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Collaborative Cyclostationary Spectrum Sensing for
Cognitive Radio Systems

Jarmo Lund́en, Visa Koivunen, Anu Huttunen, and H. Vincent Poor

Abstract—This paper proposes an energy efficient collaborative
cyclostationary spectrum sensing approach for cognitive radio
systems. An existing statistical hypothesis test for the presence of
cyclostationarity is extended to multiple cyclic frequencies and
its asymptotic distributions are established. Collaborative test
statistics are proposed for the fusion of local test statistics of
the secondary users, and a censoring technique in which only
informative test statistics are transmitted to the fusion center
(FC) during the collaborative detection is further proposed for
improving energy efficiency in mobile applications. Moreover,
a technique for numerical approximation of the asymptotic
distribution of the censored FC test statistic is proposed. The
proposed tests are nonparametric in the sense that no assump-
tions on data or noise distributions are required. In addition,
the tests allow dichotomizing between the desired signal and
interference. Simulation experiments are provided that show the
benefits of the proposed cyclostationary approach compared to
energy detection, the importance of collaboration among spatially
displaced secondary users for overcoming shadowing and fading
effects, as well as the reliable performance of the proposed
algorithms even in very low signal-to-noise ratio (SNR) regimes
and under strict communication rate constraints for collaboration
overhead.

I. I NTRODUCTION

Wireless communication systems rely on the use of scarce
resources, most notably the radio frequency spectrum. The
dramatic increases in the number of wireless subscribers, the
advent of new applications and the continuous demand for
higher data rates call for flexible and efficient use of the
frequency spectrum. Cognitive radios have been proposed asa
technology for dynamic spectrum allocation [1]–[3]. Cognitive
radios sense the radio spectrum in order to find temporal
and spatial spectral opportunities and adjust their transceiver

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Jarmo Lund́en’s work was supported by GETA graduate school, Finnish
Defence Forces Technical Research Centre and Nokia Foundation.

The funding for Visa Koivunen’s sabbatical term at Princeton University
was provided by the Academy of Finland.

H. Vincent Poor’s work was supported by the US National Science
Foundation under Grants ANI-03-38807 and CNS-06-25637.

Some preliminary results of this work were presented in part atthe 2nd Int.
Conf. on Cognitive Radio Oriented Wireless Networks and Communications,
Orlando, FL, USA, Jul. 31–Aug. 3, 2007 and the 41st Asilomar Conf. on
Signals, Systems, and Computers, Pacific Grove, CA, USA, Nov. 4–7, 2007.

J. Lund́en and V. Koivunen are with the Department of Signal Processing
and Acoustics, SMARAD CoE, Helsinki University of Technology, P.O. Box
3000, FI-02015 TKK, Finland, phone: +358 9 451 2398, fax: +358 9 452
3614, e-mail:{jrlunden,visa}@wooster.hut.fi.

A. Huttunen is with Nokia, Finland, phone: +358 50 487 2929, fax: +358
718 036 213, e-mail: anu.huttunen@nokia.com.

H. V. Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544, USA, phone: +1 609 258 2260, fax: +1 609
258 7305, e-mail: poor@princeton.edu.

parameters and operation mode accordingly. Spectrum sensing
has to be done reliably in the face of propagation effects such
as shadowing and fading. Moreover, the level of interference
caused to the primary (legacy) users of the spectrum must be
maintained at a tolerable level.

Different approaches for spectrum sensing for cognitive
radio applications have been proposed, e.g. [2], [4]–[8]. The
commonly considered approaches are based on power spec-
trum estimation, energy detection, and cyclostationary feature
detection. Power spectrum estimation may not work reliably
in the low SNR regime. Energy detection, on the other hand,
is subject to uncertainty in noise and interference statistics.
In addition, neither power spectrum estimation nor energy
detection are able to distinguish among the primary user
signals, secondary user signals, or interference. Cyclostation-
ary detection allows classifying co-existing signals exhibiting
cyclostationarity at different cyclic frequencies, relaxing as-
sumptions on noise statistics and has reliable performanceeven
in the very low SNR regime.

In this paper we propose an extension of the time-domain
constant false alarm rate (CFAR) test for the presence of
second-order cyclostationarity of [7] to simultaneous useof
multiple cyclic frequencies. Moreover, the maximum and sum
of the cyclic autocorrelation test statistics over the cyclic
frequencies of interest are considered. The proposed multicy-
cle detectors are based on the classical cyclic autocorrelation
estimator and its asymptotic properties. The method is non-
parametric in the sense that no assumptions on the noise and
data distribution are required. The only essential assumption
required is the knowledge of at least one cyclic frequency
of the primary user’s signal. Under the null hypothesis the
asymptotic distribution established provides an accurateap-
proximation for all the signal lengths of interest. The CFAR
property provides a rigorous way of limiting the false alarm
rate to an acceptable level, which is necessary for allowingthe
cognitive radio to access the available spectrum on a regular
basis, independently of the underlying noise and interference
statistics. Finally, the method is applicable for detecting almost
cyclostationary signals where the cyclic period may not be an
integer number. See [9] for a discussion of the benefits and
limitations of the method of [7] among others for cyclic period
estimation.

In order to guarantee that the interference caused to the
primary users is below an allowed level, the secondary users
need to perform spectrum sensing reliably in the face of
severe shadowing and fading effects. Overcoming these effects
without excessively long detection times requires collabora-
tion among secondary users. Collaboration among spatially
displaced secondary users allows mitigation of shadowing
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and fading effects. However, collaborative detection schemes
may lead to substantial overhead traffic generated by the
transmission of the observed data, local test statistics or
decisions to the FC. The amount of data transmitted should
be minimized especially in mobile, battery operated terminals
due to stringent battery life constraints or when the control
channel has low capacity.

We further extend the single user multicycle tests proposed
in this paper to accommodate collaboration among the sec-
ondary users. The global decisions are made by combining
the local test statistics in a dedicated FC or in an ad-hoc
manner by the secondary users. The proposed tests allow
simple decision making and threshold selection at the FC.
Furthermore, in order to reduce the amount of data trans-
mitted during collaborative detection, we propose a censoring
scheme in which only informative test statistics are sent to
the FC. In addition to the test statistics, the only parameters
transmitted to the FC during the censoring process are the
communication rate constraints of the individual secondary
users. We propose a comprehensive way of determining the
censoring and detection thresholds given the communication
and false alarm rate constraints. The proposed method is easy
to implement in practice and causes only minimal performance
loss compared to the uncensored approach even under very
strict communication rate constraints.

Multicycle detection has received considerable amount of
attention in the past. Optimum and locally optimum multicycle
detectors have been proposed in [10], [11]. However, these
detectors cannot be implemented without the knowledge of
the signal phase. Moreover, they require an explicit assump-
tion on the noise distribution. Many suboptimum multicycle
detectors with different requirements and properties havebeen
proposed in the literature. A comprehensive bibliography on
cyclostationary detection and cyclostationarity in general is
provided in [12].

Many of the collaborative detection techniques stem from
distributed detection theory; see e.g. [13], [14]. Collaborative
spectrum sensing methods based on energy detection have
been proposed, e.g., in [5], [6]. In [15], [16] cooperation
strategies using amplify-and-forward (AF) protocol have been
proposed. Cyclostationarity based collaborative detection has
been previously considered in [17] where binary decisions
of the secondary users using cyclic detectors are combined.
Optimal test thresholds at the FC and the secondary users
are determined using an iterative algorithm. However, due
to the iterative nature of the algorithm, multiple expensive
transmissions between the FC and the secondary users are
required.

Censoring techniques have been previously proposed for
energy efficient sensor networks in [18], [19], and in [20]
where the energy efficiency is further improved by ordering the
node transmissions. Collaborative spectrum sensing with cen-
soring for cognitive radios has been considered in [21] where
energy detection is combined with censoring and transmission
of binary decisions. In this paper censoring is combined with
cyclostationary detection and secondary users transmit their
local test statistics instead of binary decisions. Hence, the
thresholds for detection and censoring must be determined

differently.
The contributions of the paper are as follows. The paper

proposes a powerful energy efficient approach for spectrum
sensing that combines cyclostationary detection and user col-
laboration with censoring. Single user multicycle CFAR tests
for detecting the primary user signals are proposed. Reduced
complexity versions of the multicycle detectors are proposed
as well. The proposed multicycle detectors are extended to
accommodate collaboration among multiple secondary users.
A censoring scheme reducing the amount of data transmitted
in collaborative detection of secondary users is proposed.The
asymptotic distributions of the test statistics under the null
hypothesis are established. The established asymptotic distri-
butions are based on the asymptotics of the cyclic correlation
estimators. Hence, the proposed tests are nonparametric in
the sense that no assumptions on data or noise distributions
are required. Simulation experiments showing the benefits of
the proposed cyclostationary approach compared to energy
detection, the importance of collaboration among spatially
displaced secondary users for overcoming shadowing and
fading effects, as well as the reliable performance of the
proposed algorithms even in very low SNR regimes and under
strict communication rate constraints are provided.

The paper is organized as follows. Novel single user mul-
ticycle detectors are proposed in Section II. In particular, the
problem is formulated as an hypothesis testing problem, and
corresponding generalized likelihood ratio tests (GLRTs)are
developed. The asymptotic distributions of the test statistics
are also derived. In Section III the multicycle detectors are ex-
tended to allow collaborative detection by multiple secondary
users. Censoring of the test statistics transmitted to the FC
is considered in Section IV. Simulations results in multipath
radio environments are given in Section V, and the paper is
concluded in Section VI.

II. SINGLE USERDETECTION USING MULTIPLE CYCLIC

FREQUENCIES

Communication signals typically exhibit cyclostationarity at
multiple cyclic frequencies. These cyclic frequencies maybe
related to symbol rate, coding and guard periods, or carrier
frequency, for example. The cyclic frequencies present may
vary depending on the waveforms used and on channel quality.

In order to benefit from the rich information present in
typical communication signals, we extend the time domain
second-order cyclostationarity test of [7] to multiple cyclic
frequencies. In cognitive radio applications there typically
exists prior information about the primary user waveforms.
For example, the cyclic frequencies of the primary user signals
(or at least some of them) are typically known since the
waveforms are carefully specified in a standard. Hence, we
assume the cyclic frequencies of the primary user signal to
be known and focus on detecting the presence of the primary
user signal rather than determining its cyclic frequencies.

A. Hypothesis Testing

In the following a test for a number of time delays as
well as a set of cyclic frequencies of interest (e.g., for an
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orthogonal frequency division multiplex (OFDM) signal the
cyclic frequencies of interest could be the symbol frequency
and a few of its multiples) is constructed. The proposed
tests are based on testing whether the expected value of the
estimated cyclic autocorrelation is zero or not for the cyclic
frequencies of interest. LetA = {αn|n = 1, . . . , P} denote
the set of cyclic frequencies of interest and

r̂xx(∗) =

[

Re{R̂xx(∗)(α1, τ1,1)}, . . . ,Re{R̂xx(∗)(α1, τ1,N1
)},

Im{R̂xx(∗)(α1, τ1,1)}, . . . , Im{R̂xx(∗)(α1, τ1,N1
)},

. . .

Re{R̂xx(∗)(αP , τP,1)}, . . . ,Re{R̂xx(∗)(αP , τP,NP
)},

Im{R̂xx(∗)(αP , τP,1)}, . . . , Im{R̂xx(∗)(αP , τP,NP
)}
]

(1)
denote a1 × 2N vector containing the real and imaginary
parts of the estimated cyclic autocorrelations at the cyclic
frequencies of interest stacked in a single vector.P is the
number of cyclic frequencies in setA and N =

∑P
n=1 Nn

where Nn, n = 1, . . . , P, are the number of time delays
for each different cyclic frequency in (1). That is, cyclic
autocorrelations for each cyclic frequency may be calculated
for different time delays as well. The time delays are integer
valued and|τi,n| < M , ∀i, n. The cyclic frequenciesαn

can take on real value in the interval [0,1). Compared to [7]
equation (1) is an extension of̂rxx(∗) to multiple cyclic
frequencies, each with a set of possibly distinct time delays.
In [7], the cyclic autocorrelation vector̂rxx(∗) is given by

r̂xx(∗) =

[

Re{R̂xx(∗)(α, τ1)}, . . . ,Re{R̂xx(∗)(α, τN )},

Im{R̂xx(∗)(α, τ1)}, . . . , Im{R̂xx(∗)(α, τN )}
]

.

(2)
An estimate of the (conjugate) cyclic autocorrelation

R̂xx(∗)(α, τ) may be obtained usingM observations as

R̂xx(∗)(α, τ) =
1

M

M
∑

t=1

x(t)x(∗)(t + τ)e−j2παt (3)

wherex(t) denotes the received complex valued signal,t is
the discrete time index,M is the number of observations,
and (∗) denotes an optional complex conjugation. The nota-
tion covers both cyclic autocorrelation and conjugate cyclic
autocorrelation with only one expression. It is assumed that
x(t) has zero mean (in practice the mean can be estimated
and subtracted from the signal). In addition, we assume the
signal to be sufficiently oversampled. Oversampling at rate
fs ≥ 2NB, whereN is the order of cyclostationarity andB
is the monolateral signal bandwidth (i.e.,[−B,B]), guarantees
that there is no aliasing in the cyclic frequency domain.

In order to test for the presence of second-order cyclosta-
tionarity at any of the cyclic frequencies of interestα ∈ A
simultaneously, the hypotheses are formulated as follows

H0 : r̂xx(∗) = ǫxx(∗) ,

H1 : r̂xx(∗) = rxx(∗) + ǫxx(∗) ,
(4)

where rxx(∗) is the non-random true cyclic autocorrelation
vector. Furthermore, under commonly assumed circumstances
(i.e., when samples well separated in time are approximately
independent)ǫxx(∗) is asymptotically normally distributed, i.e.,
limM→∞

√
Mǫxx(∗)

D
= N(0,Σxx(∗)) where Σxx(∗) is the

2N × 2N asymptotic covariance matrix of̂rxx(∗) . This result
follows from [7] where the asymptotic normality of the cyclic
autocorrelation estimator is established and the covariance
of two cyclic autocorrelation estimates for arbitrary cyclic
frequencies and time delays is derived. Hence, the extension
to the above case is straightforward as well.

The asymptotic covariance matrixΣxx(∗) can be divided
into 2Nα × 2Nβ blocks, one block for each different cyclic
frequency pair(α, β). Note that(α, β) is different from(β, α),
although in practice symmetry can be used to reduce calcula-
tion. The2Nα × 2Nβ blocksΣxx(∗)(α, β) can be calculated
as [7]

Σxx(∗)(α, β) =





Re
{

Q+P

2

}

Im
{

Q−P

2

}

Im
{

Q+P

2

}

Re
{

P−Q

2

}



 , α, β ∈ A

(5)
where the(m,n)th entries of the two covariance matricesQ

andP are given by

Qα,β(m,n) = Sfτm
fτn

(α + β, β),

Pα,β(m,n) = S∗
fτm

fτn

(α − β,−β).
(6)

Here,Sfτm
fτn

(α, ω) andS∗
fτm

fτn

(α, ω) denote the nonconju-
gated and conjugated cyclic spectra off(t, τ) = x(t)x(∗)(t +
τ), respectively. These spectra may be estimated, e.g., by using
frequency smoothed cyclic periodograms as follows

Ŝfτm
fτn

(α + β, β) =
1

MT

(T−1)/2
∑

s=−(T−1)/2

W (s)

· Fτn
(α − 2πs

M
)Fτm

(β +
2πs

M
) (7)

and

Ŝ∗
fτm

fτn

(α − β,−β) =
1

MT

(T−1)/2
∑

s=−(T−1)/2

W (s)

· F ∗
τn

(α +
2πs

M
)Fτm

(β +
2πs

M
) (8)

where Fτ (ω) =
∑M

t=1 x(t)x(∗)(t + τ)e−jωt and W is a
normalized spectral window of odd lengthT .

In the following the GLRT and its asymptotic distribution
are derived. We begin from the likelihood ratio and derive the
GLRT statistic. Finally, we employ an asymptotic theorem to
obtain the distributions under both hypotheses. The distribu-
tions derived here are extensions to multiple cyclic frequencies
of the ones derived in [7]. The asymptotics for the single cyclic
frequency situation derived in [7] are obtained as a special
case. In addition, the distribution underH1 derived here is
more accurate than the one in [7]. As we will later explain,
the distribution underH1 provided in [7] is obtained from the
distribution derived here using a normal approximation.
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B. Generalized Likelihood Ratio Test (GLRT)

Using the asymptotic normality of̂rxx(∗) , the likelihood
ratio (LR) is given by (note that there is only one observation
of r̂xx(∗) )

Λ =
f(r̂xx(∗) |H1)

f(r̂xx(∗) |H0)

=
exp(− 1

2M(r̂xx(∗) − rxx(∗))Σ−1
xx(∗)(r̂xx(∗) − rxx(∗))T )

exp(− 1
2M r̂xx(∗)Σ

−1
xx(∗) r̂

T
xx(∗))

.

(9)

The generalized likelihood ratio (GLR) is obtained by
substitutingr̂xx(∗) for rxx(∗) and Σ̂xx(∗) for Σxx(∗) , i.e.,

Λ̃ = exp

(

1

2
M r̂xx(∗)Σ̂

−1
xx(∗) r̂

T
xx(∗)

)

. (10)

The final generalized log-likelihood ratio test statistic is
obtained by taking the logarithm and multiplying the result
by 2, i.e.,

Txx(∗) = 2 ln Λ̃ = M r̂xx(∗)Σ̂
−1
xx(∗) r̂

T
xx(∗) . (11)

In case setA contains only one cyclic frequency then the test
statistic in (11) reduces to the test statistic in [7].

C. Asymptotic Distribution of the GLR Test Statistic

In order to derive the asymptotic distribution of the GLR
test statistic, the following theorem is employed [23]:

Theorem 1:Let x ∼ N(µ,V ), where V is p × p non-
singular, suppose that the realp × p matrix A is symmetric,
and letr(A) denote its rank. Then the quadratic formxAxT

follows a chi-square distribution if and only ifAV is idempo-
tent, in which casexAxT hasr(A) degrees of freedom and
noncentrality parameterµAµT .

Here x =
√

M r̂xx(∗) , µ = 0 under H0 and
µ =

√
Mrxx(∗) under H1, V = Σxx(∗) , and A =

Σ̂
−1
xx(∗) . Since Σ̂

−1
xx(∗) is mean-square sense convergent [7],

i.e., limM→∞ Σ̂
−1
xx(∗)

m.s.s.
= Σ

−1
xx(∗) , limM→∞ AV =

limM→∞ Σ̂
−1
xx(∗)Σxx(∗)

P
= Σ

−1
xx(∗)Σxx(∗) = I and thus the

matrix product is asymptotically idempotent. The convergence
in probability follows from application of a Craḿer-Wold
device (e.g., [24, p. 147]) and from the fact that convergence
in the mean-square implies convergence in probability. Hence,
from Theorem 1 it follows that underH0

lim
M→∞

Txx(∗)
D
= χ2

2N , (12)

and underH1 we can approximately write for largeM

Txx(∗) ∼ χ2
2N (Mrxx(∗)Σ̂

−1
xx(∗)r

T
xx(∗)), (13)

whereN =
∑P

n=1 Nn.
That is, under the null hypothesisTxx(∗) is asymptotically

(central) chi-square distributed with2N degrees of freedom
and under the alternative hypothesis non-central chi-square
distributed with 2N degrees of freedom and non-centrality
parameterMrxx(∗)Σ̂

−1
xx(∗)r

T
xx(∗) .

The normal distribution approximation underH1 for
the single cyclic frequency case derived in [7] follows

from (13) with a normal approximation and assuming that
Mrxx(∗)Σ̂

−1
xx(∗)r

T
xx(∗) ≫ N . Note that this may not be a very

reasonable assumption in the low SNR regime when the value
of Mrxx(∗)Σ̂

−1
xx(∗)r

T
xx(∗) can be relatively small compared to

N .
The CFAR test is now defined as follows. AcceptH1 if

Txx(∗) > γ, whereγ is the test threshold chosen so thatpfa =
p(Txx(∗) > γ|H0), andpfa is the false alarm rate parameter.

D. Computationally Efficient Test Statistics

The Fourier coefficients of a wide-sense stationary random
process for different frequencies are asymptotically uncorre-
lated [22]. Moreover, the Fourier coefficients of a Gaussian
random process are asymptotically independent. Since the
cyclic autocorrelation estimates are the Fourier coefficients
of the autocorrelation function, they are asymptotically un-
correlated for different cyclic frequencies. Under the null
hypothesis there is no cyclostationarity present. Thus, the
cyclic correlation estimates at different cyclic frequencies
(i.e., the Fourier coefficients) are asymptotically uncorrelated.
Hence, under the null hypothesisΣxx(∗) is a block-diagonal
matrix. Consequently, the test statistic in (11) simplifiesto

Ds = Txx(∗) =
∑

α∈A

Txx(∗)(α), (14)

whereTxx(∗)(α) denotes the cyclostationary test statistic cal-
culated for single cyclic frequencyα in the set of cyclic
frequencies of interestA. Note that the asymptotic distribution
under the null hypothesis remains the same.

Using (14) instead of (11) is computationally more efficient
especially if the number of cyclic frequencies of interest in the
setA is large (more than 3 or 4). However, since the whole
correlation structure of the signal is not taken into account
the detection performance may degrade. On the other hand,
depending on the signal and employed cyclic frequencies, in
the high SNR regime the cyclic autocorrelation estimates for
different cyclic frequencies may be linearly dependent. Ifthe
full correlation structure is taken into account this may cause
problems in the detection since it may make the estimated
covariance matrix rank deficient. This problem may be avoided
by removing one of the linearly dependent parameters. In
practice, as will be demonstrated in the simulation section
there is not a significant difference in detection performances
between the full and simplified models.

The multicycle detector of (11) and the multicycle sum
detector of (14) are best suited for situations where the primary
signal has multiple strong cyclic frequencies. That is, the
primary signal exhibits significant spectral correlation at these
cyclic frequencies. Otherwise the performance may deteriorate
since each test statistic for different cyclic frequency increases
the number of degrees of freedom of the asymptotic distrib-
ution. Consequently, including cyclic frequencies that donot
provide substantial contribution is not beneficial.

Another interesting test statistic is obtained by calculating
the maximum of the cyclostationary test statistic over the set
of cyclic frequencies of interest, i.e.,

Dm = max
α∈A

Txx(∗)(α). (15)
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Finding the maximum over the cyclic frequencies of interest
may prove to be useful if the cyclic frequencies are due to
different signal properties or if the primary user system has
multiple alternating operation modes that result in different
cyclic frequencies. For example, adaptive modulation and
coding may lead to such signals.

Under the null hypothesis the asymptotic cumulative distri-
bution function (cdf) ofDm is given by

FD(x, P, {Ni}P
i=1) =

P
∏

i=1

(

1 − e−x/2
Ni−1
∑

n=0

(x/2)n

n!

)

. (16)

The null hypothesis is rejected ifFD(x, P, {Ni}P
i=1) > 1−

pfa wherepfa is the false alarm rate andP is the number of
tested cyclic frequencies. See Appendix for detailed derivation.

III. C OLLABORATIVE DETECTION

In cognitive radio systems, there are typically multiple
spatially distributed secondary users that are trying to find
underutilized spectrum, i.e., spectral holes. User cooperation
can be realized in a number of different ways. All the
secondary users may sense the entire band of interest, or in
order to reduce power consumption monitor just a partial band.
In the latter case each secondary user senses a certain part of
the spectrum, and then shares the acquired information with
other users or an FC. With multiple spatially distributed users
sensing each frequency band, the diversity gains necessaryfor
mitigating the shadowing and fading effects can be achieved.
Here, the focus is on collaboration of a group of secondary
users all sensing the same frequency band.

In addition to being coordinated by an FC, the cooperation
may take place in an ad-hoc manner without a dedicated
FC, i.e., the secondary users distribute their local quantized
information to all the other users and each user performs
the fusion locally. Here it is assumed that an FC collects
information from allL secondary users and makes a decision
about whether the frequency band is available or not. Each
secondary user sends a quantized version of its local spectrum
sensing statistics (such as the LR) to the FC. In the case of
very coarse quantization, binary local decision may be sent.
Assuming that the secondary users are independent givenH0

or H1, the optimal fusion rule is the LR test over the received
local LRsΛi:

ΛL =

L
∏

i=1

Λi. (17)

In case the secondary users send binary decisions, the sum of
ones may be calculated and compared to a threshold. Here, a
simple way of making the decision using GLRs is considered.
Note that due to using GLRs optimality cannot be claimed.

Equivalently to the product of the LRs, (17) can be written
as the sum of log-LRs. Hence, the following test statistic is
obtained:

TL =
L
∑

i=1

T (i)

xx(∗) (18)

whereT (i)

xx(∗) is either the full correlation test statistic in (11)
or the simplified sum test statistic in (14) of useri.

In addition, the following maximization test statistic is
proposed:

Dm,L = max
α∈A

L
∑

i=1

T (i)

xx(∗)(α). (19)

Under the conditional independence assumption the asymp-
totic distribution of the test statisticTL in (18) is χ2

2NL

under the null hypothesis. This is due to the fact that the
sum of independent chi-square random variables is also a
chi-square random variable whose degrees of freedom is the
sum of the degrees of freedom of the independent random
variables. The cumulative distribution function ofDm,L in (19)
is FD(Dm,L, P, {NiL}P

i=1) under the null hypothesis whereP
is the number of tested cyclic frequencies.

A censoring scheme for reducing the amount of transmitted
data, taking into account the relevance of the information
provided by secondary users as well as how to deal with
communication rate constraints, will be introduced in the
following section.

IV. COLLABORATIVE DETECTION WITH CENSORING

In a collaborative spectrum sensing scheme the transmission
of the spectrum sensing results by the secondary users to an
FC or other secondary users in ad-hoc scenarios generates
substantial overhead traffic. A significant reduction in the
amount of data transmitted may be achieved by transmitting
only the relevant or informative test statistics to the FC or
the other users. This operation is called censoring. It reduces
the energy consumption of the secondary user terminals since
fewer terminals are transmitting at any given time. In the
following a censoring strategy for cyclostationarity based
spectrum sensing under communication rate constraints is
proposed. Censoring has been employed in energy efficient
sensor networks in [18], [19].

Let L denote the total number of collaborating secondary
users andK denote the number of users transmitting their test
statistics to the FC or the user making the decision. Each user
is assigned a separate communication rate constraint defined
by

p

(

T (i)

xx(∗) > ti

∣

∣

∣

∣

H0

)

≤ κi, i = 1, . . . , L, (20)

whereκi ∈ [0, 1] is the communication rate constraint of user
i andti is the upper limit of the censoring (no-send) region of
the useri. That is, each user will transmit its test statistic to
the FC only if its value is aboveti whereti is chosen such that
the probability of the useri transmitting the test statistic to the
FC underH0 is κi. This type of strategy in which each user
is assigned a separate communication rate constraint has been
suggested in [19] for censoring in sensor networks. The choice
is natural in a scenario where the secondary user terminals may
have very different capabilities for data transmission. More-
over, the threshold valuesti needed to meet the communication
rate constraints can easily be selected independently by the
secondary users. Recall that under the null hypothesisH0 the
test statisticT (i)

xx(∗) in (20) is asymptoticallyχ2
2N distributed.

However, the threshold values (or the communication rate
constraints) must be communicated to the FC. Note that the
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maximum achievable false alarm rate without randomization
for this strategy is given by1 −∏L

i=1(1 − κi).
The test statistic of the proposed censoring test is given by

DL =
K
∑

i=1

T (i)

xx(∗) +
L−K
∑

i=1

di = DK +
L−K
∑

i=1

di, (21)

where the latter sum corresponds to the generalized log-LRs
in the no-send region. The idea is that the test statistics ofthe
secondary users not transmitting are replaced by a constant
value denoted bydi. Here, the value chosen fordi is the
conditional mean of the local generalized log-LR of theith
user (i.e., the test statisticT (i)

xx(∗) ) in the no-send region under
H0, i.e.

di = E

[

T (i)

xx(∗)

∣

∣

∣

∣

T (i)

xx(∗) ≤ ti,H0

]

, i = 1, . . . , L. (22)

Since T (i)

xx(∗) is under the null hypothesisχ2
2N distributed

random variable, the value ofdi is easily obtained at the FC
using the thresholdti (that is defined by the communication
rate constraintκi, see (20)). Thus, there is no need to transmit
di. The communication rate constraintκi is the only parameter
transmitted to the FC.

Determining the value ofdi can be considered as quantiza-
tion to only one value. In other words, the whole distribution
of values in the no-send region is represented by a single value.
With this analogy it is obvious that choosing the conditional
mean as the value fordi is optimal in the minimum mean-
square error (MMSE) sense. Finally, note that although the
value ofdi is constant and can be set offline, the value of the
second sum in (21) is a random variable sinceK is random.
Hence, the second sum cannot be included in the test threshold
if a single threshold is used for allK.

Here only FC test statistics based on summation of local test
statistics of the secondary users are employed. Maximization
over the cyclic frequencies of interest at the FC requires
transmission of test statistics for all cyclic frequencies. Thus,
it generatesP times more data than summation based test
statistics whereP is the number of cyclic frequencies of
interest.

To summarize, apart from the secondary user test statis-
tics exceeding the censoring thresholds, the only additional
information that has to be transmitted to the FC during the
censoring process is the set of communication rate constraints
κi (or alternatively the censoring thresholdsti). Moreover,
each communication rate constraintκi has to be transmitted
only once when the cooperation is initiated and afterwards
only whenever it is changed.

Censoring affects the distribution of the global test statistic
at the FC or secondary user where the statistics are combined.
Essentially, the task is to determine the distribution of a sum
of truncated chi-square distributed random variables.

The distribution of the test statisticDL can be defined using
conditional distributions as follows:

p(DL|H0) =
L
∑

k=0

p(DL|K = k,H0)p(K = k|H0), (23)

where the probabilities of different values ofK are obtained
by enumerating all possible combinations and computing their
respective probabilities. In case all the secondary users have
equal communication rate constraints, i.e.,κ = κi, ∀i, then
the probabilities are given by

p(K = k|H0) =

(

L

k

)

κk(1 − κ)L−k. (24)

Now let us consider only the termsT (i)

xx(∗) of the first sum

in (21). The probability density function (pdf) ofy = T (i)

xx(∗)

at the FC is given by a truncated chi-square pdf, i.e.,

g(y, 2N |H0) =
1

1 − G(t)
· 1

2NΓ(N)
yN−1e−y/2, y ≥ t (25)

where 2N is the number of degrees of freedom andΓ(·)
denotes the gamma function. The censoring threshold (i.e.,the
upper limit of the censoring region) is denoted byt andG(·)
denotes the cumulative distribution function of the chi-square
distribution. Fory < t, g(y, 2N |H0) = 0.

Determining the distribution of a sum of truncated chi-
square distributed random variables in a closed form is very
difficult. Here, the fact that the cumulative distribution function
may be obtained by inverting the characteristic function is
employed to approximate the distribution numerically. One
form of the inversion theorem between the characteristic
function Φ(·) and the cumulative distribution functionF (·)
is given by [25]

F (y) =
1

2
−
∫ ∞

−∞

Φ(ω)

j2πω
e−jωydω, (26)

wherej denotes the imaginary unit. Before the actual method
employed for the numerical inversion of the characteristic
function is presented, the characteristic function of the test
statistic is derived.

The characteristic function of a random variableY is
defined by

Φ(ω) = E[exp(jωy)], (27)

whereE[·] denotes the expectation operator. The characteristic
function always exists. Moreover, it uniquely defines the
distribution of the random variable.

Using (27) the characteristic function of the truncated chi-
square pdf is defined by

ΦT (ω) =

∫ ∞

t

exp(jωy)g(y, 2N |H0)dy. (28)

Using repeated integration by parts the following result is
obtained as

ΦT (ω) =
1

1 − G(t)

N
∑

n=1

(

1

(N − n)!
2−N+ntN−n

· (1 − 2jω)−n exp(−(1 − 2jω)t/2)

)

.

(29)

Since the individual test statisticsT (i)

xx(∗) are independent,
the characteristic function of the first sum in (21) (i.e., the
characteristic function ofDK) factors to a product of the
characteristic functions of the individual test statistics. That
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is, the characteristic function ofDK for a given K = k is
given by

ΦDk
(ω) =

k
∏

i=1

ΦTi
(ω). (30)

For equal communication rate constraints among the sec-
ondary users, the characteristic function ofDK for a given
K = k is given by

ΦDk
(ω) = ΦT (ω)k. (31)

Finally, the characteristic function ofDL for a givenK = k
is given byΦDL

(ω) = exp(jω
∑L−k

i=1 di)ΦDk
(ω). The result

follows directly from (27) since thedi are non-random.
The distributionsp(DL|K = k,H0) can be approximated

by numerically inverting the characteristic function. Here a
Fourier-series method introduced in [26] for numerical inver-
sion of the characteristic function is employed. The chosen
method is very simple and easy to use. Although there exists
many more sophisticated and accurate methods, the accuracy
of the chosen method is more than sufficient for the application
at hand. For a comprehensive review of Fourier-series methods
for numerical inversion of characteristic functions, Laplace
transforms, and generating functions, see [27].

The value of cumulative distribution functionF (y) of a
random variableY with zero mean and unit variance can be
approximated by [26]

F (y) ≈ 1

2
+

ηy

2π
−

H−1
∑

ν=1−H
ν 6=0

ΦY (ην)

2πjν
e−jηνy, (32)

where ΦY (·) denotes the characteristic function ofY . The
distribution is approximated at2H − 1 different points.η is
a constant chosen such that the full range of the distribution
is represented (i.e., values ofF (y) include both 0 and 1).
In order to be able to use the fast-Fourier transform (FFT)
to calculate the sum in (32) the pointsy are chosen as the
Fourier frequencies, i.e.,yk = 2π(k − H)/(2η(H − 1)), k =
1, . . . , 2H − 1. Note that the undefined value for indexν = 0
has to be excluded from the final sum.

Since (32) is defined for a normalized random variable
with a mean zero and unit variance, the test statistic has to
be normalized as well. The mean and variance can be easily
calculated by differentiating the characteristic function since
Φ

(n)
Y (0) = jnE[yn] and the varianceσ2 = E[y2] − E[y]2.

The mean and variance of a truncated chi-square distributed
random variableY with pdf defined by (25) are given by

µ =
1

1 − G(t)

N
∑

n=1

(2n + t)

(N − n)!
2−N+ntN−ne−t/2, (33)

and

σ2 =
1

1 − G(t)

N
∑

n=1

(

1

(N − n)!
2−N+ntN−ne−t/2

· (4n(n + 1) + 4nt + t2)

)

− µ2. (34)

Since the test statistics of the secondary users are independent,
the mean and variance of the FC test statistic are obtained by
summing the mean and variances of the secondary user test
statistics, respectively. Note that for the mean of the FC test
statistic the term

∑L−k
i=1 di in (21) has to be added as well.

The variance does not change since thedi are non-random.
Finally, the characteristic function of a normalized variable
Z = (Y −µ)/σ is given byΦZ(ω) = exp(−jωµ/σ)ΦY (ω/σ).

The distributionsp(DL|K = k,H0) can be approximated
by using (32). The combined distributionp(DL|H0) is ob-
tained by multiplying the conditional distributions with the
probabilities of different values ofK. The distribution values
between the FFT points can be interpolated.

In order to obtain a desired false alarm ratepfa, a single
test thresholdγ may be set using the following equation

pfa = p(DL > γ|H0). (35)

Alternatively, different thresholds may be used for different
values of the number of received test statisticsK. The desired
false alarm rate is obtained if the thresholdsγk, k = 1, . . . , L,
satisfy the following condition:

pfa =

L
∑

k=1

p(DL > γk|K = k,H0)p(K = k|H0). (36)

In the above expression, it is assumed that if none of the
users transmits, the decision is alwaysH0. For example, the
thresholdsγk may be chosen such thatp(DL > γk|K =
k,H0) = pfa/

∑L
k=1 p(K = k|H0),∀k. Furthermore, the

CFAR property is guaranteed also if the thresholds are defined
by p(DL > γk|K = k,H0) = pfa. This is a non-optimal strat-
egy but may be used if the total number of collaborating users
is not known (note that the communication rate constraints
still need to be known). In that case the combined distribution
p(DL|H0) does not have to be calculated since only the
conditional distributionsp(DL|K = k,H0) are required. Note
that in this case it is necessary to usedi = 0,∀i, since the
number of users not transmitting is not known.

In case the communication rate constraints are chosen equal
for each secondary user, i.e.,κ = κi,∀i, the amount of
required computation is considerably reduced. If the communi-
cation rate constraints are not equal, the approximation ofthe
distributionsp(DL|K = k,H0) means that the Fourier-series
approximation has to be done for all different combinations
of different users transmitting (and then combining the cdfs
using their respective probabilities). Hence, from a practical
point of view it is advisable to limit the number of different
communication rate constraints the secondary users can select
in order to reduce the number of different combinations.

Finally, we point out that the proposed censoring scheme
may be directly applied also to other test statistics that are
under the null hypothesis chi-square distributed, such as the
energy detector.

V. SIMULATION EXAMPLES

The primary user signal considered in the simulations is the
OFDM signal. OFDM is employed by many of the current
as well as future wireless communications systems. OFDM
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based systems include 3GPP Long term evolution (LTE),
IEEE 802.11a/g Wireless local area networks (WLAN), Digital
video broadcasting (DVB) standards DVB-T and DVB-H, as
well as IEEE 802.16 and WiMax Wireless metropolitan area
networks (MAN), for example. A baseband OFDM signal is
given by

x(t) =

Nc−1
∑

n=0

∞
∑

l=−∞

cn,lg(t − lTs)e
j(2π/Nc)n(t−lTs) (37)

whereNc is the number of subcarriers,Ts is the symbol length,
g(t) denotes the rectangular pulse of lengthTs, and cn,l’s
denote the data symbols. The symbol length is given byTs =
Td +Tcp whereTd is the length of the useful symbol data and
Tcp the length of the cyclic prefix.

In addition to possibly other cyclic frequencies, a cyclic
prefix OFDM signal exhibits cyclostationarity at the integer
multiples of the symbol rateα = k/Ts, k = 0,±1,±2, . . .. In
the following simulation experiments the single cycle detector
employs the cyclic frequency of1/Ts while the multicycle
detectors employ1/Ts and2/Ts. Furthermore, if not otherwise
mentioned all the detectors use two time lags±Td. That is,
the detectors assume the knowledge of the symbol frequency
and the useful symbol length. The cyclic autocorrelation of
the OFDM signal has a peak for the above time lags [8].

The cyclic spectrum estimates were calculated using a
length 2049 Kaiser window withβ parameter of 10. The
Fourier-series method for approximating the cdfs of the FC test
statistics after censoring employs the parameter valuesη = 0.5
and H = 1000 (see (32) and the explanation after it). The
plotted simulation curves are averages over 1000 experiments.

Detection performance is measured as a function of the
SNR. The SNR in dB is defined by

SNR(dB) = 10 log10

σ2
x

σ2
n

(38)

whereσ2
x andσ2

n are the powers of the transmitted signal and
the noise, respectively. The channels are normalized to have
an expected channel gain of one. In all of the simulations the
secondary users experience independent channels (i.e., fading
and shadowing) and receiver noises. However, the statistics
of the fading, shadowing, and noise processes are identical
among secondary users.

A. Theoretical Analysis vs. Simulation Results

Fig. 1 illustrates the accuracy of the asymptotic distribution
under the null hypothesis in (12) for the multicycle detectors
in (11) and (14). In the figure the theoretical cdf of the
χ2

2N distribution with N = 4 and simulated empirical cdfs
for white Gaussian noise for 2 different number of samples
have been plotted. Already with 1000 samples the accuracy of
the asymptotic distribution is very good. The accuracy of the
asymptotic distribution for the simplified sum test statistic is
slightly worse with 1000 samples in the most important region
for detection, the upper tail of the distribution, than for the
test statistic that takes the correlations between the different
cyclic frequencies into account. The sum test statistic requires
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Figure 1. Comparison of theoretical and simulated cdfs for white Gaussian
noise (i.e., underH0) for 2 different number of samples. As the number
of samples increases the accuracy of the theoretic asymptoticdistribution
improves. The detectors use 2 random cyclic frequencies and 2random time
delays. The theoretical cdf has been obtained using the distribution in (12).

slightly more samples for the asymptotic distribution to hold
true in the upper tail of the distribution.

Fig. 2 compares theoretical and simulated performance
curves for a WLAN OFDM signal in additive white Gaussian
noise (AWGN) for 3 different number of samples. The number
of subcarriersNFFT = 64 of which Nocc = 52 are occupied,
and the cyclic prefix lengthNcp = 16. The subcarrier modula-
tion is QPSK (quadrature phase shift keying). The false alarm
ratepfa = 0.01. The signal was sampled at the Nyquist rate;
that is, the oversampling factor with respect to the symbol rate
is NFFT + Ncp. The accuracy of the theoretical asymptotic
distribution improves as the number of samples increases. The
asymptotics start to hold very accurately when the number of
samples approaches 12000. The number of samples required
for the asymptotic distribution to hold true depends also on
the signal and its characteristics and the sampling rate. Note
that the fact that the asymptotic distributions underH1 do not
necessarily hold true for small number of samples does not
mean that the algorithm cannot be used if the sample size is
not large enough. Merely, the performance cannot be predicted
using the theoretical curves. The more important factor is
the accuracy of the asymptotic distribution underH0 which
holds true for far less number of samples (roughly 1000). This
guarantees the CFAR nature of the algorithm.

B. Multicycle and Collaborative Detection

Fig. 3 depicts the performance of the proposed multicycle
detectors as a function of the SNR for a DVB-T (Digital video
broadcasting, Terrestrial television) signal in (a) AWGN and
(b) frequency flat Rayleigh fading channels. The DVB-T signal
parameters are as follows:NFFT = 8192, Nocc = 6817,
and Ncp = 1024. The subcarrier modulation is 64-QAM
(quadrature amplitude modulation). The length of the signal
is 3 OFDM symbols (≈ 3 ms). The signal was sampled at the
Nyquist rate; that is, the oversampling factor with respectto
the symbol rate isNFFT +Ncp. Thus, the number of samples
is 3 × (NFFT + Ncp) = 27648 samples. The same sampling
strategy is used in all of the following simulations as well.
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Figure 2. Comparison of theoretical and simulated performancecurves for a
WLAN OFDM signal in AWGN for 3 different signal lengths. As the number
of samples increases the accuracy of the theoretic asymptoticdistribution
improves. The theoretical and simulation curves practicallyoverlap with
12000 samples. The signal lengths in time are 0.2 ms, 0.4 ms, and 0.6 ms.
The detectors use 2 cyclic frequencies and one time delay equal to NFFT .
The theoretical curves have been obtained using the distribution in (13).

The figures show that in order to obtain reliable perfor-
mance in challenging propagation environments, collaboration
among secondary users is necessary. The performance for a
single secondary user operating alone is significantly worse
in Rayleigh fading channel than in AWGN. Collaboration
among secondary users brings the overall detection perfor-
mance in Rayleigh fading on the same level with the overall
collaborative detection performance in AWGN. Collaboration
provides spatial diversity and thus reduces the impact of fading
on the overall detection performance. That is, the probability
that every secondary user is simultaneously in a deep fade is
smaller as the number of spatially displaced secondary users
increases. Using multiple cyclic frequencies further improves
the performance. The performance improvement is 1–2 dB.
The gain obtained from collaboration is far greater. In addition,
it can be seen that taking into account the full correlation struc-
ture between estimates at different cyclic frequencies provides
the best performance. However, the performance difference
to the best simplified multicycle detector, the sum detector
Ds, is not significant. Hence, in the following simulations the
multicycle detectors are all sum detectors.

C. Comparison to Energy Detection

In the following we will compare the proposed cyclic detec-
tors to energy detector in AWGN. The primary user signal is
an IEEE 802.11a/g WLAN OFDM signal. The primary user
signal parameters are as follows:NFFT = 64, Nocc = 52,
and Ncp = 16. The subcarrier modulation is 64-QAM. The
sensing time is 1 ms (= 20000 samples).

We have implemented an energy detector that estimates the
noise power from the guard bands. In order to obtain tolerance
against carrier frequency offsets and leakage from the possibly
occupied spectrum, we employ a noise power estimator that
estimates the average power in 3 of the unoccupied subcarrier
frequencies at both ends of the spectrum (i.e. 6 subcarrier
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Figure 3. Probability of detection vs. SNR (dB) for a DVB-T signal in
(a) AWGN and (b) frequency flat Rayleigh fading channels. Collaboration
among secondary users improves performance through diversity. It mitigates
the effects of fading. Using multiple frequencies further improves the detection
performance. (SU = secondary user, cf = cyclic frequency)

frequencies in total). The obtained noise power estimate is
employed in the energy detector to make it a CFAR detector.
In addition, we consider the energy detector with known noise
power and noise uncertainty denoted by∆ in dB (i.e., noise
power± ∆).

Fig. 4 depicts the performance of the detectors for the
primary user signal as a function of the SNR. The energy
detector outperforms the cyclic detector when the noise power
is known perfectly. However, with 1 dB noise uncertainty there
is roughly a 5 dB performance gap between the cyclic detector
and the energy detector. Moreover, due to the noise uncertainty
the performance of the energy detector does not improve if
the number of samples increases. This behavior is predicted
by the SNR wall [28]. That is, due to the noise uncertainty
the energy detector cannot distinguish the weak primary user
signal from slightly higher noise power. Consequently, the
energy detector is very susceptible to noise uncertaintiesand
thus its performance is dictated by the accuracy of the noise
power estimate. This is demonstrated by the CFAR energy
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Figure 4. Probability of detection vs. SNR for a WLAN OFDM signal in
AWGN. Noise estimation from the guard bands suffers from uncertainty that
reduces the reliability of the CFAR energy detector. The noise uncertainty
scaled CFAR energy detector has roughly the same performance as the cyclic
detector. That is, in this example, the noise uncertainty mustbe less than 0.18
dB in order to have equal performance to the cyclic detector. Moreover, noise
uncertainty makes robust energy detection impossible beyondcertain SNR as
predicted by the SNR wall. (ED = Energy detector)

detector. It can be seen that if there is even minor uncertainty in
the noise power estimation, the CFAR energy detector cannot
limit the false alarm rate reliably or obtain the same detection
performance as the energy detector with exactly known noise
power. We have experimentally determined from a pure noise
signal that the uncertainty in noise power estimation for the
false alarm rate 0.01 in this case is roughly 0.18 dB. That is,
adding this uncertainty to the estimated noise power results
in a false alarm rate of 0.01. Using this uncertainty to scale
the noise power estimate the performance of the CFAR energy
detector is roughly on the same level with the cyclic detector.
This shows that the noise uncertainty must be less than 0.18
dB in this scenario for the CFAR energy detector to obtain the
same performance as the cyclic detector. However, this experi-
ment assumes a white noise spectrum without any interference.
Practically all communication bands are interference limited in
their capacity. In interference limited communication channels
it is hard to estimate the noise power reliably. In [29] a 1 dB
noise uncertainty is considered to be a typical value without
considering interference. If interference is taken into account
the noise uncertainty may be significantly higher than 1 dB.

Fig. 5 depicts the performance of the detectors in the pres-
ence of one interfering signal. The interfering signal is another
OFDM signal (NFFT = 32, Nocc = 32, Ncp = 8, QPSK)
with different cyclic frequencies and a narrower bandwidth
(1/7th of the bandwidth of the primary user signal). The SNR
of the interference is -5 dB. Since the energy detector is not
able to distinguish between the primary user signal and the
interference, it will either always detect the presence of the
primary user regardless of the SNR of the primary user signal
or if the SNR of the interfering signal is low enough compared
to the noise uncertainty it will suffer from the SNR wall
behavior. The cyclic detector is able to distinguish between the
primary user and interfering signals and consequently suffers
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Figure 5. Probability of detection vs. SNR for a WLAN OFDM signal in
AWGN. The interfering signal is an OFDM signal with differentcyclic
frequencies and a narrower bandwidth (1/7th of the primary user signal
bandwidth). The SNR of the interfering signal is -5 dB. The energy detector
has no means for distinguishing between the primary user signal and the
interference. Hence, it will either always detect the presence of the primary
user even if only the interfering signal is present or be restricted by the SNR
wall depending on the SNR of the interfering signal compared to the noise
uncertainty.

only a roughly 1–2 dB performance loss compared to the case
where interference is not present.

Energy detection has no means of distinguishing among
different signals. It is intended for detecting random signals
in noise and it does not exploit any knowledge of signal
waveforms. In cognitive radio applications we are operating
in frequency bands where interference, not just noise, is
frequently present. Examples of common interference sources
are ultra-wideband devices, other secondary users, device-
to-device communication, leakage from adjacent channels as
well as electrical devices with electromechanical switches.
Cyclostationary detection provides means for distinguishing
among primary users, secondary users, and interference.

D. Collaborative Detection With Censoring

Fig. 6 illustrates the performance of the censoring test based
on two cyclic frequencies for different communication rate
constraints. The test signal is a WLAN OFDM signal with the
following parameters:NFFT = 64, Nocc = 52, andNcp = 16.
The subcarrier modulation is 64-QAM, the signal length is 100
OFDM symbols (= 8000 samples = 0.4 ms), and the channel
is a frequency flat Rayleigh fading channel.

It can be seen from the figure that the performance loss due
to censoring is minor even under very strict communication
rate constraints.

Fig. 7 shows the number of users transmitting their test
statistics to the FC as a function of SNR under different
communication rate constraints. The reductions in transmis-
sions are largest at low SNRs. At moderate-to-high SNRs
more users start to “detect” the presence of the primary user.
The value of their local test statistic increases and becomes
informative by indicating the possible presence of the primary
user and consequently they transmit their test statistics to the
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Figure 6. Probability of detection vs. SNR (dB) for a WLAN signal in
frequency flat Rayleigh fading channel for different communication rate
constraints. The number of collaborating users is 10. The performance with
censoring is close to optimal even under very strict communication rate
constraints.
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Figure 7. Average number of users transmitting the test statistic to the FC
vs. SNR for different communication rate constraints. The number of users
transmitting their test statistics to the FC are as imposed by the respective
communication rate constraints.

FC. The very low SNR regime corresponds to the situation
when the primary user is not present as well. Hence, we can
see that the transmission rates underH0 are as imposed by
the communication rate constraints. Since the null hypothesis
situation is the most likely situation in practice, significant
savings in overall transmission rates are obtained.

E. Doppler Effect

In this section the goal is to determine the effects of
carrier frequency shifts and the subsequent change in cyclic
frequencies due to the Doppler effect on the performance of
the cyclic detectors. In order to study these effects, Doppler
spread due to the mobility of the receiver (and/or transmitter)
is introduced to the channel. In addition, the symbol periodis
changed proportionally to the maximum Doppler frequency.

Doppler effects are caused by the relative motion of the
transmitter and receiver as well as by their relative motionwith
respect to the reflectors. A sinusoidal transmitted waveform

with wavelengthλ experiences a frequency shift given by
∆f = v/λ = v/c · f wherev is the speed of the transmitter
relative to the receiver,c is the speed of the light, andf
is the frequency of the sinusoidal waveform. The change in
symbol frequencies is proportional to the ratio of the speeds
as well, i.e., ∆α = v/c · α. For example, for a DVB-T
system in 8K mode with a cyclic prefix of 1/8 of the useful
symbol data, the symbol frequency is approximately 1 kHz.
Hence, for a relative speed of 300 m/s the change in symbol
frequency is roughly10−3 Hz. In addition, oscillator mismatch
between the transmitter and receiver may cause a frequency
offset. In practice instead of a single frequency shift the
signal experiences a complete Doppler spread. That is, each
propagation path experiences a different Doppler shift.

Two test signals are employed: 3GPP LTE (Long term
evolution) [30] and DVB-T OFDM signals. The LTE signal
parameters are as follows.NFFT = 512, Nocc = 300, and
Ncp = 36. The subcarrier modulation is QPSK, the carrier
frequency is 2.5 GHz, and the length of the LTE signal is
14 OFDM symbols (= 7672 samples≈ 1 ms). The DVB-
T signal parameters are:NFFT = 8192, Nocc = 6817,
and Ncp = 1024. The subcarrier modulation is 64-QAM,
the carrier frequency is 750 MHz, and the length of the
DVB-T signal is 3 OFDM symbols (= 27648 samples≈ 3
ms). Multicycle sum detectors are employed. The detection is
performed at the cyclic frequencies of the original transmitted
signal (i.e., without Doppler effect).

Fig. 8 depicts the performance as a function of the SNR
for (a) the LTE signal in the 3GPP typical urban multipath
channel TUx (∆T = 130.2 ns) [31] and (b) the DVB-T signal
in ETSI EN 300 744 V1.5.1 (2004-11) [32] Rayleigh fading
channel for different mobile speeds. The employed Rayleigh
fading has the Jakes’ Doppler spectrum generated using the
model in [33]. It can be seen that the detectors are relatively
insensitive to Doppler effects. There is performance loss in
the case of the DVB-T signal. However, it is significant only
at very high mobile speeds. Such high speeds are not very
realistic in practical cognitive radio applications. The DVB-T
signal has longer symbol length than the LTE signal, and thus
it suffers more from the time selectivity of the channel.

F. Log-Normal Shadowing

In the next simulation, in addition to a Rayleigh fading
multipath channel, a log-normal shadowing process is in-
cluded. The shadowing among secondary users is assumed to
be independent.

Fig. 9 illustrates the performance for an LTE signal in the
3GPP typical urban multipath channel TUx (∆T = 130.2
ns) [31] with a mobile speed of 3 km/h and log-normal
shadowing. The log-normal shadowing process has a zero
mean and a standard deviation of 6 dB. These parameters have
been chosen to model a small-area shadowing process. The
signal parameters are as follows.NFFT = 512, Nocc = 300,
and Ncp = 36. The subcarrier modulation is QPSK, and the
length of the signal is 14 OFDM symbols (= 7672 samples
≈ 1 ms). All the detectors are multicycle sum detectors. All
secondary users have equal communication rate constraints.
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Figure 8. Probability of detection vs. SNR (dB) for (a) an LTEsignal in
3GPP Typical Urban Rayleigh fading channel and (b) a DVB-T signal in
ETSI EN 300 744 V1.5.1 (2004-11) Rayleigh fading channel fordifferent
mobile speeds. The proposed detectors are fairly resistant to Doppler effects.

Fig. 9 shows that shadowing along with fading effects can be
effectively mitigated through collaboration among secondary
users. Moreover, collaboration is practically a must in order
to obtain reliable performance under shadowing and fading
effects. In practice, the shadowing processes may be correlated
among the secondary users. Thus, the performance gain from
collaboration may be reduced as well. Consequently, the
importance of spatial diversity among the secondary users is
emphasized.

Fig. 9 also shows that censoring works extremely well in
shadowed environments compared to the uncensored approach.
The performance with strict communication rate constraint
κ = 0.01 is even slightly better in the low SNR regime in
this case.

Medium-scale variation of the received signal power is com-
monly attributed to shadowing. Comparing Fig. 9 to previous
figures (especially Fig. 8(a)) one might falsely conclude that
shadowing may produce performance gain. However, since
shadowing is caused by obstruction of buildings, trees, foliage,
and other obstacles it cannot be expected to produce any per-
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Figure 9. Probability of detection vs. Average SNR (dB) for an LTE signal in
a Rayleigh fading channel. Shadowing process has a log-normal distribution
with mean of 0 dB and standard deviation of 6 dB. Cooperation among
secondary users mitigates loss due to shadowing and multipath.

formance gain. Shadowing should be viewed as an additional
loss on top of the distance dependent attenuation. Hence, these
results should be viewed as showing the performance for a
given average receiver SNR where the average SNR depends
on the path loss that includes both the distance dependent
attenuation as well as the average shadowing loss. The more
gentle slope of the performance curves is due to the variation
of the received signal power caused by the shadowing process.

VI. CONCLUSION

In this paper cyclostationary spectrum sensing of primary
users in a cognitive radio system has been considered. We have
proposed single user multicycle CFAR detectors and extended
them to accommodate user collaboration. Moreover, we have
proposed a censoring technique for reducing energy consump-
tion and the number of transmissions of local test statistics
during collaboration. Unlike energy detection the proposed
cyclostationary approach is able to distinguish among primary
users, secondary users, and interference. Furthermore, itis not
susceptible to noise uncertainty. Moreover, it is nonparametric
in the sense that no assumptions on data or noise distributions
are required.

Collaboration among secondary users is essential for miti-
gating the effects of shadowing and fading, and consequently
shortening the detection time. However, collaboration gener-
ates reporting overhead that increases transmissions by the
secondary users. In mobile applications battery life is a limited
resource that has to be conserved. A censoring scheme in
which only informative test statistics are transmitted to the
FC has been proposed. The proposed censoring scheme has
been seen as a viable approach for significantly reducing the
reporting overhead without sacrificing the performance. Even
under very strict constraints on communication rates only a
minor performance loss has been observed.

In summary, the proposed method combining cyclostation-
ary detection and user collaboration with censoring provides
a powerful energy efficient approach for spectrum sensing in
cognitive radio systems.
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APPENDIX

In the following the distribution of the maximum ofd
independent (central) chi-square random variables is derived.
It is assumed that the chi-square random variables have
2N1, 2N2, . . . , 2Nd degrees of freedom, respectively. The cu-
mulative distribution function of the chi-square distribution
with 2N degrees of freedom is given by

F (x, 2N) =
γ(N,x/2)

Γ(N)
, (39)

where γ(k, x) is the lower incomplete gamma function and
Γ(k) is the ordinary gamma function. For a positive integerk
the following identities hold:

Γ(k) = (k − 1)!, (40)

γ(k, x) = Γ(k) − (k − 1)! e−x
k−1
∑

n=0

xn

n!
. (41)

Hence, the cumulative distribution function of the chi-square
distribution with2N degrees of freedom is given by

F (x, 2N) = 1 − e−x/2
N−1
∑

n=0

(x/2)n

n!
. (42)

The cumulative distribution function of the maximum ofd
independent random variables is the product of the cumulative
distribution functions of the individual random variablessince

p( max
i=1,...,d

xi ≤ a) = p(x1 ≤ a, . . . , xd ≤ a)

= p(x1 ≤ a) · . . . · p(xd ≤ a)

=

d
∏

i=1

p(xi ≤ a).

Hence, the cumulative distribution function of the maximum
of d (central) chi-square random variables with2N1, . . . , 2Nd

degrees of freedom respectively is given by

FD(x, d, {Ni}d
i=1) =

d
∏

i=1

(

1 − e−x/2
Ni−1
∑

n=0

(x/2)n

n!

)

. (43)

ACKNOWLEDGMENT

The authors wish to thank Prof. S. A. Kassam from the
University of Pennsylvania for very helpful discussions.

REFERENCES

[1] J. Mitola III and G. Q. Maquire, Jr., “Cognitive Radio: Making Software
Radios More Personal,”IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18,
Aug. 1999.

[2] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb.
2005.

[3] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt Gen-
eration/Dynamic Spectrum Access/Cognitive Radio WirelessNetworks:
A Survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, Sep.
2006.

[4] Z. Tian and G. B. Giannakis, “Compressed Sensing for Wideband
Cognitive Radios,” inProc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, Honolulu, HI, USA, Apr. 15–20, 2007, pp. 1357–
1360, vol. IV.

[5] A. Ghasemi and E. S. Sousa, “Spectrum Sensing in CognitiveRadio
Networks: The Cooperation-Processing Tradeoff,”Wirel. Commun. Mob.
Comput., vol. 7, no. 9, pp. 1049–1060, Nov. 2007.

[6] S. M. Mishra, A. Sahai, and R. W. Brodersen, “CooperativeSensing
among Cognitive Radios,” inProc. Int. Conf. on Communications,
Istanbul, Turkey, Jun. 11–15, 2006.

[7] A. V. Dandawat́e and G. B. Giannakis, “Statistical Tests for Presence
of Cyclostationarity,”IEEE Trans. Signal Process., vol. 42, no. 9, pp.
2355–2369, Sep. 1994.
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