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Abstract—Data redundancy caused by correlation has moti-
vated the application of collaborative multimedia in-network pro-
cessing for data filtering and compression in wireless multimedia
sensor networks (WMSNs). This paper proposes an information
theoretic data compression framework with an objective to
maximize the overall compression of the visual information gath-
ered in a WMSN. To achieve this, an entropy-based divergence
measure (EDM) scheme is proposed to predict the compression
efficiency of performing joint coding on the images collected by
spatially correlated cameras. The novelty of EDM relies on its
independence of the specific image types and coding algorithms,
thereby providing a generic mechanism for prior evaluation
of compression under different coding solutions. Utilizing the
predicted results from EDM, a distributed multi-cluster coding
protocol (DMCP) is proposed to construct a compression-oriented
coding hierarchy. The DMCP aims to partition the entire network
into a set of coding clusters such that the global coding gain is
maximized. Moreover, in order to enhance decoding reliability at
data sink, the DMCP also guarantees that each sensor camera
is covered by at least two different coding clusters. Experiments
on H.264 standards show that the proposed EDM can effectively
predict the joint coding efficiency from multiple sources. Further
simulations demonstrate that the proposed compression frame-
work can reduce 10% - 23% total coding rate compared with the
individual coding scheme, i.e., each camera sensor compresses its
own image independently.

I. INTRODUCTION

Wireless Multimedia Sensor Network (WMSN) is an emerg-
ing networking paradigm that allows retrieving video streams,
still images, and generic sensing data from the environment
[1]. A WMSN promises a wide range of potential applica-
tions such as multimedia surveillance, advanced health care
delivery, and industrial process control [1]. Different from the
conventional wireless sensor networks that deal with scalar
data, WMSNs are required to deliver multimedia content with
a certain level of quality of service (QoS). This characteristic
necessitates more sophisticated data compression strategies
for reducing the spectrum demand and saving the energy
consumption of the sensor nodes.
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under Grant No. ECCS-0701559.

In a WMSN, a number of camera sensor nodes are deployed
in a field of interest with one or more data sinks located either
at the center or out of the field. The camera sensor nodes
observe the phenomenon at different locations in the field and
send their observations to the sink(s). In general, the observa-
tions at a camera are directly related to the camera’s field of
view (FoV) [4], and the spatially proximal cameras could have
highly overlapped FoVs. As a result, the visual information
retrieved from adjacent camera nodes usually exhibits high
levels of correlation, which gives rise to considerable data
redundancy in the network.

Multimedia source coding [9], [5] is a common approach
to remove the redundancy of visual information. However,
the resource constraints of the sensor nodes bring new chal-
lenges when applying source coding globally in the entire
network. The conventional video coding standards, such as
MPEG/H.26x [9], can achieve high compression performance.
However, they require extensive computation at the encoder,
which places heavy burden on the resource-constrained sensor
nodes. In contrast, distributed source coding, such as Slepian-
Wolf Coding [7], only requires low-complexity encoding and
leaves the intensive computations at the decoder. However,
this coding strategy requires each sensor node to have the
knowledge of global correlation structure, which would incur
significant additional costs. For these reasons, multimedia
source coding is infeasible to be applied globally in a large-
scale network, despite its outstanding compression gains.

In such a case, the clustered coding strategy provides an
effective way to resolve the above dilemma. This strategy uses
the hierarchical concept where the entire network is divided
into regions. Each region corresponds to a coding cluster, in
which a group of camera sensors collaboratively perform data
compression, according to different coding algorithms. In the
case of conventional coding standards, a powerful cluster head,
such as GARCIA robotic platform [1], can be placed within
each cluster to serve as a single encoder, which has all corre-
lated multimedia streams as inputs, thereby avoiding the com-
putationally intensive operations draining the limited sensor
energy store. In contrast to the conventional coding schemes
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that requires centralized realization, distributed source coding
allows each sensor to encode its own data separately, assuming
a prior knowledge of local correlation structure in its own
cluster [7]. Since each cluster only covers a limited number
of nodes, it is feasible to acquire this correlation information
without incurring much extra cost. Therefore, the clustered
coding strategy paves the way for the practical application of
multimedia source coding in large-scale WMSNs.

Despite the promising perspective of clustered coding strat-
egy, there are still many technical issues remaining to be
resolved to make this technique of practical application for
WMSNs. One of the major issues of the existing solutions for
multimedia processing is that they are generally application
dependent [8], [10]: different types of images will require dif-
ferent processing schemes [3]. Thus, how to design solutions
whose applicability and flexibility would not be limited by
the specific applications is of paramount importance. On the
other hand, as the images captured in a WMSN may contain
a substantial amount of redundancy, the construction of a
compression-oriented cluster hierarchy, which can fully reduce
this redundancy, is one of the primary tasks in WMSNs.

To solve the problems above, we propose an information
theoretic data compression framework that maximizes the
overall compression of the visual information retrieved from
a WMSN. This framework consists of two components: (i)
compression efficiency prediction, and (ii) coding hierarchy
construction. Both components are independent of the spe-
cific coding algorithms and images types, thus providing a
generic architecture that allows users to freely customize the
WMSN applications based on them. The compression effi-
ciency prediction aims to estimate the compression gain from
joint encoding of multiple cameras before the actual images
are captured. To achieve this, an entropy-based divergence
measure (EDM) scheme is proposed, which only takes the
camera settings as inputs without requiring the statistics of
real images. In the EDM, the overlapping pattern of the FoVs
of multiple cameras is first identified. Then, the correlation
degree among the observations from cameras with overlapped
FoVs is obtained through a spatial correlation model. Based
on the correlation characteristics, a dependency graph based
algorithm is designed to estimate the joint entropy of multiple
cameras. This joint entropy effectively predicts the compres-
sion performance for joint encoding of multiple cameras.

Using the results from EDM, the next problem is how
to establish a compression-oriented coding hierarchy, which
can achieve a substantial compression gain and decoding
reliability. This problem can be further formulated as an
optimal coding clustering (OCC) problem, which we define
as: find a set of coding clusters with the minimum total
entropy, such that each camera node is covered by at least two
different clusters. The minimization of total entropy guarantees
that the global compression gain is maximized, while the
coverage requirement ensures that the impact of cluster failures
on the decoding reliability is mitigated. We prove that the
OCC problem is NP-hard. As a heuristic solution, a fully
distributed protocol, called distributed multi-cluster coding
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Fig. 1. Field of views of multiple cameras.

Protocol (DMCP), is presented to provide a ln Δ approxima-
tion to the optimal solution, where Δ is the maximum node
degree in the network. Moreover, it is shown that ln Δ is the
best achievable approximation ratio for the OCC problem.

The rest of this paper is organized as follows. Section
II mathematically formulate the problems in the proposed
data compression framework. In Section III, we present the
EDM algorithm to provide a valid assessment of joint coding
performance of multiple cameras. The DMCP for establishing
the efficient and robust coding hierarchy is proposed in Section
IV. The performance of this framework is examined in Section
V. Finally, Section VI concludes this paper.

II. PROBLEM FORMULATION

A. Clustered Source Coding

In a multimedia sensor network, multiple camera sensors
are deployed to provide multiple views, multiple resolutions,
and enhanced observations of the environment. As shown in
Fig. 1, multiple cameras are deployed in a field of interest,
and the cameras’ FoVs are overlapped with each other. These
overlapped FoVs incur a certain degree of correlation among
the observations of the cameras, which further leads to un-
necessary visual redundancy. To remove this redundancy, a
group of camera sensors can form a cluster to collaboratively
compress their data. Consider a cluster consisting of a cluster
head and N camera sensors, where each sensor i produces
image Xi, which is encoded with rate Ri. According to basic
coding theorems, we have the following observation:

Observation 1: The total coding rate of all nodes
within a cluster is lower bounded by the joint entropy
H(X1,X2, . . . , XN ) no matter centralized or distributed
source coding is applied.

For centralized source coding, each member in a cluster
sends its raw or preprocessed data to the cluster head, while
the cluster head acts as a single encoder that takes all collected
data as inputs. According to Shannon’s source coding theorem,
each cluster can generate a total rate lower-bounded by the
joint entropy H(X1,X2, . . . , XN ), e.g.,

N∑
i=1

Ri ≥ H(X1,X2, · · · ,XN ) (1)

where the equality holds when optimal encoder is applicable.
For distributed source coding (DSC), each node in a cluster

separately encodes its own data, and the cluster head only
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acts as a relay node to forward the received data to data sink,
where the compressed data are jointly decoded. In this case,
Slepian-Wolf coding theorem [7] provides a conceptual basis
for DSC and establishes the rate region for the rate vector
(R1, R2, ...RN ):∑

i∈U

Ri ≥ H(X(U)|X(U c)) ∀U ⊆ {1, 2, · · · , N}

where X(U) = {Xj |j ∈ U} and U c is the complementary set
of U.

Surprisingly, Slepian-Wolf coding theorem (2) indicates that
the sum of rates,

∑N
i=1 Ri, can achieve the joint entropy

H(X1,X2, · · · ,XN ), just as for joint encoding the sources
(X1,X2, · · · ,XN ), despite separate encoders for them. There-
fore, a cluster with N nodes can be optimally encoded with
H(X1,X2, · · · ,XN ) bits no matter centralized or distributed
source coding is applied.

B. Multi-camera Entropy Estimation Problem

Joint entropy serves as a lower bound of the overall coding
rate of multiple sources for both centralized and distributed
source coding. If the joint entropy for a cluster of cameras
can be estimated, we will be able to predict the performance
of joint coding within the cluster. However, to estimate the
joint entropy of visual information from multiple cameras is
a challenging task. Since visual information is intrinsically
complicated, it is difficult to model the characteristics of visual
sources. Moreover, it usually requires expensive computation
and communication costs to obtain the dependency character-
istics for multiple visual sources, especially when the number
of sources (N ) is large.

Our objective is to estimate the joint entropy of multiple
cameras in WMSNs through low computation and commu-
nication costs. Given a cluster of cameras with observations
X1,X2, · · · ,XN , the joint entropy H(X1,X2, · · · ,XN ) will
be described as a function of the individual entropy (H(Xi))
and field of view (Ai) of each camera, and the correlation
coefficients between any two cameras (ρj,k) in the cluster.

C. Optimal Coding Clustering Problem

Since joint entropy provides a benchmark on the compres-
sion gain from joint encoding of multiple sources, we can
utilize a similar entropy-based concept, called cluster entropy,
to measure the collaborative compression gain within the
scope of a single coding cluster. The target of optimal coding
clustering can then be correspondingly interpreted as to select
a set of coding clusters according to their cluster entropies
such that total entropy of the entire network is minimized. We
describe two definitions involved in the discussion above.

Definition 1: A coding cluster is a finite set comprising a
camera sensor and all sensors within its transmission range.

Definition 2: For each coding cluster A, its cluster entropy
H(A) is equal to the joint entropy of all cameras in A.

Now, the Optimal Coding Clustering (OCC) problem can be
formally stated as: given a network consisting of a finite set of
camera sensors E = e1, e2, ...en and a set of n subsets of E,

S = {S1, S2, ...Sn}, where each set Si corresponds a coding
cluster with its entropy H(Si), the goal is to find a collection
C from S of minimum total entropy

∑
Si∈C H(Si), such that

each element ei is covered by at least two sets in C.
The minimization of total entropy guarantees that the maxi-

mum global compression gain is achieved, while the coverage
requirement ensures that the visual information encoded by
each camera has more chance to be successfully delivered to,
and properly decoded at data sink.

III. JOINT ENTROPY ESTIMATION

In this section, we propose a novel Entropy-based Diver-
gence Measure (EDM) scheme to estimate the joint entropy
of the observations from multiple cameras in WMSNs. This
algorithm only takes the cameras’ settings as inputs without
requiring the knowledge of the specific applications, thereby
providing a generic framework for prior evaluation of com-
pression under different coding solutions. Moreover, this al-
gorithm induces little communication costs since sensor nodes
only need to exchange their camera settings via short messages
among their direct neighbors, and then only low complexity
computations are required for joint entropy estimation. The
algorithm consists of the following two components.

1) Area partition for overlapped FoVs. Given a group of
cameras, their FoVs are divided into several partitions,
such that each partition is covered by the same set of
cameras.

2) Joint entropy estimation for partitions. For each parti-
tion, a dependency graph is constructed based on the
correlation among the cameras. The joint entropy of the
partition is then estimated by traversing the dependency
graph. Finally, the total joint entropy for the group of
cameras is the sum of the entropies of all the partitions.

A. Area Partition for Overlapped Field of Views

A camera is a directional sensor with limited sensing range.
It can only observe the objects within its field of view (FoV).
In the following analysis we use a simplified 2-D FoV model
[4]. As shown in the left part of Fig. 1, a camera’s FoV is
determined by four parameters: O, R, �V , and α, where O
is the location of the center of the camera, R is the sensing
radius, �V is the sensing direction (the center line of sight of
the camera’s FoV), and α is the offset angle. An arbitrary point
O1 is in the FoV of the camera if it is in the camera’s sensing
radius and also within the offset angle of the FoV, given as{

| �OO1| ≤ R

θ ≤ α,
(2)

where θ is the angle between �OO1 and �V .
When multiple cameras are deployed in a field, their FoVs

are usually overlapped with each other. Fig. 1 shows an
example of three cameras deployed on the ground plane. The
FoVs of the three cameras can be divided into six different
areas, with each area covered by a different set of cameras.

To estimate the joint entropy of multiple cameras, we need
to investigate the overlapping pattern of their FoVs first. We
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consider the case when N cameras (C1, C2, · · · , CN ) are
deployed on the ground plane. Denote the FoV of an individual
camera Ci as Ai(Oi,Ri,�Vi,αi), and the overall FoV for these
cameras as A (A = {A1, · · · ,AN}). Our goal is to divide
A into several partitions (P1, P2, · · · , PM ), such that each
partition belongs to the FoVs of the same set of cameras.

We introduce a grid-based approach to divide the overall
FoV A into partitions, which is described in the first part of
Algorithm 1. We firstly divide the overall FoV into discrete
grids with a step size of h, as shown in Fig. 1. Using the
condition in (2), we can check for each grid if its center is in
the FoV of a camera. If so, we approximately regard that the
whole grid is in the camera’s FoV. Therefore, partitions can be
found by traversing all the grids and grouping the grids that
belong to the same set of cameras together.

After the overall FoV of the cameras in a group is divided
into partitions, we need to estimate the entropy of each
partition in order to obtain the total joint entropy of the
cameras. In Section B, we derive a preliminary expression
to estimate the conditional entropy between two cameras.
According to this expression, we then develop a dependency
graph based algorithm to estimate the joint entropy of multiple
cameras in a partition in Section C.

Algorithm 1 Joint Entropy Estimation for Multiple Cameras
For a group of cameras C1, C2, · · · , CN , get the FoV of each
Camera: Ai(Oi, Ri, �Vi, αi). A = {A1, · · · ,AN}. The visual
information observed by Ci is Xi.
Divide A into K small grids; each grid is of size h ∗ h.
for k = 1 to K do

for n = 1 to N do
Check if grid G(k) is in An.

end for
Assign grid G(k) to a partition.

end for
Get the area partition results: A = (P1, · · · , PM ).
for i = 1 to M do

Estimate the individual entropy that a camera contributes to Pi

according to equation (4).
Calculate the correlation matrix for partition Pi.
Estimate H(Pi) using Algorithm 2.

end for
H(X1, · · · , XN ) = H(P1) + · · ·+ H(PM ).

B. Conditional Entropy Estimation

Denote the cameras in partition Pi as (C1, · · · , Cn). For
the kth camera Ck in partition Pi, denote its observed visual
information by Xk, and denote its observation about this
partition by Xk(Pi). The amount of information of partition
Pi is the joint entropy of the observations about this partition
from the cameras (C1, · · · , Cn), given by

H(Pi) = H(X1(Pi), · · · ,Xn(Pi)). (3)

A camera can easily estimate the entropy of its own obser-
vations locally. That is to say, for camera Ck we can obtain
the entropy of its observations H(Xk). Suppose S(Pi) is the
area of partition Pi and S(Ak) is the area of the entire FoV

of Ck. Assuming that the amount of information that camera
Ck contributes to Pi is approximately proportional to the area
of Pi, the entropy of the observation Xk about partition Pi,
H(Xk(Pi)), can be estimated as

H(Xk(Pi)) ≈ S(Pi)
S(Ak)

H(Xk). (4)

With the individual entropies obtained by (4), the correlation
characteristics among these cameras are also needed to esti-
mate the joint entropy in (3). In our earlier work, we proposed
a novel spatial correlation model for visual information in
WMSNs [2]. By studying the sensing model and deployments
of cameras, a spatial correlation coefficient is derived for two
cameras that can observe a same area of interest. Assume
that all the cameras in a network have the same focal length.
Specifically, for camera Cj and camera Ck in partition Pi,
with Pi as the area of interest, a spatial correlation coefficient
between the observations of Pi at Cj and Ck is derived as

ρj,k = f(Oj , �Vj , Ok, �Vk, Pi) (5)

which indicates that the spatial correlation coefficient ρj,k is a
function of the two cameras’ locations (Oj , Ok) and sensing
directions ( �Vj , �Vk) as well as the location of partition Pi.

More importantly, the correlation coefficient is related to
the joint entropy of two cameras in [2]. For camera Cj and
camera Ck in partition Pi, the joint entropy of the observations
of partition Pi at Cj and Ck is estimated as

H(Xj(Pi),Xk(Pi)) ≈ (1− 1
2
ρj,k)(H(Xj(Pi))+H(Xk(Pi)))

(6)
where Xj(Pi) is the observation of Pi at camera Cj , and
Xk(Pi) is the observation of Pi at camera Ck. This equation
indicates that the amount of information gained from the ob-
servations of two cameras depends on the correlation between
them. The more the two observations are correlated, the less
joint entropy can be gained from them together.

From the result in (6) we can obtain an expression of
conditional entropy as follows:

H(Xj(Pi)|Xk(Pi)) = H(Xj(Pi),Xk(Pi)) − H(Xk(Pi))

≈ (1 − ρj,k

2
)H((Xj(Pi)) − ρj,k

2
H(Xk(Pi))

(7)
where H(Xj(Pi)|Xk(Pi)) is the entropy of Xj(Pi) with the
knowledge of Xk(Pi). In the next section we utilize this result
to estimate the joint entropy of more than two cameras.

C. Joint Entropy of a Partition

As introduced above, the joint entropy of the observations
from two cameras is estimated from the correlation coefficient
between them (6). To estimate the joint entropy of a partition,
we should be able to deal with the case of more than two
cameras. In this section, we propose a dependency graph based
algorithm to estimate the joint entropy of a partition.

We study a two cameras’ case as a preliminary example.
Suppose there are only two cameras (C1 and C2) in a
partition Pi. In this partition, C1 is most correlated with
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C2. We can depict this relationship as a dependency graph:
C2 → C1. The joint entropy of the observations from C1

and C2 can then be calculated by traversing the dependency
graph. The source node C2 contributes the entropy of its
observations about the partition, H(X2(Pi)), and the node C1

contributes the conditional entropy of its observations with
respect to the source node, H(X1(Pi)|X2(Pi)), so the joint
entropy is calculated by adding these two terms together:
H(X1(Pi),X2(Pi)) = H(X2(Pi))+H(X1(Pi)|X2(Pi)). The
dependency graph can also be constructed as C1 → C2, from
which we can get the same result of joint entropy.

Motivated by the above example, we design a dependency
graph based algorithm to estimate the joint entropy of a
partition. We firstly construct a dependency graph to describe
the dependency characteristics among these cameras. Denote
the dependency graph by G(V,E), where V is a collection of
cameras, and E is a collection of directed edges that stand for
dependencies. Joint entropy of the partition is then calculated
by traversing all the nodes in the graph along the directed
edges. The detailed steps are described in Algorithm 2.

Suppose a group of cameras (C1, C2, · · · , Cn) can observe
partition Pi. We can obtain a correlation matrix (ρj,k)n∗n

based on (5), where ρj,k is the correlation coefficient between
the observations of partition Pi from camera Cj and camera
Ck. To simplify the problem, we assume limited number of
dependencies: each camera is dependent on the camera that
is most correlated with it. For camera Cj in the partition, we
can easily find out its most correlated camera by searching
the correlation matrix (ρj,k)n∗n. For example, if camera Cj is
most correlated with camera Ck, we say that Cj is dependent
on Ck, and thus, we can construct a directed edge starting
from Ck and ending at Cj : Ck → Cj . Cj is said to be a
direct successor of Ck, and Ck is a direct predecessor of Cj .

The dependency graph is a directed acyclic graph with
the following additional constraints: a camera is either a
source node (i.e., a node that has no predecessors), or a
direct successor of one of the other cameras in the graph;
a dependency graph may have several source nodes, but each
node in the graph can have at most one direct predecessor.
Once a dependency graph with these features is constructed,
the joint entropy can be estimated by traversing all the nodes
in the graph and adding the entropies of the nodes together. A
source node will contribute its individual entropy to the joint
entropy. A non-source node has its most correlated node as
its direct predecessor. It will contribute its conditional entropy
with respect to its direct predecessor to the joint entropy.

For example, five cameras in partition Pi forms a depen-
dency graph as C1 → C3 → C5, C2 → C4. With C1

and C2 as the source nodes, the joint entropy of partition
Pi is calculated as H(Pi) = H(X1(Pi), · · · ,X5(Pi)) =
H(X1(Pi)) + H(X3(Pi)|X1(Pi)) + H(X5(Pi)|X3(Pi)) +
H(X2(Pi)) + H(X4(Pi)|X2(Pi)).

Since the FoVs for a group of cameras are divided into
several partitions in Section A, and these partitions are inde-
pendent of each other, the total joint entropy is the sum of the
entropies of all the partitions. For a group of cameras with

Algorithm 2 Dependency Graph Based Entropy Estimation
Pi: {C1, C2, ..., Cn} with correlation matrix (ρj,k)n∗n.
for j = 1 to n do

neighbor(Cj) = arg max
k �=j

(ρj,k);

end for
for k = 1 to n do

for j = 1 to n do
if Cj has no predecessors and neighbor(Cj) = k then

Add Ck → Cj into the dependency graph;
Predecessor(Cj) = Ck;
Mark Cj as a traversed node.

end if
end for
Break when all the cameras are traversed;

end for
for j = 1 to n do

if Cj has no predecessor then
Add H(Xj(Pi)) to H(Pi);

else if Predecessor(Cj) = Ck then
Add H(Xj(Pi)|Xk(Pi)) (7) to H(Pi);

end if
end for
return H(Pi).

observations (X1, . . . , XN ), with the cameras’ FoVs divided
into partitions (P1, . . . , PM ), the total joint entropy is given
by

H(X1, · · · ,XN ) = H(P1) + · · · + H(PM ) (8)

where H(Pi)(i = 1, · · · ,M) is obtained by Algorithm 2.
The entire entropy estimation algorithm (Algorithm 1) can

be run at each sensor node. To estimate joint entropy, a
node just need to acquire the FoV information and individual
entropies from its neighbors. Therefore, it does not require
expensive communication costs in the network. The estimated
joint entropy will serve as a criteria for the protocol in the
following section.

IV. DATA COMPRESSION USING CLUSTERED SOURCE

CODING

After the camera sensors are deployed in a field, we
would like to select a set of coding clusters to cover the
entire network with maximum compression ratio. Due to the
distributed manner of WMSNs and the changing environment,
centralized algorithm is not suitable for use here. The coding
cluster selection should only depend on local information to
achieve global compression optimization gain. Meanwhile, the
locally established coding hierarchy should have two different
clusters for each node, such that the compressed images can
be properly reconstructed as long as one cluster functions
normally. In this section, we first formulate the optimal coding
clustering (OCC) problem as an integer program, and shows
that the OCC problem is NP hard. Accordingly, we introduce a
centralized greedy algorithm to provide a ln Δ factor approxi-
mation to the optimal solution. Next, we present a distributed
multi-cluster coding protocol (DMCP) for coding hierarchy
establishment. Furthermore, it is shown to achieve the same
approximation guarantee of ln Δ as the centralized algorithm.
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A. Centralized Coding Hierarchy Generation

To formulate the OCC problem as an integer program, we
assign a variable xS for each set S ∈ S, which is allowed 0/1
values. This variable will be set to 1 iff set S is selected for
the coding hierarchy. The objective function is the sum of the
entropy values of all selected coding clusters. The constraint
is that for each node e ∈ E we want that at least two of the
clusters containing it are selected.

MIN
∑
S∈S

H(S)xS (9)

s.t
∑

S:e∈S

xS ≥ 2, e ∈ E

xS ∈ {0, 1}, S ∈ S
If we treat H(S) as the cost c(S) associated with each

coding cluster S ∈ S and let the second constraint be coverage
requirement for each node e ∈ E, the OCC problem can be
reduced to the constrained set multicover (CSMC) problem.
The CSMC problem is NP hard and the greedy algorithm is
essentially the best one can hope for [6]. In other words, the
approximation ratio ln Δ achieved by the greedy algorithm is
best one for CSMC problem. Therefore, the greedy strategy
applies naturally to our OCC problem: let us say that the
node e is uncovered if it occurs in fewer than 2 of the se-
lected coding clusters. In each iteration, the algorithm selects,
from the currently unselected clusters, the most compression-
efficient cluster, where the compression efficiency of a cluster
is defined to be the average entropy of the uncovered nodes
it covers. The algorithm terminates when there are no more
uncovered nodes, e.g., each node has been included by two
different clusters.

The greedy algorithm for the OCC problem can be com-
puted in O(n) rounds if a central controller (e.g.,data sink)
provides the full information of the network topology along
with the detailed settings (e.g.,sensing direction, sensing offset
angle, and sensing range) for each camera. However, in a
distributed network like WMSN, the centralized operations
are not desirable because they have limited flexibility and
scalability to react to environment and network dynamics.
In addition, the energy constraint of sensor nodes prohibits
network-wide information exchange specially in large-scale
networks like WMSNs. Next, we will propose a protocol
to implement the centralized greedy algorithm in a fully
distributive manner such that only local information exchange
is needed to achieve global compression optimization.

B. Distributed Multi-Cluster Coding Protocol

After a WMSN is initially deployed, each camera node leads
its neighbors to constitute a candidate coding cluster. At this
time, each sensor node could be in one of the following four
states: black, grey, half grey, and white. We call sensor nodes
black if they are selected as the cluster head (CH) locaters.
The CH locaters will not serve as the normal cluster heads
but indicate the coordinates at which the future mobile or fixed

cluster heads should be placed. We call the nodes grey if they
are covered by at least two black nodes, and half grey if they
are covered by exactly 1 black node. A node stays in the white
state if there exists no black node within its 1-hop range. The
half grey nodes and white nodes are collectively referred to as
uncovered nodes. We now describe several definitions, which
are utilized in DMCP.

Definition 3: The neighbor set of a node is a set consisting
of the node itself and all its direct neighbors.

Definition 4: The serving set of a node is a set comprising
the uncovered nodes that are residing in its 1-hop range.

Definition 5: The coding effectiveness of a node is the
average entropy of all nodes in its serving set.

Definition 6: The CH counter of a node records the current
number of the black nodes among its 1-hop neighbors.

Algorithm 3 Distributed Multi-cluster Coding Protocol
state(e) ∈ {black, grey, half grey, white, uncovered}
state(e)← white, send & receive state(e)
Ne ← {e′ : state(e′) = white} ∪ {e}
{Discover neighbor set Ne}
counter(e) = 0 {Set CH counter}
while state(e) = uncovered do

Ue ← {e′ ∈ Ne : state(e′) = uncovered}
{Calculate serving set Ue}
ECe ← H(Ne)/ |Ue|
{Calculate coding effectiveness ECe }
send & receive ADV msg
if ECe = mine′∈Ue{ECe′} then

state(e)← black, and counter = 1
send COV ERAGE msg

else
wait until the selection of a new black node times out
if no COVERAGE received then

state(e) remains
else if counter = 0 then

state(e)← halfgrey, and counter(e) = 1
else if counter = 1 then

state(e)← grey, and counter(e) = 2
end if

end if
end while
Process Grey Black()

Now, the proposed DMCP establishes a clustered coding
hierarchy as follows. Initially, no black nodes exist in the
network. Thus, every node is uncovered. Nodes in the uncov-
ered state send out their camera settings to their neighboring
nodes. After receiving the setting information, a uncovered
node discovers its serving set and calculates its cluster entropy.
Based on these information, a uncovered node evaluates its
coding effectiveness, which is sent out along with the node
state in an advertising (ADV) message to its 2-hop neighbors.

A node in the uncovered (e.g., half grey or white) state
collects ADV messages and extracts the coding effectiveness
values from its 2-hop neighbors. If the node itself is the
most coding-effective node amongst its 2-hop neighbors, it
becomes a black node and sends COVERAGE messages to
other uncovered nodes within its 1-hop range. Otherwise, a
uncovered node can encounter the following scenarios: 1) if
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no COVERAGE message is received within the predefined
maximum duration of selecting a new black node, the node
remains uncovered, recalculates its coding effectiveness, and
sends out an ADV message. 2) If a COVERAGE message is
received, and its CH counter is equal to zero, the node enters
half grey state and increments its CH counter by 1 . 3) If a
COVERAGE message is received, and its CH counter already
reaches 1, the node becomes a grey node and sets the CH
counter to 2. For the last two cases, a ADV message containing
the node state is sent out to its immediate neighbors.

For a grey node, if the CH counters of all its neighbors
already reach 2, the node remains grey for the rest of cluster
selection procedure and becomes a cluster member in the end.
Otherwise, the node sends out an ADV message containing
its coding effectiveness and collects ADV messages from all
the uncovered nodes within its 2-hop range. If the node itself
has the highest coding effectiveness, it enters black state and
send out COVERAGE messages to its uncovered neighbors.
Otherwise, if the maximum duration of generating a new black
node passes, and there still exist uncovered nodes within its
1-hop range, the node remains grey. A black finally becomes
a cluster head locater until the value of its CH counter reaches
2 on receiving a COVERAGE message.

Algorithm 4 Process Grey Black()
Ue ← {e ∈ Ne : counter(e) < 2}
while |Ue| < |Ne| do

if state(e) = grey then
recalculate coding effectiveness ECe

if ECe = mine′∈Ue{ECe′} then
state(e)← black, and send COV ERAGE msg

else
wait until the new black selection times out
if |Ue| < |Ne| then

state(e)← grey
end if

end if
else if state(e) = black then

wait until a COVERAGE is received
counter(e) = 2

end if
end while
Node e becomes a cluster member

The above procedures are performed by all nodes until each
of them becomes either a cluster head locater or a cluster
member. At the end, there is no uncovered node in the network,
and the established clustered coding hierarchy covers the entire
network. Moreover, it is easy to show that if the minimum
node degree is larger than 1 (or every node has at least one
neighbor), every node terminates when it has two black nodes
(perhaps including the node itself) within its 1-hop range.
Therefore, the DMCP guarantees that each node is included
in at least two coding clusters. The pseudo-code of the above
procedures is described in Algorithm 3 and Algorithm 4.

C. Approximation Ratio

Theorem 1: The DMCP computes a ln Δ approximation for
the optimal coding clustering problem.

Proof: According to DMCP, each non-black node can be
a potential cluster head (CH) locater, and each CH locater
associated with its immediate neighbors constitutes a coding
cluster. Thus, selecting a set of clusters is equivalent to
picking a set of CH locaters. Whether a non-black node
can be selected as a CH locater only depends on its coding
effectiveness, which is fully determined by its cluster entropy
and serving set cardinality. Since the cluster entropy of a
node is only related to camera settings of the nodes in its
neighbor set, and the neighbor set is only determined by the
local topology, the value of the cluster entropy will not change
as the protocol proceeds. On the other hand, the cardinality of
the serving set, which is equal to the number of its uncovered
neighboring nodes, can be reduced as protocol proceeds since
some uncovered neighboring nodes could be included by some
other clusters. Based on the discussion above, we conclude
that the coding effectiveness of a non-black node can only be
reduced if the cardinality of its serving set decreases.

Based on this conclusion, we can further show that the
DMCP is equivalent to the centralized greedy algorithm. In
other words, we prove that the distributed approach can select
the same coding clusters as the centralized one. Due to the
distributed manner of DMCP, multiple non-black nodes can
go into black simultaneously. According to DMCP, a non-
black node v with the highest coding effectiveness within its
2-hop neighborhood is eligible to become a black node. The
selection of other non-black nodes outside v’s 2-hop range as
black nodes will not affect v’s eligibility to enter the black
state because the status change of the nodes outside v’s 2-
hop range can not reduce v’s serving set cardinality, and
according to the conclusion above, v’s coding effectiveness
remains the same. Therefore, the DMCP chooses v as a black
node before any nodes within its 2-hop range. On the other
hand, the the centralized greedy algorithm always selects the
most compression efficient cluster, and v leading its neighbors
represents the most compression efficient cluster within its 2-
hop range. Therefore, the centralized approach will select the
cluster led by v as a final coding cluster as the algorithm
proceeds. This means that the DMCP obtains the same result
as the centralized algorithm. Since the centralized greedy
algorithm computes a ln Δ approximation for the optimal
coding clustering problem, the DMCP can achieve the same
approximation guarantee of ln Δ.

As shown in Section A, the OCC problem can be reduced
to CSMC problem, for which ln Δ is the best approximation
ratio. Therefore, approximation ratios better than ln Δ is also
unlikely for the OCC problem. Then, we can conclude that
no protoocls can perform better than the proposed DMCP in
terms of appximation factor.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed data com-
pressing framework through simulations. We first investigate
the effectiveness of the EDM scheme by comparing its pre-
dicted results with the joint coding performance of practical
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Fig. 2. Joint coding using the H.264 Coding Standards.
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Fig. 3. Compression performance versus net-
work size n and sensing radius R

30 40 50 60 70 80 90 100 110
5

10

15

20

25

30

35

Offset Angle α

C
lu

st
er

ed
 C

o
d

in
g

 E
ff

ic
ie

n
cy

 %

 

 
V = Identical

V ∈ 0o − 90o

V ∈ 0o − 120o

V ∈ 0o − 150o

V ∈ 0o − 180o

V ∈ 0o − 360o
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coding schemes. Then, we study the compression performance
of DMCP under changing network sizes and camera settings.

A. Validity of the EDM Predictions

For a cluster of N camera sensors with observations
X1, · · · ,XN , the joint entropy H(X1, · · · ,XN ) is a theoreti-
cal lower bound of the total coding rate for these cameras. To
quantify the performance of clustered joint coding, we define
an estimated joint coding efficiency as

ηH = 1 − H(X1, · · · ,XN )
H(X1) + · · · + H(XN )

(10)

where H(X1) + · · · + H(XN ) corresponds to the coding
rate needed when the cameras compress their observations
individually. The estimated joint coding efficiency can be
used to predict the percentage of rate savings of joint coding
compared to individual coding.

We propose to verify the estimated joint coding efficiency
from the results of practical video coding schemes. Similar
as the definition above, we introduce an actual joint coding
efficiency as

ηR = 1 − R(X1, · · · ,XN )
R(X1) + · · · + R(XN )

(11)

where R(X1, · · · ,XN ) is the total rate of observations
X1, · · · ,XN obtained from joint coding, and R(Xi)(i =
1, · · · , N) is the rate of observation Xi from individual
encoding at a camera. The value of ηR will be obtained from
the results of practical video coding schemes.

In our experiment, we deploy a number of camera nodes in
a field and record each camera’s FoV parameters. The joint

entropy of multiple cameras and the estimated joint coding
efficiency (ηH ) can be estimated by the EDM scheme in
Section III. We also let each camera capture an image at the
same time, and use the widely spread H.264 standard coding
algorithms to perform joint coding on these images, so that
the actual joint coding efficiency (ηR) can be obtained. We
compare the values of ηH with ηR under different cluster sizes
(N=2, 3, and 4). Two coding schemes of the H.264 standards
are used: the Baseline profile and the recently developed Multi-
View Coding (MVC) extension. For both coding schemes,
we obtain the coding rates under three quantization steps
(QP=28, 32, and 37), where larger quantization steps result
in more distortion of the coded images. Comparisons of the
corresponding ηH and ηR are given in Fig. 2.

It can be seen from Fig. 2 that the actual joint coding
efficiency increases as the estimated joint coding efficiency
increases. The actual joint coding efficiency is smaller than
the estimated joint coding efficiency. This is as expected since
the estimated joint coding efficiency is calculated from joint
entropy, which corresponds to the optimal coding performance.
For the same coding scheme, the actual joint coding effi-
ciency increases as the quantization step increases: as larger
quantization steps result in more distortion, they may have
more potential bit savings. The H.264 MVC extension is more
advanced than the H.264 Baseline profile, and our experiments
also show that the MVC extension always produces fewer bit
rates under the same coding parameters. However, as shown
in Fig. 2, the joint coding efficiency of the MVC extension is
not necessarily larger than that of the Baseline profile. This is
because the MVC extension results in smaller denominators
in (11) than the Baseline profile. In general, the actual joint
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coding efficiency is proportional to the estimated joint coding
efficiency, and such feature is independent of cluster sizes,
coding methods, and levels of distortions (quantization steps)
of coding. Therefore, the EDM scheme can effectively predict
the joint coding performances for different sets of cameras.

B. Compression Performance of DMCP

We now investigate the compression performance of DMCP
in terms of clustered coding efficiency, which has the form
similar to equation (10), except that the joint entropy in the
entire network is equal to the total entropy produced in the
entire network after DMCP is performed. Here, we consider
a network with camera sensor nodes uniformly deployed in a
100 × 100 region. We vary the network size n and sensing
radius R, and measure the cluster coding efficiency in Fig.
3. We observe that the DMCP incurs up to 10% - 23 %
coding rate reduction in WMSNs, by removing the visual
redundancy generated by spatially correlated cameras. The
increase in the clustered coding efficiency under larger sensing
radius can be attributed to the following: larger sensing radius
gives rise to higher probability of two ajacent nodes having
overlapped FoVs, thus inducing more visual redundancy in the
network. The DMCP ensures that these increased redundancy
can be effectively identified and removed, thus giving a better
compression performance. We also observe that the increase
in the number of nodes does not impact the coding efficiency
significantly, and thus the DMCP provides a good scalability
in terms of compression efficiency.

We now study the impact of sensing direction �V and offset
angle α on the compression performance of DMCP. The
deviation in the sensing directions of multiple camera sensors
directly affects the similarity among their retrieved images.
For a group of sensors with similar sensing directions, there
is high probability that they may capture the similar visual
content, thus leading to more redundancy in the network. The
DMCP ensures that the sensor nodes with similar directions
are grouped together, aiming to reduce the redundancy to
the maximum extent. Fig. 4 depicts the coding efficiency of
DMCP under changing sensing direction patterns. Here, each
sensor node is randomly assigned a sensing direction within
a degree region, and wider region leads to larger direction
deviation. We observe that a substantial coding efficiency
(10% - 15 %) is achieved even in the worst scenario, e.g.,
each sensor randomly selects a direction within a region of
0◦ − 360◦, while the optimal coding scenario (20% - 29%)
occurs when all the cameras have identical sensing directions.

Besides sensing direction, offset angle also has significant
impact on compression efficiency. In Fig. 4, as the offset
angle increases, we observe the elevation in coding efficiency,
followed by a gradual decrease. This phenomenon is attributed
to the following: a wide offset angle leads to a large FoV.
Thus, there is greater probability that adjacent cameras cover a
large common area. This indicates that more redundancy exists
in the network. Therefore, higher compression performance
is achievable by DMCP. When the offset angle is over a
threshold, e.g., 60◦−70◦ in Fig. 4, the increase in offset angle

leads to larger size of nonoverlapped FoVs than overlapped
ones, thus incurring a reduced compression efficiency.

We now investigate the decoding reliability of DMCP by
examining the minimum and average number of cluster heads
covering each camera sensor. As shown in Fig. 5, the minimum
number of cluster heads for each sensor is 2. Meanwhile, we
observe that the average number of cluster heads covering
each node exceeds 2. This indicates that some camera sensors
are included in more than 2 coding clusters, thus providing
additional decoding robustness at data sink. In addition, low
variance in the number of cluster heads is shown in Fig. 5,
which proves the fairness of DMCP in terms of coverage
performance.

VI. CONCLUSIONS

In this paper, we provide an information theoretic data
compressing framework for WMSNs with an objective to max-
imize the global compression gain with enhanced decoding
reliability. In particular, an entropy-based divergence measure
(EDM) scheme is developed to predict the compression ef-
ficiency for an arbitrary coding cluster containing multiple
correlated cameras. This method is only related to the camera
settings, and therefore independent of any specific image types
and coding algorithms. Using the results of EDM, we then
propose DMCP to select a set of coding clusters with minimum
total entropy in a fully distributive manner, such that each
camera sensor is covered by at least two coding clusters.
The approximation factor of DMCP is also investigated. Our
evaluation results show that the EDM can effectively predict
the coding rates produced by practical coding standards, while
the data framework yields up to 10% - 23% rate reduction
compared with the conventional independent coding.
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