
Collaborative Debugging

H.-Christian Estler∗ Martin Nordio∗ Carlo A. Furia∗ Bertrand Meyer∗,†

∗Chair of Software Engineering, ETH Zurich †ITMO National Research University

Zurich, Switzerland St. Petersburg, Russia

firstname.lastname@inf.ethz.ch

Abstract—Debugging—the process of finding and correcting
programming mistakes—faces too the challenges of distributed
and collaborative development. The debugging tools commonly
used by programmers are integrated into traditional development
environments such as Eclipse or VisualStudio, and hence do not
offer specific features for collaboration or remote shared usage.
In this paper, we describe CDB, a debugging technique and
integrated tool specifically designed to support effective collabo-
ration among developers during shared debugging sessions. We
also discuss the design and results of an empirical study aimed
at identifying features that can ameliorate the effectiveness of
collaborative debugging processes; and at evaluating the useful-
ness of our CDB collaborative debugging approach. The study
suggests that CDB’s collaboration features are often perceived as
important for effective debugging; and can improve the overall
debugging experience in collaborative settings.

Index Terms—Distributed software development, Debugging,
Empirical study

I. INTRODUCTION

Debugging is the process of dealing with one of life’s

inevitables—programming mistakes. Always a cardinal part of

the development process, its importance has prompted the con-

struction of techniques and tools that can assist programmers

to make them more productive at finding and fixing errors.

Debugging techniques have typically been developed around

traditional development practices, and debugging tools have

become part of every integrated development environment

(IDE) such as Eclipse or VisualStudio. This entails that they

are essentially conceived as tools for individual usage, and

hence may be a poor match for today’s increasingly collabo-

rative and distributed development processes.

This paper investigates the problem of deploying debugging

techniques and tools in the context of collaborative develop-

ment, where developers working on the same project cooperate

with the goal of finding and correcting errors in their shared

codebase. Debugging in collaborative environments is likely to

feature as a useful activity in every team development practice,

but is especially crucial—if not outright necessary—in the

increasingly common distributed development settings: when

developers of the same team may be located in physically

distinct locations, possibly even in widely different time zones,

the fine-grained coordination, required by collaboration on

a highly interactive process such as debugging, becomes a

real challenge. We offer three main contributions addressing

the general problem of collaborative debugging, with an eye

towards distributed settings.

Debuggers—such as the GNU debugger or the Microsoft

VisualStudio debugger—are normally integrated in IDEs with-

out specific support for shared usage. Programmers working

on the same project synchronize indirectly through shared

repositories managed using tools such as Subversion or Git,

but their debugging sessions are individual and cannot benefit

from collaboration unless they are sitting at the same desk—

something hardly possible in a distributed setting. The first

contribution of this paper is a debugging technique, called

CDB, designed for remote collaboration. CDB supports mul-

tiple programmers, each one sitting at her desk, sharing a

common execution of the program under debugging. Every

programmer can add or remove breakpoints, inspect variables,

and navigate the code, with the others aware of each other’s

actions in real-time. We implemented this debugging technique

leveraging the features of CloudStudio, the web-based IDE for

collaborative development we introduced in previous work [7].

Section III discusses our collaborative debugging technique

and how it can be used in practice. CloudStudio and CDB are

available online1.

Evaluating the effectiveness of a complex and ultimately

human-driven process such as debugging is a challenging

problem even in traditional single-user sessions. Parnin and

Orso [16], for example, provided evidence that the traditional

protocols used to evaluate fault localization techniques often

misrepresent or overstate their real effectiveness when used

within actual debugging sessions. In collaborative settings,

designing sound empirical evaluations becomes even more

challenging, as more variables (such as the number of people

collaborating) must be controlled and accounted for. The

second contribution of this paper is the design of an empir-

ical study of collaborative debugging in possibly distributed

settings. Our experimental protocol accommodates analysis

focused on the interaction model—for example, as in CDB

vs. using traditional processes. We describe the protocol in

Section IV.

Our third contribution is an actual empirical study of

collaborative debugging, following the experimental design

just outlined. The study involved 38 participants, performing

10 debugging tasks of various difficulty using either our

collaborative debugging technique CDB or a standard remote-

desktop application to follow and interact with their debug-

ging partners. We split the students in different groups to

achieve a good trade-off between statistical significance and

generalizability of the results; in particular, we experimented

with different interaction models and included both pairs and

1http://se.inf.ethz.ch/research/cloudstudio/

firstname.lastname@inf.ethz.ch
http://se.inf.ethz.ch/research/cloudstudio/

triples of programmers sharing the same debugging session.

Section V describes the details of the study, whereas Sec-

tion VI analyzes potential threats to validity. The study’s most

significant findings are: the two features that are generally

perceived the most important for collaborative debugging are:

• being able to independently browse the code under debug;

• and add variables to watch.

There is no evidently preferred mode of control, but debug-

ging with CDB provides for collaborative debugging with a

more uniform level of involvement, as well as for debugging

processes perceived as more efficient and generally preferred

for collaborative tasks.

Before presenting our contributions, Section II gives an

overview of the challenges of using debugging tools collabo-

ratively, in a settings where programmers may be displaced at

different locations and interact only remotely.

II. COLLABORATIVE DEBUGGING IN DISTRIBUTED TEAMS

Let us introduce our two fine programmers Pippo and Binha.

Pippo lives in Italy and has recently joined our team of

developers working on a large Java application. His current

assignment involves using a binary tree implementation written

a few weeks ago by Binha—who belongs to the Brazilian

development unit.

To get started and understand the binary tree’s API, Pippo

writes the client code in class Client shown at the bottom of

Figure 2. His code creates an instance t of class BinaryTree

and populates it with a few nodes of class Node storing integer

values. The rest of Figure 2 outlines the essential parts of the

BinaryTree and Node classes written by Binha.

It does not take long before Pippo realizes that something’s

wrong with the binary tree implementation. Since he has

access to the whole codebase, Pippo may simply debug the

implementation on his own. This approach has, however, some

evident drawbacks. Since Pippo is not familiar with the details

of the binary tree implementation, he is likely to be slow at

debugging it. Worse, he may not be aware of the other clients’

usage requirements, and his fixes may negatively affect them

without him realizing it. Finally, touching base with Binha is

probably advisable in any case, just to avoid that the two of

them introduce conflicting changes which will require a later

painful merge process.

So Pippo asks Binha to help him debug the problems

he is facing. Since they have no specific tool support for

collaborative debugging, the best they can do is using a

remote-desktop application: Pippo’s computer is running the

debugger within Eclipse; and Binha is connected remotely,

sees whatever Pippo sees in his computer screen, and can text

him with comments or requests for actions.

To demonstrate the problem, Pippo adds breakpoints at

lines 36, 37, and 39 and starts the debugger. When execution

stops at the first breakpoints (line 36), the debugger displays

a pane with the variables in scope as in Figure 1a. This shows

that the node with value 10 has been incorrectly inserted twice

in the tree. Binha realizes that the problem is the conditional

at line 15, which should be exercised only if the previous

1 class BinaryTree<G extends Comparable<G>> {

2 Node<G> data;

3 BinaryTree<G> left, right;

4

5 public BinaryTree (Node<G> root) {

6 data = root; left = null; right = null;

7 }

8

9 public void insert (Node<G> d) {

10 if (d.lessThan(data)) {

11 if (left == null) {

12 left = new BinaryTree<G>(d);

13 } else { left.insert(d); }

14 }

15 if (d.greaterThan(data)) {

16 if (right == null) {

17 right = new BinaryTree<G>(d);

18 } else { right.insert(d); }

19 }

20 }

21 public void traverse(int i) { ... }

22 }

23

24 class Node<T extends Comparable<T>> {

25 T data;

26 public Node(T d) { data = d; }

27 public boolean lessThan(Node<T> n) { ... }

28 public boolean greaterThan(Node<T> n) { ... }

29 }

30

31 class Client {

32 public void main() {

33 BinaryTree<Integer> t =

34 new BinaryTree<>(new Node<Integer>(17));

35 t.insert(new Node<Integer>(10));

36 t.insert(new Node<Integer>(30));

37 t.insert(new Node<Integer>(35));

38 t.insert(new Node<Integer>(12));

39 t.insert(new Node<Integer>(21));

40 t.traverse(0);

41 }

42 }

Fig. 2: A Java binary tree implementation.

condition on line 10 fails. Binha suggests to change the if on

line 15 into an else if. She cannot do the change directly and

her view is limited to the code currently displayed in Pippo’s

IDE window; instead, she explains the problem to Pippo via

voice chat and asks him to deploy the change.

After fixing as suggested by Binha, Pippo re-starts the

debugger. Upon reaching the breakpoint at line 36, it now

shows the state in Figure 1b, which looks fine. Pippo issues a

step-over command, which continues execution until the next

breakpoint at line 37, that is it inserts a node with value 30. It

is clear, however, that there is still a problem, as the insertion

does not actually change the state of the tree.

After coordinating with Binha again over voice chat, Pippo

issues a step-into command, which causes the debugger—now

at the second breakpoint at line 37—to show the code executed

by the call t.insert(35) which inserts a node with value 35.

The debugger shows that the condition d.lessThan(data) on

line 10 evaluates to false; the next condition d.greaterThan

(data) on line 15 is also false given the state of Figure 1c.

Thus, the problem is with the implementation of lessThan or

2

(a) Before fixing the first bug. (b) After fixing the first bug. (c) State at line 15 after fixing the first bug.

Fig. 1: Debugging the binary tree example.

greaterThan:

43 public boolean lessThan(Node<T> n)

44 { int last = this.data.compareTo(n.data);

45 return last < 0 ? true : false; }

46

47 public boolean greaterThan(Node<T> n)

48 { int last = this.data.compareTo(n.data);

49 return last > 0 ? false : true; }

Evaluating the expressions this.data.value and d.data.

value in the current debugging context gives the values 17

and 35, and variable last in library method greaterThan

correspondingly evaluates to 1 because 35 = d.data.value

> this.data.value = 17. The conditional expression on

line 49, however, incorrectly returns false. Pippo and Binha

agree that a suitable change is switching the returned values on

line 49 which becomes return last > 0 ? true : false.

III. COLLABORATIVE DEBUGGING WITH CDB

Even if the debugging session described in Section II

eventually succeeded, it showed that using a remote-desktop

application to collaborate has several shortcomings. In fact,

achieving effective collaboration during shared debugging ses-

sions seems to have conflicting requirements. On the one hand,

the programmers involved should be able to share a common

debugging session; ideally, each should be able to modify the

code or interact with the debugger directly, without need to

describe actions in speech or via chat and request someone else

to carry them out. At the same time, each programmer should

also be able to perform independent activities in parallel, such

as browsing parts of the project or testing the effects of small

changes to the code, without interfering with or depending on

what his colleagues are doing in their IDEs. Remote-desktop

applications provide sharing, but subject to a strict discipline

where one or more clients have access to a master machine.

The clients’ view on the master machine are limited to what

is displayed on its screen at any time, and there is no simple

way to coordinate or even to switch the role of master with

one of the clients.

Based on these preliminary observations, which the empir-

ical study of Section V will corroborate, we designed CDB,

a collaborative debugger that facilitates remote coordination.

Fig. 3: CDB running the example of Figure 2.

CDB is integrated within the CloudStudio web-based IDE,

which we developed in related work [7]. Users of CDB log-in

to the CloudStudio server using any web browser. Whenever

they select a common project to work on, they can start

shared debugging sessions using CDB. A shared session has a

unique thread of execution on the project under debugging; all

participating users observe the program state throughout the

shared session, for example by displaying the values of certain

variables. Figure 3 shows a screenshot of CDB running on the

example of Section II.

CDB offers the standard commands to control debugging

sessions: add or remove breakpoints (where execution pauses);

step-over a call (execute it as an atomic statement); step-into

a call (execute the next of its constituent steps); step-out of

a call (switch back to the higher level after a step-into); and

resume or terminate the whole session. All collaborating users

see the effect of any issued commands on their shared session.

A crucial issue for usability is achieving a suitable balance

of flexibility and discipline in how to control debugging

3

sessions: flexibility for users to issue commands without

requiring explicit coordination—thus reducing the communi-

cation overhead—and discipline to avoid haphazard debugging

sessions—thus reducing the impact of conflicting strategies.

To this end, CDB offers two control modes, which achieve

different trade-offs between flexibility and discipline. While

all users are allowed to insert or remove breakpoints in either

mode, the other commands are managed differently:

Master mode: a single user is allowed to issue the commands

step-over, step-into, step-out, resume, and terminate; the

other users observe the execution controlled by the mas-

ter. At any time during the session, the master can switch

roles with one of other users. This is often useful when

the execution reaches parts of the code the master is

not familiar with; he may then decide to become an

observer and tap in a more knowledgeable collaborator,

who takes the lead without having to start over with a

new debugging session.

Peer mode: all connected users are allowed to issue any of

the commands. To avoid some extreme situations where

conflicting commands are issued whose net effect is

void (for example, a step-into followed by a step-out

shortly afterward), whenever a user X issues a command,

CDB rejects any new command issued by any other

user Y within a couple of seconds. This retains some

coordination discipline by implicitly requiring that Y

waits at least until X concludes a sequence of arguably

closely related commands.

Debugging with CDB offers additional perks that derive

from being integrated within the CloudStudio IDE. While the

debugging session itself is shared, each user retains exclusive

control on what happens in her IDE. As the session unravels,

she may perform useful activities in parallel, such as browsing

relevant part of the codebase, adding provisional changes and

sharing them with the others using CloudStudio’s configu-

ration management and real-time awareness system [7]. In

summary, users collaborate on the shared debugging session

but may work asynchronously to get a clearer picture of what

is going on and consequently direct the debugging process

based on better informed decisions.

Debugging with CDB. CDB’s features can improve the

collaborative debugging experience of the example discussed

in Section II over using standard remote-desktop applications;

in particular, synchronization can happen more efficiently

leveraging CDB’s control modes. For example, Pippo initiates

the debugging session acting as master; Binha can still add

breakpoints to stop the execution at crucial points. She can

also navigate the source code of the project independent of

what Pippo does in his IDE window, to acquire information

without blocking others. Pippo can easily hand control over to

Binha whenever execution reaches parts that she knows better.

And changes to the code can also be performed by either

programmer, with the other aware of them in real-time thanks

to CloudStudio’s configuration management mechanisms.

IV. EMPIRICAL STUDY: EXPERIMENTAL DESIGN

The overview of Section II highlighted some issues that are

likely to surface when performing debugging in collaborative

distributed settings; and the presentation of our collaborative

debugger CDB in Section III suggested an approach that may

improve the effectiveness of the debugging experience in such

settings. The rest of the paper describes an empirical study

aimed at evaluating issues of and approaches to collaborative

debugging.

The study’s main goal is testing whether the CDB approach

addresses the relevant issues, and whether it brings tangible

benefits. The main research questions are correspondingly as

follows (the rest of the section gives a characterization of

“effective collaboration”):

RQ1: Which debugger features (e.g., adding break-

points) are critical for an effective collaboration

in debugging sessions?

RQ2: What is the relevance of different control policies

(e.g., a single programmer always in control) for

an effective collaboration in debugging sessions?

RQ3: How do the two debugging experiences, using

remote-desktop vs. using CDB, compare?

Let us now discuss how we collected evidence to answer these

general questions.

Assignments and tasks. We evaluate programmers work-

ing on two assignments: the List assignment and the Tree

assignment. The two assignments have comparable size and

complexity, and differ only in the kind of data structure they

target—respectively linked lists and binary search trees. Each

assignment comes with 100–200 lines of source code written

in JavaScript (the example of Section II is a simplified Java

variant of the Tree assignment). We concocted the assignments

with the goal of having codebases sufficiently simple, so that

programmers can find their ways through them in the limited

time allotted by the experiments, but also not entirely trivial.

An assignment consists of five tasks; each task comes with

a test case that reveals an error of the assignment’s data struc-

ture; the task’s goal is fixing the error through debugging. The

participants are also given a written description of the tasks,

including detailed instructions and a short tutorial describing

the tools and how to use them. They are also allowed to ask

for clarification to the supervisor.

The first task in each batch is simpler than the other four,

and the programmer performance on it is not evaluated. Since

tasks are executed in order, the first task serves as a warm-up:

programmers get a chance to acquire some familiarity with

the codebase and with the debugging tools at their disposal.

This increases the similarity of the experimental setup with

real debugging scenarios, where it is likely that programmers

already have some knowledge of the codebase and of the tools.

It may also reduce the impact of different participants to the

study having different previous experience with the tools.

Debugging tools and scenarios. To make the debugging

experiences using remote-desktop vs. using our CDB com-

parable, we need to set up debugging environments that

4

are as similar as possible except for the debugging tools.

For example, comparing remote-desktop using the Eclipse

debugger (as in Section II) to CDB integrated in CloudStudio

would make little sense, given that a widely-used and mature

IDE such as Eclipse makes for an overall quite different user

experience than the research prototype CloudStudio. Instead,

we set up two usage scenarios for CloudStudio: CD and SS.

Under scenario CD (for “CDB” debugging), developers use

CDB exactly as described in Section III, with the shared

debugging session, the various control modes, as well as all

other features of CloudStudio. Under scenario SS (for “shared-

screen” debugging), one master developer uses CloudStudio

on her machine as if it were a single-user browser; the other

developers participating to the debugging session connect to

the master machine using a remote-desktop application, can

only watch what is displayed on the master machine and

interact with the master via text chat, Skype, or voice (the last

option is obviously possible when they are in the same room)

as described in Section II. In this way, the features offered by

the bare IDE are the same, whereas the collaboration means

are quite different in the two scenarios.

We randomly split the participants in three groups, using

different combinations of CD and SS:

G1: programmers in this group debug following scenario SS.

Half of the group works on List and half works on Tree.

G2: programmers in this group debug following scenario CD.

Half of the group works on List and half works on Tree.

G3: programmers in this group debug following both sce-

narios CD and SS. This is organized in two subgroups,

according to which scenario they follow first:

G3.A: programmers first work on an assignment under

SS and then work on the other assignment under CD.

Half of the group works first on List and then on Tree;

the other half works first on Tree and then on List.

G3.B: programmers first work on an assignment under

CD and then work on the other assignment under SS.

Half of the group works first on List and then on Tree;

the other half works first on Tree and then on List.

Group G3 makes it possible to evaluate if the user experience

changes when programmers have a chance to try both scenar-

ios CD and SS and to compare them. The split of G3 into G3.A

and G3.B helps control for the influence of getting experience

with debugging under one scenario on debugging under the

other scenario: since both CD and SS use the same basic

CloudStudio IDE, the performance on the second assignment

may improve just as a result of becoming familiar with the

IDE.

Team allocation. We split programmers in each group

in debugging teams. Members of the same team interact

following scenario SS or CD. Our study does not measure the

effect of distribution on debugging performance, even though

we had a mixture of teams whose members were in the same

room, in the same building, in different locations in the same

city, and even in different countries.

To evaluate the effect of increasing levels of collaboration,

each group includes debugging teams of different size. In our

experiments, we focused on 2-programmer and 3-programmer

teams: 2-programmer teams are the baseline for collaborative

debugging, whereas 3-programmer teams demonstrate whether

more collaboration is achievable with sustainable overhead.

Future studies focusing on collaboration may experiment with

teams of even larger size, after addressing the criticalities

shown by our study.

Previous experience. To control for previous experience

of the participants, we ask them to rank on a 1–5 scale

their experience with programming in general, with JavaScript

programming, and with interactive debugging. We also report

whether they had already experienced collaborative debugging

of any kind before the study.

A. Critical Debugger Features: RQ1

Research question RQ1 looks for critical features of de-

buggers used collaboratively. After a team has completed its

assignments, we ask each of its members to rank on a 1–5 scale

the importance of the following features: adding and removing

breakpoints, adding and removing monitored variables and

expressions, and browsing the codebase independent of others.

An additional free-text question asks to mention any other

feature that they consider important.

Answers to questions about the same feature are not directly

comparable between teams working under different scenarios,

who have or don’t have experienced that feature. In fact, ques-

tions for teams following SS are phrased as “How much did

you miss feature X?”, whereas the corresponding questions for

teams following CD are phrased as “How useful was feature

X?”. Instead, we can directly compare the same questions

about SS between teams in group G1 and in group G3, as

well as about CD between teams in group G2 and in group G3.

We also analyze correlations between questions about different

features for the same group.

B. Control Policies: RQ2

Research question RQ2 studies the impact of the control

policies allowed or enforced in the different sessions. After

a team has completed its assignments, we ask each of its

members to rank on a 1–5 scale: the importance that everyone

on the team can issue commands (e.g., step-into) to the

debugger; the level of active involvement in the debugging ex-

ercise; the degree of control achieved on the debugger. Again,

questions were phrased differently for sessions following SS

and sessions following CD: questions for teams following SS

are phrased as “How much did you miss that everyone can

issue commands?”, whereas the corresponding questions for

teams following CD are phrased as “How useful was it that

everyone can issue commands?”. We also ask to rank on a

1–5 scale: how often each member issued commands (CD

scenarios) or asked the person in charge to issue commands

(SS scenarios), where 1 denotes “Never” and 5 denotes “More

than 12 times”.

When collecting and comparing data about control policies,

it is especially important to account for the role each pro-

5

grammer had in the debugging session and for the number of

people involved. To this end, we partition the answers to the

questions according to whether the respondent was the master:

in SS scenarios, the master is the person who is in control of

the IDE; in CD scenarios using master mode, the master is

the person who is allowed to issue commands.

For the CD scenarios, we also run sessions where CDB

operates in peer mode (see Section III), where there is no

single master but all team members can issue commands at any

time. Correspondingly, the questionnaires for sessions using

CD also included questions about the usefulness of the master

or peer modes as control policies.

C. Debugging Experience: RQ3

Research question RQ3 draws a comparison between the

debugging experiences using remote-desktop (as in scenario

SS) and using CDB (as in scenario CD). After a team has

completed its assignments, we ask each of its members to

rank on a 1–5 scale the perceived efficiency of debugging

under the assigned scenario. For teams in group G3, who

experienced both debugging scenarios, we also ask which

one they preferred. Finally, we measure the overall time to

complete the tasks (not including the first warm-up task); and

the number of tasks successfully completed within a limit of

60 minutes.

V. EMPIRICAL STUDY: EXECUTION AND RESULTS

We performed the empirical study described in Section IV

with 38 participants: 19 bachelor’s students, 10 master’s stu-

dents, and 9 professional programmers, spread across Italy,

Switzerland, and Croatia. We distributed the participants into

groups G1, G2, and G3 and into 2-person and 3-person teams

as shown in Table I. We decided the number of components

in each group, but the specific assignment of people to groups

was random.

GROUP: G1 G2 G3.A G3.B

SCENARIO: SS only CD only SS, then CD CD, then SS

2-person teams 4 1 4 4

3-person teams 1 2 – 1

teams debugging List 3 2 5 4

teams debugging Tree 2 1 4 5

TABLE I: Setup of groups and assignments. Participants used

shared screen (SS), collaborative debugging (CD), or both

techniques to debug one or both of the assignments List or

Tree. Precisely, teams in G1 and G2 debugged one of either

List or Tree; teams in G3.A debugged both assignments using

SS for List and then CD for Tree; teams in G3.B debugged

both assignments using CD for List and then SS for Tree.

As shown in Figure 4, the previous experience of the

participants spans multiple levels. In particular, nearly all

participants have significant programming experience; most

of them have repeated debugging experience; about half of

them have a little experience with JavaScript, collaborative

debugging, or both. The mosaic plot in Figure 4 also shows

that the distribution of experience is comparable in the various

groups, namely those working only with SS, only with CD,

and with both SS and CD (in any order).

A. Critical Debugger Features: RQ1

Which features are most useful during collaborative debug-

ging? The boxplot of Figure 5 and the corresponding Table II

report the results of the questions targeting RQ1 concerning

debugging sessions under scenario SS (using no specific

support for collaboration other than remote desktop). Answers

are ranked on a 1–5 scale, with 1 denoting “feature not missed”

and 5 denoting “feature much missed”. The possibility of

browsing the code independent of other teammates is the most

missed feature, followed by being able to add expressions and

variables to be monitored.

The boxplot of Figure 6 and Table III summarize the

answers to the corresponding questions concerning debugging

under scenario CD (using our collaborative debugger CDB).

Answers on a 1–5 scale now denote features from “considered

not useful” to “considered very useful”. Browsing code still is

a very popular feature, and so it the possibility of adding vari-

ables. Adding or removing breakpoints, which everyone can

do at any time with CDB, is not considered particularly useful,

nor is often missed in the SS scenario. This is probably due

to the fact that, even when only one programmer can change

the breakpoints, asking for a breakpoint change requires little

communication (essentially, a location).

The participants did not report any other generic feature in

the specific open-answer questions. In all, browsing the code

and modifying the variables and expressions monitored by the

debugger emerge as critical features for effective collaborative

debugging.

●●

1
2

3
4

5

Breakpoints Expressions Variables Browsing

Fig. 5: Features missed during SS debugging, on a 1–5 scale.

FEATURE # min median max mean σ

Breakpoints 30 1 2 5 2.5 1.17

Expressions 30 1 3 5 3.1 1.18

Variables 30 1 3 5 3.33 1.3

Browsing code 25 1 4 5 3.6 1.35

TABLE II: Features missed during SS debugging (# is the

number of answers, σ is the standard error).

Impact of being the master. While in debugging scenarios

CD with CDB all programmers in the team may browse the

code and take control of the debugger, the master is strictly

6

●●

●●

Programming

S
e
s
s
io
n

s
s

c
d

b
o
th

2 3 4 5

●●

●●

JS

S
e
s
s
io
n

s
s

c
d

b
o
th

1 2 3 4

●●

Debugging

S
e
s
s
io
n

s
s

c
d

b
o
th

1 2 3 4 5

●●

●●

●●

Collab−Debugging

S
e
s
s
io
n

s
s

c
d

b
o
th

0 1 2 34

Fig. 4: Previous experience with programming in general (left), JavaScript programming (center left), debugging (center right),

and collaborative debugging (right) amongst the study participants. All measures on a 1–5 scale, except collaborative debugging

which is on a 0–4 scale.

FEATURE n min median max mean σ

Breakpoints 27 2 3 5 3.48 1.12

Expressions 27 2 4 5 4.15 0.99

Variables 27 2 5 5 4.19 1.04

Browsing code 27 2 5 5 4.33 1.11

TABLE III: Features considered useful during CD debugging

(n is the number of answers, σ is the standard error).

fixed during the SS debugging sessions, where only the person

sitting in front of the computer running the debugger can

browse, add variables, expressions, and breakpoints, as well

as start and stop the debugger.

FEATURE #M #O U p

Breakpoints 11 19 82 0.33

Expressions 11 19 109 0.86

Variables 11 19 103 0.96

Browsing 9 16 74 0.91

TABLE IV: Significance test to determine if the role during

SS debugging sessions impacts how much a feature is missed.

#M is the number of programmers in the role of master, #O

the number of all other programmers.

To understand whether being the master affects the percep-

tion of which features are important, we performed statisti-

cal significance tests comparing the answers about missing

features given by masters vs. the other programmers in the

●●● ●●● ●●●●

1
2

3
4

5

Breakpoints Expressions Variables Browsing

Fig. 6: Features considered useful during CD debugging, on a

1–5 scale.

team. Since the data may not be normally distributed and

is scaled ordinal but not continuous, we use an independent

two-group Mann-Whitney U test, with null hypothesis H0:

P(M < O) = P(O < M), where M measures the answers

given by programmers in the role of master, and O the answers

given by all the others. Table IV shows the results. Since

p ≥ 33% for every feature, we do not reject H0: there is

no evidence that being the master affects the perception of

which features are critical for collaborative debugging.

Impact of group allocation. While the answers to the

questions for SS scenarios (“Which features did you miss?”)

and the corresponding questions for CD scenarios (“Which

features did you find useful?”) are not directly comparable,

it is interesting to see whether taking part in both debugging

scenarios affects the perception of either set of questions.

Feature G1 G3 USS pSS G2 G3 UCD pCD

Breakpoints 11 19 127 0.33 8 19 74.5 0.96

Expressions 11 19 134 0.20 8 19 57.5 0.30

Variables 11 19 92 0.61 8 19 102.5 0.13

Browsing 11 14 108 0.08 8 19 88 0.46

TABLE V: Significance test to determine if having expe-

rienced both debugging scenarios impacts the importance

attributed to features. Columns G1, G2, and G3 list the number

of programmers in the corresponding groups.

To this end, we performed statistical significance tests

comparing the answers about the debugging scenario SS (re-

spectively, CD) coming from people in group G1 (respectively,

G2) and in group G3. Again, the nature of the data suggests

a U -test with the obvious null hypothesis. Table V shows the

results, with the left-hand half of the table about scenario SS

and the right-hand half about scenario CD. Since p ≥ 13%
for every feature, we do not reject the null hypothesis: there

is no evidence that having experienced both debugging sce-

narios affects the perception of which features are critical for

collaborative debugging.

Correlation analysis. Tables VI and VII show the corre-

lation coefficients between the variables measuring the back-

ground of participants and the features they considered useful;

as usual, Table VI first shows the data about sessions under

7

scenario SS and then Table VII the data about sessions under

scenario CD.

P D Js Cd K E V

D 0.58

Js 0.03 0.20

Cd 0.18 0.36 0.35

K 0.14 −0.14 0.40 0.19

E 0.15 0.20 0.18 0.03 0.52

V 0.15 0.23 0.22 0.00 0.36 0.60

B 0.67 0.59 0.10 0.12 0.17 0.49 0.62

TABLE VI: Spearman correlations between variables for ses-

sions under scenario SS. Numbers in bold are statistically

significant at a 5% level or better. The variables measure

the experience with Programming, with Debugging, with

JavaScript, with Collaborative debugging, as well as how

much adding/removing breaKpoints, Expressions, Variables,

and independent Browsing was missed.

P D Js Cd K E V

D 0.54

Js 0.12 0.18

Cd −0.16 0.25 0.09

K −0.27 −0.25 −0.29 −0.11

E −0.29 0.12 −0.17 −0.04 0.40

V 0.30 0.16 0.05 −0.33 0.31 0.38

B 0.31 0.07 −0.15 −0.50 0.40 0.30 0.71

TABLE VII: Spearman correlations between variables for

sessions under scenario CD. Numbers in bold are statistically

significant at a 5% level or better. The variable names are as

in Table VI.

Looking only at the statistically significant correlations, we

find the obvious one between programming experience and

debugging experience: it is hard to progress in programming

without plenty of debugging involved. Valuing independent

browsing correlates with valuing adding variables; after all,

these are both consistently ranked as the two most important

features. The correlation between adding variables and adding

expressions is also significant, probably since the latter can be

seen as a generalization of the former. The other significant

correlations occur only in one of the two scenarios (SS or

CD) and fail straightforward interpretations. For example,

the correlation between JavaScript programming and valuing

adding breakpoints is reasonable—to the extent that a better

understanding of the program makes for a more effective

control of the debugging sessions—but it is not clear why

it is only significant for SS debugging scenarios. Such open

points are good material for future studies.

B. Control Policies: RQ2

The second research question studies the impact of control

policies, and in particular who is the master and how this role

can change.

Amount of commands. Table VIII shows the amount of

commands the programmers requested to the master (when

in SS scenarios) or performed themselves (when in CD

scenarios). The data is very similar under the two scenarios,

and in fact a U test does not provide any evidence otherwise

(U = 248 and p = 0.86).

SCENARIO # min median max mean σ

SS 30 1 2 4 2.26 1.15

CD 30 1 2 4 2.56 1.19

TABLE VIII: Amount of commands requested to the master

by others (SS scenarios) or performed by any programmer

(CD scenarios), on a 1–5 scale.

A correlation analysis shows only one significant correla-

tion: for sessions under scenario SS, the amount of commands

requested to the master significantly correlates (ρ = 0.53,

p < 0.05) with the general programming experience of

those issuing the requests. This confirms the intuition that

general programming experience tends to be an indicator of the

capability of being actively involved in debugging processes.

1
2

3
4

5

Missed control (SS) Useful master (CDB) Useful peer (CDB)

Fig. 7: For SS debugging sessions: importance that everybody

can issue commands. For CD debugging sessions: usefulness

of the master and peer modes (see Section III).

Impact of control policies. The leftmost bar in Figure 7

shows how much programmers participating in SS debugging

sessions missed that everyone can directly issue commands to

the debugger. A high variability range suggests that lacking

direct control is perceived differently by different people. An

obvious guess would be that control is missed the most by

who does not have it, that is programmers other than the

master in SS scenarios. A U test does not, however, give any

support to this guess (U = 81.5 and p = 0.32). Therefore,

the explanation may have more to do with general attitudes

towards collaboration; but further investigation is needed to

answer conclusively.

Regarding sessions under the CD collaborative scenario, the

participants slightly preferred the peer control policy, where

everyone can issue commands at any time. The difference

is, however, small and not statistically significant: a 2-group

Wilcoxon signed rank test (the data is paired) gives V = 97
and p = 0.37.

Involvement and control. Another set of questions asked

what was the level of involvement during the debugging

sessions. To see to what extent involvement is influenced by

the role and by the debugging scenario (SS vs. CD), Table IX

breaks down the data into: SS sessions for programmers

8

min median max mean σ

SS: master 11 3 4 5 4.56 0.69

SS: other 19 2 3 5 3.16 0.90

CD 27 2 4 5 3.89 0.69

TABLE IX: Involvement of programmers: during SS sessions

when in master role; during SS sessions when not in another

role; during CD sessions. Data on a 1–5 scale.

SCENARIO # min median max mean σ

SS 30 1 3 4 2.57 0.86

CD 27 1 4 5 3.27 1.10

TABLE X: Process efficiency in each scenario.

in the master role; SS sessions for programmers in another

non-master role; CD sessions, where the role of master is

interchangeable or collective. With statistical significance, the

master is typically more involved than the others in SS

debugging sessions (U = 183 and p < 10−3); and the

latter are typically less involved than anyone participating in

CD debugging sessions (U = 155.5 and p = 0.02). The

difference between programmers in CD sessions and masters

in SS sessions is, instead, borderline statistically significant

(U = 199.5 and p = 0.08). In all, there is evidence that a

collaborative approach such as that offered by CDB makes

for a more uniform distribution of involvement, which is an

important goal in collaborative activities.

C. Debugging Experience: RQ3

The third research questions looks at the overall collabora-

tive debugging experience with remote-desktop (SS scenarios)

and with our tool CDB (CD scenarios).

Among the 19 programmers who tried both SS and CD

(group G3), 17 (or 89%) claimed to prefer the experience

with CDB over the interaction using remote-desktop. A related

question asked to rate the efficiency of the process in each of

the two scenarios. Table X shows the answers. The difference

is still in favor of debugging using CDB, with good statistical

significance: U = 230 and p = 0.0037.

In all, the data gives us some confidence that, even if other

variables are not greatly affected, CDB is a step in the right

direction of supporting collaborative debugging.

VI. THREATS TO VALIDITY

Internal validity. A few shortcomings in the execution of

the empirical study (Section V) constitute potential threats to

interval validity. We could not always enforce a strict time

limit to complete each assignment, mainly due to misun-

derstandings arising with the geographically distributed pro-

grammers who took part to the study. While most sessions

completed within one hour, a few went on for longer than

two hours. We minimized the impact of this problem by using

neither time nor tasks completed as measures in the evaluation,

even though we collected this data. Another inconsistency

occurred with three two-person teams working under the SS

scenario: members of the same team could not use different

computers, so they simply sat at the same terminal working

together. In these situations, we still applied the protocol

that limited their communication to verbal (as if they were

connected by Skype) and forbade them from pointing to

the screen, or sharing the control of the keyboard or any

other input device. This should have limited the impact of

the threats to validity in this case. A general limitation of

the study originates from the usage of CloudStudio as web-

based IDE. Since CloudStudio still is a research prototype, it

lacks advanced IDE functionalities, and is not immune from

bugs (in particular, the real-time synchronization mechanisms

may transiently lose responsiveness due to imperfect load

balancing). These may affect how programmers rate their

debugging experience. However, we performed all debugging

sessions (SS and CD) using CloudStudio, so as to have a

common baseline and only evaluate differences relative to it.

External validity. Though we designed the empirical

study’s tasks to resemble real-world debugging scenarios, the

code examples were necessarily limited in complexity and

size, and the bugs to be fixed were introduced on purpose.

Such limitations apply to all “laboratory” studies of program-

ming activities, as there is no simple recipe to guarantee that

in-the-small tasks are indicative of real-world programming.

While debugging is a complex multi-faceted process, which

we cannot expect to understand with a single empirical study,

in-the-small studies such as ours can help single out important

factors, which can then be assessed more thoroughly in follow-

up larger-scale studies.

VII. RELATED WORK

As far as we know, this paper’s contribution is novel, both

in presenting a new approach and supporting tool for collab-

orative debugging where distributed users share a common

debugging session in real-time; and in performing an empirical

evaluation of debugging in collaborative settings. This section,

describes the most relevant related work in two areas: tools for

distributed software development (DSD) and the features they

offer for debugging; and empirical studies of DSD.

A. Tools for Distributed Software Development

The arsenal of tools for distributed software development is

quickly expanding, and also includes mature commercial tools

such as Microsoft Team Foundation [13] and IBM Jazz [3].

These tools support various aspects of the collaboration be-

tween developers, such as sharing code and documentation in

the early implementation phases. They are also well integrated

with the corresponding IDEs—VisualStudio and Eclipse in the

case of Team Foundation and Jazz. The VisualStudio debugger

offers some support for collaboration: one developer can freeze

a debugging session running on her machine and transfer its

state to another computer running VisualStudio; there, it can be

restored and continue with another user. To be able to take over

a debugging session, the two user must have access to the same

codebase. IBM Jazz offers a similar debugging functionality.

Such approaches to “transferable” debugging are useful but

not truly collaborative, as they offer no support for the real-

time sharing that may be needed to have faster and more

9

directed interactions. Our CDB tool also supports transfer of

control during debugging sessions, but in real-time without

requiring that a session be frozen, transferred, and restored.

With IDEs such as CodeRun [5], Cloud9 [4], and Colla-

bode [9], tools for software development have been following

the general trend of moving to the web. These IDEs offer

functionalities similar to traditional IDEs, but are usable

without installation through a web-browser. Even if the code

is stored on a shared server and accessed transparently, every

user works on a logically different copy of the code, through

standard configuration management practices. Cloud9 and

Collabode also supports real-time collaboration: multiple users

simultaneously edit the same piece of code, as if they were

working on a GoogleDoc shared document. None of these

web-based IDEs offer collaborative debugging functionalities.

JS Bin [19] is a web-based collaborative tool for developing

JavaScript programs, which supports a form of collaborative

debugging. The collaboration is achieved by publishing a URL

where the current debugging session is shown, providing an

experience similar to using remote-desktop applications (as

illustrated in Section II and referred to as SS scenario in the

empirical study of Section V). DebugLive [20] offers similar

functionalities for passive collaboration. With both tools, only

one user is in charge of browsing the code, adding or removing

break points, and issuing other commands to the debugger; the

other participants can only watch and give suggestions.

B. Empirical Studies of Collaborative and DSD

Distributed software development has become a standard

practice in today’s software industry, one with many chal-

lenges [2], [12], [11]: differences in time zones and cultural

backgrounds, increased difficulties of performing requirements

engineering, project management, and API design, just to men-

tion a few. Some of these challenges have been investigated

empirically. For example, the effect of time zones on various

phases of development [10], [6], [14]; the relation between

development processes and distribution [8]; the effects on

productivity and quality [17], [1]; the usage of contracts for

API design [15]; and the impact of geographic dispersion on

quality metrics [18].

To our knowledge, there is no study about the collabora-

tive aspects of debugging processes and tools such as those

discussed in the present paper.

VIII. CONCLUSIONS

This paper presented CDB, a debugging technique and

integrated tool to support effective collaborative debugging.

We evaluated collaborative debugging—in general and with

the CDB approach—through an empirical study whose main

findings are:

• The two most critical features useful to improve col-

laborative debugging are: the possibility of browsing

code independent of collaborators, and of changing the

watched variables in the running debugging sessions.

• Collaborative debugging tools, such as CDB, that allow

collaborators to easily switch the role of who is in control

of a debugging session achieve more involvement of all

debugging session participants.

• Collaborative debugging with CDB is perceived as more

effective than the alternative of sharing a single-user de-

bugging session with only indirect interactions possible.

As future work, we plan to extend CDB with more function-

alities such as a stack call, to collect more data on its usage

with real-world applications, and to examine its potential for

impact on how collaborative debugging is performed.

Acknowledgments. Thanks to Rand Nezha and Mert

Tufekci for contributing to the implementation of CDB, and

to all the students who participated in the case study. Cloud-

Studio’s startup funding through the Gebert-Ruf Stiftung is

gratefully acknowledged. Work partially supported by ERC

grant # 291389.

REFERENCES

[1] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does
Distributed Development Affect Software Quality? An Empirical Case
Study of Windows Vista. In ICSE, pages 518–528. IEEE, 2009.

[2] E. Carmel. Global software teams: collaborating across borders and

time zones. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.
[3] L.-T. Cheng, C. R. de Souza, S. Hupfer, J. Patterson, and S. Ross.

Building collaboration into ides. Queue, 1(9):40–50, December 2003.
[4] Cloud9 IDE. http://www.cloud9ide.com.
[5] CodeRun Studio. http://www.coderun.com.
[6] J. A. Espinosa, N. Nan, and E. Carmel. Do Gradations of Time Zone

Separation Make a Difference in Performance? A First Laboratory Study.
In ICGSE, pages 12–22. IEEE, 2007.

[7] H.-C. Estler, M. Nordio, C. A. Furia, and B. Meyer. Unifying configura-
tion management with merge conflict detection and awareness systems.
In ASWEC. IEEE, 2013. To appear.

[8] H.-C. Estler, M. Nordio, C. A. Furia, B. Meyer, and J. Schneider. Agile
vs. structured distributed software development: A case study. In 7th

International Conference on Global Software Engineering. IEEE, 2012.
[9] M. Goldman, G. Little, and R. C. Miller. Collabode: Collaborative

coding in the browser. In Proceeding of CHASE ’11, pages 65–68,
New York, NY, USA, 2011. ACM.

[10] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter. Distance,
dependencies, and delay in a global collaboration. In Proceedings of

CSCW ’00, pages 319–328, New York, NY, USA, 2000. ACM.
[11] H. Holmstrom, E. O. Conchuir, P. J. Agerfalk, and B. Fitzgerald.

Global software development challenges: A case study on temporal,
geographical and socio-cultural distance. In ICGSE ’06, 2006.

[12] B. Meyer. The unspoken revolution in software engineering. IEEE

Computer, 39(1):121–124, 2006.
[13] Microsoft Team Foundation. http://www.microsoft.com/visualstudio/

en-us/products/2010-editions/team-foundation-server/overview, 2012.
[14] M. Nordio, H.-C. Estler, B. Meyer, J. Tschannen, C. Ghezzi, and E. D.

Nitto. How do distribution and time zones affect software development?
a case study on communication. In ICGSE, Los Alamitos, CA, USA,
2011. IEEE.

[15] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D. Nitto, and G. Tambu-
relli. The Role of Contracts in Distributed Development. In SEAFOOD,
volume 35 of LNBIP, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In ISSTA, pages 199–209. ACM, 2011.

[17] N. Ramasubbu and R. Balan. Globally Distributed Software Develop-
ment Project Performance: An Empirical Analysis. In ESEC/FSE, pages
125–134. ACM, 2007.

[18] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb. Con-
figuring Global Software Teams: A Multi-Company Analysis of Project
Productivity, Quality, and Profits. In ICSE, pages 261–270. ACM, 2011.

[19] http://jsbin.com/. Jsbin.
[20] http://www.breakpoints.com/. Debuglive.

10

http://www.cloud9ide.com
http://www.coderun.com
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server/overview
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server/overview
http://jsbin.com/
http://www.breakpoints.com/

	Introduction
	Collaborative Debugging in Distributed Teams
	Collaborative Debugging with CDB
	Empirical Study: Experimental Design
	Critical Debugger Features: RQ1
	Control Policies: RQ2
	Debugging Experience: RQ3

	Empirical Study: Execution and Results
	Critical Debugger Features: RQ1
	Control Policies: RQ2
	Debugging Experience: RQ3

	Threats to Validity
	Related Work
	Tools for Distributed Software Development
	Empirical Studies of Collaborative and DSD

	Conclusions
	References

