KB. The sizes of the objects
follow a Zipf’s distribution with skewness parameter θ = 0.8.
The page capacity is set to 1K for the R-tree indexes. The
cache size for each client is the same, with a default value
of 2% of the total dataset size. Important parameter are
summarized in Table I.

We implemented SECC on the proposed periodical SAT
update and adaptive SAT update schemes, which are denoted
as SECC-PS and SECC-AS, respectively. The default sampling
time of SECC-PS is set to 30s and the threshold for the
new neighbors in SECC-AS is set to half of the 1-hop neigh-
bors. We also implemented three other collaborative caching
schemes for comparison:

• Item-based collaborative caching (CC-IC). CC-IC is
based on the item-based caching scheme [10], which
simply submits the query and the identifiers of all cached
objects to the server and the server returns the missing
objects for the query. In CC-IC, when the query and the
identifiers are routed through a MP2PN to the server, each
peer along the path will add new identifiers according to
its local cache. Then, the server only returns the result
objects which are missed in all of the peers along the
path. For other result objects which are missing to the
query peer, they must exist in some peers along the path
and thus will be routed back from the nearest one to the
query peer.

• Proactive caching based collaborative caching (CC-PC).
In CC-PC, the peers in the MP2PN adopt the proactive

287



caching scheme [14] and the query peer directly sends
the remainder query to the server. During the routing,
the remainder query will be further processed at each
intermediate peer based on the local cache (as step 2 of
the collaborative processing in SECC). If the query is
not solved during routing, the server will received it and
process it for the final result.

• SECC with λ-hop flooding (SECC-FL). In SECC-FL, a
query client simply floods the remainder query to its λ-
hop neighbors before sending it to the server. At each
intermediate peer, the remainder query is updated with the
local cache and forwarded further. Finally, result merge
is performed as in the SAT-based SECC schemes. As a
special form, SECC-FA denotes the SECC-FL scheme
with λ = +∞. Thus, in SECC-FA, the remainder query
is flooded to all the peers within hS−1 hops (hS denotes
the routing length to the nearest server).

For the SECC schemes, we set λ = 3 as the default value. To
ensure a fair comparison, we choose the state-of-the-art cache
replacement schemes for each caching model: LRU for item-
based caching, GRD3 for proactive caching and SECC-FL,
and CCR (α = 2 and β = 0.8) for SAT-based SECC schemes.

The metrics for performance comparison reflect five aspects
of each scheme: a) MP2PN traffic size, b) number of peer
connections, c) query latency, d) power consumption, and
e) cache hit rate. All the metrics except power consumption
are measured in the query processing time. However, power
consumption is measured in both processing and maintaining
time (e.g., signature updates). Particularly, we use the average
transmission size (including in and out) for obtaining 1KB
result data to represent the power consumption. Therefore,
the unit of power consumption is KB/KB. Cache hit rate
(denoted as CHR) is defined as

hitc =
|Rc|

R
(6)

where Rc denotes the partial result objects obtained from the
caches and R the whole result objects. It reflects how many
results can be obtained from the caches (i.e., local cache or
MP2PN caches).

B. Overall Performance Comparison

Fig. 9 shows the performance comparison among different
caching schemes. The plots are obtained from the average
query performance of all 200 peers in 2000s of simulation
time. In terms of MP2PN traffic size, Fig. 9(a) shows the
average data transmission volume for a query in each scheme.
The SECC schemes, relying on helps from the nearby peers,
can greatly reduce the traffic in MP2PN. For example, the
MP2PN traffic size in SECC-AS is only 50% that of CC-
IC and 60% that of CC-PC. Besides, the SAT-based SECC
schemes (i.e., SECC-PS and SECC-AS) transmit 30% less
data than non-SAT SECC schemes (i.e., SECC-FL and SECC-
FA). Fig. 9(b) gives a comparison of the average number of
peer connections. SECC-FL and SECC-FA incur much more
peer connections than other schemes, which means the trivial
flooding method causes much overhead and is not suitable for
collaborative spatial query processing. On the contrary, SECC-
AS and SECC-PS, by utilizing SAT, achieve more effective
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(a) MP2PN Traffic Size
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(c) Query Latency
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(d) Power Consumption

Fig. 9. Overall performance comparison.

TABLE II
CACHE HIT RATE

Rate CC-IC CC-PC SECC-FL/-FA SECC-PS/-AS
hitlocal 0 0.414 0.414 / 0.414 0.416 / 0.416
hitMP2PN 0 0.068 0.392 / 0.396 0.349 / 0.363
hitserver 1 0.518 0.194 / 0.19 0.235 / 0.221

peer selection and thus requires much less connections, which
is even less than that of CC-IC.

We conduct experiments to evaluate the query latency (as
shown in Fig. 9(c)). Our experimental result shows that the
transmission cost dominates the peer processing cost, i.e.,
the CPU time is negligible. Thus, we only show the latency
delay caused by accesses to MP2PN. The SECC schemes
significantly outperform CC-IC and CC-PC by at least 40%.
In particular, the SAT-based schemes achieve shorter latency
than SECC-FL by around 15%. For power consumption as
shown in Fig. 9(d), we can see that the SAT-based SECC
schemes incur much less energy cost, i.e., 50% that of CC-
IC or 70% that of IC-PC, while the non-SAT SECC schemes
perform worse than CC-PC. The maintenance cost in MP2PN
indicates the delivering cost for SAT maintenance. We can see
that by spending small energy on SAT maintenance, SECC-AS
and SECC-PS gain much more benefit in query processing.
Compared to SECC-PS, SECC-AS costs less energy but
achieves better query latency. It means most of the periodical
stream exchanges are unnecessary. Considering that the non-
SAT SECC schemes incur much more peer connections per
query, the cost of connections and radio collisions among
peers may further degrade their performance. Therefore, the
SAT-based SECC schemes are preferred in practice. In the
experiment, the storage overhead of the signatures is 0.2% for
SECC-PS and 0.1% for SECC-AS. The average size of the
tuple stream is 0.32KB, 0.26% of the cache size, which only
costs about 2.5ms for transmission.

Table II summarizes the cache hit ratios at different levels
among the caching schemes. As we can see, the query pro-
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TABLE III
AVERAGE ROUTING LENGTH TO SERVER

Server # 5 10 15 20 25
Avg. length to server 3.54 2.51 2.38 2.29 1.79
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(b) Power Consumption

Fig. 10. Performance comparison under various server numbers.

cessing for the SECC schemes is concentrated on the local
cache and the collaborative caches in MP2PN. The cache hit
rates of the local cache and MP2PN for them reach 0.8. In
other words, 80% of the result objects can be retrieved from
a client’s own cache or the peer caches before a remainder
query is submitted to the server. This value is almost twice
that of CC-PC. For the special cases when the servers are not
reachable from the query peer, the SECC schemes may still
provide the results or partial results. For example, the SECC
schemes in the experiments provide 35% of the results when
the servers are not available.

C. Impact of Server Number

In the experiments, we use server number to control the
average routing length to the nearest server. Table III summa-
rizes the relations between them. Obviously, a smaller number
of servers usually lead to larger average routing length to
server. The performance of the caching schemes under various
number of servers is presented in Fig. 10. For query latency
(Fig. 10(a)), the SECC schemes always outperform CC-IC
and CC-PC under different server numbers. The gap between
their performance becomes more significant when the server
number decreases. It means when the average routing length
to server is big, finding the nearby helpers in MP2PN is
more valuable. Similar findings can also be found in power
consumption (as shown in Fig. 10(b)).

D. Effectiveness of Collaborative Query Processing

This section examines the performance of the collaborative
query processing in different SECC schemes. Fig. 11(a) shows
the detailed traffic volumes in MP2PN, where valid size
denotes how many of the downloaded objects are the result
objects of a query. For SECC-FL, the download size is much
smaller than the traffic size, which verifies the effectiveness
of the result merge scheme. The SAT-based schemes cause
much less traffics in MP2PN and their valid sizes are quite
close to SECC-FL. It means that the SAT-based schemes
can effectively determine the peers which contain the largest
number of index nodes and objects required for evaluating the
remainder query. Although SECC-FA gets the largest number
of valid result objects due to its largest probing area, the
communication overhead is extremely high. This is because
the clients far away from the querying point are less likely
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Fig. 11. Performance of collaborative query processing for the SECC
schemes.
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(b) Peer Connection

Fig. 12. Performance comparison among the SECC schemes under various
maximum round number λ.

to have cached the result objects. In particular, the neighbors
within 2 hops have cached nearly 80% of the total valid
result objects in all peers. Moreover, Fig. 11(b) summarizes
the average number of peer connections during collaborative
query processing with respect to different client densities.
The SAT-based SECC schemes always incur significantly less
connections than SECC-FL and SECC-FA. Moreover, when
the clients are dense enough (e.g., client number = 400 in
the experiments) that all the helpers can be found in one
hop, then less peer connections are required. Similar results
can also be found for other metrics like query latency and
power consumption. Thus, our SAT-based collaborative query
processing is proved to be cost-efficient.

To explore the impact of the maximum round number λ,
Fig. 12 shows the performance comparison among the SECC
schemes under various λ. The performance of the SECC
schemes do not always improve as more peers are allowed
to access. As shown in Fig. 12(a), after some point, the query
latency increases (e.g., for SECC-FL) or remains almost the
same (e.g., for SECC-PS and SECC-AS). Similar results can
also be found for power consumption (the Fig. is not provided
because of space limitation). It is because the peers far away
from the query client are less likely to cache the necessary
nodes for the query. Moreover, from Fig. 12(b), we can see
that the increment of the number of peer connections in the
SAT-based SECC schemes is significantly smaller than that of
SECC-FL, which means our collaborative query processing
can effectively avoid the negative effect of the distributed
decision making for peer selection.

E. Impact of Cache Sizes and Replacement Schemes

In this section, we investigate the effectiveness of the col-
laborative cache replacement method. For comparison, we also
implement some variations of the SAT-based schemes, namely,
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Fig. 13. Effectiveness of CCR compared to GRD3.

SECC-PS(GRD3) and SECC-AS(GRD3), in which GRD3 (the
state-of-the-art method) is adopted as the cache replacement
algorithm. Fig. 13 shows the performance comparison between
SECC-AS(GRD3) and the original SECC-AS which adopts the
collaborative cache replacement algorithm (denoted as SECC-
AS(CCR)). Generally, SECC-AS(CCR) outperforms SECC-
AS(GRD3) in different settings. Since CCR targets at local
optimization, the improvements of CCR are similar for differ-
ent λ, as shown in Fig. 13(a). Moreover, Fig. 13(b) shows the
improvement of CCR increases as less cache is available. Since
the query processing relies more on the caches in MP2PN for
smaller cache sizes, the cache replacement scheme plays a
more important role in the SECC schemes. Similar results can
also be observed for SECC-PS.

We further compare the performance of different caching
schemes with four cache size settings (see Fig. 14): 2%,
3%, 4%, and 5%. In general, the SAT-based SECC schemes
outperform other schemes under each setting in terms of
query latency (Fig. 14(a)) and power consumption (Fig. 14(b)).
As the cache size of each client increases, the performance
of the SAT-based SECC schemes with λ = 3 improves
accordingly. On the contrary, the non-SAT SECC schemes
outperform CC-IC and CC-PC in query latency but get worse
performance after some points in power consumption. It means
that, when effective helper selection schemes are not available,
a larger cache size yields more redundant transmissions, thus
degrading the performance of SECC.

VIII. CONCLUSION

In this paper, we proposed the Structure-Embedded Col-
laborative Caching (SECC) method, which supports spatial
query processing in a MP2PN by utilizing the caches of a
set of collaborative peers and, when complete answer cannot
be obtained from the peers, sends the remainder query to
the server for processing through the MP2PN. To facilitate
SECC, we designed a novel index structure, called Signature
Augment Tree (SAT), which can cost-efficiently record both
the index nodes and objects in the nearby peers. Based on SAT,
we developed a cost-efficient collaborative query processing
scheme and an effective algorithm for cache replacement in
a collaborative environment. Two implementations of SECC
were developed to explore different SAT maintenance policies.
Extensive experiments have been performed to evaluate the
performance of SECC. For future research, we will investigate
problems associated with updates on the databases, e.g., cache
invalidation and update propagation on SECC.
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Fig. 14. Performance comparison under various cache sizes.
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