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ABSTRACT
Most real-world recommender services measure their performance
based on the top-N results shown to the end users. Thus, advances
in top-N recommendation have far-ranging consequences in prac-
tical applications. In this paper, we present a novel method, called
Collaborative Denoising Auto-Encoder (CDAE), for top-N recom-
mendation that utilizes the idea of Denoising Auto-Encoders. We
demonstrate that the proposed model is a generalization of several
well-known collaborative filtering models but with more flexible
components. Thorough experiments are conducted to understand
the performance of CDAE under various component settings. Fur-
thermore, experimental results on several public datasets demon-
strate that CDAE consistently outperforms state-of-the-art top-N
recommendation methods on a variety of common evaluation met-
rics.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering

Keywords
Recommender Systems; Collaborative Filtering; Denoising Auto-
Encoders

1. INTRODUCTION
In recent years, recommender systems have become widely uti-

lized by businesses across industries. Given a set of users, items,
and observed user-item interactions, these systems can recommend
other items that the users might like. Personalized recommendation
is one of the key applications of machine learning in e-commerce
and beyond. Many recommendation systems use Collaborative Fil-
tering (CF) methods to make recommendations. In production, rec-
ommender systems are often evaluated based on the performance of
the top-N recommendations, since typically only a few recommen-
dations are shown to the user each time. Thus, top-N recommenda-
tion methods are of particular interest.

In this paper, we present a new model-based collaborative filter-
ing (CF) method for top-N recommendation called Collaborative
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Denoising Auto-Encoder (CDAE). CDAE assumes that whatever
user-item interactions are observed are a corrupted version of the
user’s full preference set. The model learns latent representations
of corrupted user-item preferences that can best reconstruct the full
input.1 In other words, during training, we feed the model a sub-
set of a user’s item set and train the model to recover the whole
item set; at prediction time, the model recommends new items to
the user given the existing preference set as input. Training on cor-
rupted data effectively recovers co-preference patterns. We show
that this is an effective approach for collaborative filtering.

Learning from intentionally corrupted input has been widely stud-
ied. For instance, Denoising Auto-Encoders [24] train a one-hidden-
layer neural network to reconstruct a data point from the latent rep-
resentation of its partially corrupted version. However, to our best
knowledge, no previous work has explored applying the idea to rec-
ommender systems.

CDAE generalizes several previously proposed, state-of-the-art
collaborative filtering models (see Section 3.2). But its structure
is much more flexible. For instance, it is easy to incorporate non-
linearities into the model to achieves better top-N recommendation
results. We investigate the effects of various choices for model
components and compare their performance against prior approaches
on three real world data sets. Experimental results show that CDAE
consistently outperforms state-of-the-art top-N recommendation meth-
ods by a significant margin on a number of common evaluation
metrics.

Our contributions can be summarized as follows:

• We propose a new model CDAE, which formulates the top-
N recommendation problem using the Auto-Encoder frame-
work and learns from corrupted inputs. Compared to related
methods, CDAE is novel in both model definition and objec-
tive function.

• We demonstrate that CDAE is a generalization of several
state-of-the-art methods but with a more flexible structure.

• We conduct thorough experiments studying the impact of the
choices of different components in CDAE, and show that
CDAE outperforms state-of-the-art methods on three real
world data sets.

The rest of the paper is organized as follows. Section 2 provides
the problem definition, background, and useful notations. Section 3
describes our proposed model and learning algorithm in detail. We

1 We follow the typical top-N recommendation setup and consider
only user-item interaction data in this paper. Handling of additional
data, such as user/item features and contextual information, is left
as future work.
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discuss related work on applying neural network methods to recom-
mender systems in Section 4. Experimental results for the compo-
nents analysis and performance comparisons are presented in Sec-
tion 5. We conclude with a summary of this work and discussion
of future work in Section 6.

2. PROBLEM DEFINITION
Given a set of users U = {u = 1, ..., U}, a set of items I =
{i = 1, ..., I}, and a log of the users’ past preferences of items
O = (u, i, yui), our goal is to recommend to each user u a list of
items that will maximize her/his satisfaction. In many cases, the
log contains only implicit feedback where all the yui are 1; the rest
of the triples are assumed missing. We use Ō to denote the set of
unobserved, missing triples, and O′ an augmented user-item pairs
dataset that includes some data sampled from Ō. (We discuss O′
in more detail in the subsection on objective functions.) Let Ou
denote the set of item preferences in the training set for a particular
user u, and Ōu the unobserved preferences of user u. Items in Ōu
are the candidates to be recommended to user u. The goal of the
recommender is to pick for each user u a subset of items from the
candidate set, the predicted values of which are most likely to be 1.

In some cases, yui are numeric ratings in the range of, say, [1, 5]
or binary values {0, 1}. For simplicity, we only consider the case
of implicit feedback in this paper. Numeric ratings can be handled
with slight modifications to our method.

In the rest of the paper, we use u to index a user, and i and j
to index items. Vectors and matrices are denoted by bold symbols,
where symbols in lower case (e.g., x) represent vectors and sym-
bols in upper case (e.g., X) represent matrices. Unless stated dif-
ferently, xi also represents a vector where i is used to distinguish
different vectors. We denote the i-th row of matrix X by Xi and
its (i, j)-th element byXij .

2.1 Overview of Model-based Recommenders
Most machine learning models can be specified through two com-

ponents: model definition and objective function during training.
The model definition formulates the relationship between the in-
put (e.g., user ids, item ids, interactions, other features, etc.) and
output (ratings or implicit feedback of items). The objective func-
tion is what the training process optimizes to find the best model
parameters.

Recommender Models
In general, recommender models are defined as

ŷui = Fθ(u, i), (1)

where ŷui is the predicted preference of user u on item i, and θ
denotes the model parameters we need to learn from training data.

Different choices of the function Fθ correspond to different as-
sumptions about how the output depends on the input. Here we
review 4 common recommender models.

Latent Factor Model (LFM). LFM models the preference ŷui as
the dot product of latent factor vectors vu and vi, representing the
user and the item, respectively [9, 17]. 2

ŷui = FLFMv (u, i) = v>u vi (2)

In addition, hierarchical latent factor models [1, 32] and the factor-
ization machine [14] can model interactions between user or item
side features.

2To simplify notation, we assume that the latent factors are padded
with a constant to model the bias.

Similarity Model (SM). The Similarity model [8] models the user’s
preference for item i as a weighted combination of the user’s pref-
erence for item j and the item similarity between i and j. It is a
natural extension of an item-based nearest neighbor model. The
difference is that SM does not use predefined forms of item simi-
larity (e.g., Jaccard, Cosine). Instead, it learns a similarity matrix
from data [12].

ŷui = FSMS (u, i) =
∑

j∈Ou\{i}

yuj · Sji (3)

Factorized Similarity Model (FSM). The problem with the Sim-
ilarity Model is that the number of parameters is quadratic in the
number of items, which is usually impractical. A straightforward
solution is to factorize the similarity matrix into two low rank ma-
trices [8, 7].

ŷui = FFSMp,q (u, i) =

 ∑
j∈Ou\{i}

yuj · pj

> qi (4)

LFSM (LFM+FSM). The above models can also be combined.
For example, combining LFM and FSM results in the model SVD++
[8], which proved to be one of the best single models for the Netflix
Prize.

ŷui = FLFSMp,q (u, i) =

 ∑
j∈Ou\{i}

yuj · pj + pu

> qi (5)

Objective Functions for Recommenders
Objective functions for training recommender models can be roughly
grouped into two groups: point-wise and pair-wise.3 Pair-wise ob-
jectives approximates ranking loss by considering the relative order
of the predictions for pairs of items. Point-wise objectives, on the
other hand, only depend on the accuracy of the prediction of in-
dividual preferences. Pair-wise functions are usually considered
to be more suitable for optimizing top-N recommendation perfor-
mance. However, as we demonstrate in our experiments, this is not
necessarily the case for all data sets.

Regardless of the choice of a pair-wise or point-wise objective
function, it is critical to properly take into account unobserved feed-
back within the model. Models that only consider the observed
feedback fail to account for the fact that ratings are not missing at
random. These models are not suitable for top-N recommenders
[13, 23].

Let `(·) denote a loss function and Ω(θ) a regularization term
that controls model complexity and encodes any prior information
such as sparsity, non-negativity, or graph regularization. We can
write the general forms of objective functions for recommender
training as follows.

Point-wise objective function.∑
(u,i)∈O′

`point(yui, ŷui) + λΩ(θ). (6)

Here O′ denotes an augmented dataset that includes unobserved
user-item pairs. The problem with using only observed user-item
pairs is that, when users provide only implicit “like”s without ex-
plicit ratings, all the observed values yui are equal to 1. In this case,
directly optimizing the point-wise objective function over O leads

3Some models use list-wise objective functions [28, 22], but they
are not as widely adopted as point-wise and pair-wise objectives.



Table 1: Overview of related model-based recommenders.

Name Model Objective Function
MF [9] / PMF [17] LFM `SLpoint
SVD++ [8] LFSM `SLpoint
MMMF [16] LFM `HLpoint
WSABIE [29] LFM `HLpair
BPR-MF [15] LFM `LLpair
SLIM [12] SM `SLpoint
FISM [7] FSM `SLpoint, `

SL
pair

WRMF [6] LFM weighted `SLpoint
COFI [28] LFM NDCG loss
CLIMF [21] LFM MRR loss

to a trivial model that predicts all the ratings as 1.4 A common so-
lution is to augment O with a subset of negative user-item pairs5

from the unobserved set Ō = {U × I} \ O, and train the model
on the augmented set O′. Several strategies for sampling negative
user-item pairs are discussed in [13]. O′ can also include duplicate
samples to simulate weighted feedback (e.g., [6]).
Pair-wise objective function.∑

(u,i,j)∈P

`pair(yuij , ŷuij) + λΩ(θ), (7)

where yuij = yui − yuj , ŷuij = ŷui − ŷuj , and P is a set of
triplets sampled from O′, each of which includes a user u and a
pair of items i and j, where usually i is a positive item and j is a
negative item.

For both pair-wise and point-wise objective functions, the choice
of the loss function `(·) is important. Here we list a few commonly
used loss functions for both point-wise and pair-wise objectives:

• SQUARE LOSS: `SL(y, ŷ) = 1
2
(y − ŷ)2;

• LOG LOSS: `LL(y, ŷ) = log(1 + exp(−y · ŷ));

• HINGE LOSS: `HL(y, ŷ) = max(0, 1− y · ŷ);

• CROSS ENTROPY LOSS: `CE(y, ŷ) = −y log(p) − (1 −
y) log(1− p), where p = σ(ŷ) = 1/(1 + exp(−ŷ)).

Note that, for LOG and HINGE losses, the value y for the negative
examples should be −1 instead of 0.

Table 1 summarizes recent models for top-n recommendation
that fit this framework. For explicit feedback, the loss function
can be slightly different (e.g.,[11]). Also, several recent papers
study position-aware pair-wise loss functions (e.g., WARP [29, 30],
CLiMF [21]). For this paper, we do not propose any new objective
functions. Any objective function that fits the described framework
can be used with our model.

To summarize, the two key components of designing model-
based recommenders are: 1) a suitable way to represent the rela-
tions between inputs and outputs. 2) a proper objective function
and a proper way to deal with the relationship between observed
and unobserved feedback.

2.2 Denoising Auto-Encoders
A classical auto-encoder [2] is typically implemented as a one-

hidden-layer neural network that takes a vector x ∈ RD as input
4For explicit feedback data, only modeling observed feedback is
also insufficient to make good top-N recommendations [13, 23].
5Here we use the term negative to denote missing feedback.

and maps it to a hidden representation z ∈ RK through a mapping
function

z = h (x) = σ
(
W>x+ b

)
,

where W is a D × K weight matrix and b ∈ K is an offset vec-
tor. The resulting latent representation is then mapped back to a
reconstructed vector x̂ ∈ RD through

x̂ = σ
(
W ′z + b′

)
.

The reverse mapping may optionally be constrained by tied weights,
whereW ′ = W .

The parameters of this model are trained to minimize the average
reconstruction error:

arg min
W ,W ′,b,b′

1

n

n∑
i=1

` (xi, x̂i) , (8)

where ` is a loss function such as the square loss or the cross en-
tropy loss mentioned in the previous subsection.

The Denoising Auto-encoder (DAE) [24] extends the classical
auto-encoder by training to reconstruct each data point x from its
(partially) corrupted version x̃. The goal of DAE is to force the
hidden layer to discover more robust features and to prevent it from
simply learning the identity function [24]. The corrupted input x̃ is
typically drawn from a conditional distribution p(x̃|x). Common
corruption choices are the additive Gaussian noise and the multi-
plicative mask-out/drop-out noise. Under mask-out/drop-out cor-
ruption, one randomly overwrites each of the dimensions of x with
0 with a probability of q:

P (x̃d = δxd) = 1− q
P (x̃d = 0) = q

(9)

To make the corruption unbiased, one sets the uncorrupted values
to δ = 1/(1− q) times their original value.

3. PROPOSED METHODOLOGY
In this section, we introduce a new model–Collaborative Denois-

ing Auto-Encoder (CDAE). The model learns correlations between
the user’s item preference by training on a corrupted version of the
known preference set. A preference set is binary, i.e., containing
only information about whether an item is preferred or not. There-
fore, as we will see, CDAE is uniquely suitable for top-N prefer-
ence recommendations.

3.1 Collaborative Denoising Auto-Encoder
Similar to the standard Denoising Auto-Encoder, CDAE is also

represented as a one-hidden-layer neural network. The key differ-
ence is that the input also encodes a latent vector for the user, which
allows CDAE to be a much better recommender model, as we see
in section 5. Figure 1 shows a sample structure of CDAE. CDAE
consists of 3 layers, including the input layer, the hidden layer and
the output layer.

In the input layer, there are in total I + 1 nodes, where each of
the first I nodes corresponds to an item, and the last node is a user-
specific node (the red node in the figure), which means the node and
its associated weights are unique for each user u ∈ U in the data.
We refer to the first I nodes as item input nodes, and the last node
as user input node. Given the historical feedbackO by users on the
item set I, we can transform O into the training set containing U
instances {y1,y2, ...,yU}, where yu = {yu1, yu2, ..., yuI} is the
I-dimensional feedback vector of user u on all the item in I. yu is
a sparse binary vector that only has |Ou| non-zero values: yui = 1
if i is in the set Ou, otherwise, yui = 0.
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Figure 1: A sample CDAE illustration for a user u. The links
between nodes are associated with different weights. The links
with red color are user specific. Other weights are shared across
all the users.

There are K nodes in the hidden layer and these nodes are fully
connected to the nodes of the input layer. Here K is a predefined
constant which is usually much smaller than the size of the input
vectors. The hidden layer also has an additional node to model the
bias effects (the pink node in the figure). We useW ∈ RI×K to de-
note the weight matrix between the item input nodes and the nodes
in the hidden layer, and Vu ∈ RK to denote the weight vector for
the user input node. Note that Vu is a user-specific vector, i.e., for
each of the users we have one unique vector. From another point of
view, Wi and Vu can be seen as the distributed representations of
item i and user u respectively.

In the output layer, there are I nodes representing reconstruc-
tions of the input vector yu. The nodes in the output layer are fully
connected with nodes in the hidden layer. The weight matrix is de-
noted by W ′ ∈ RI×K . We denote the weight vector for the bias
node in the hidden layer by b ∈ RI .

Formally, the inputs of CDAE are the corrupted feedback vec-
tor ỹu which is generated from p(ỹu|yu) as stated in Equation 9.
Intuitively, the non-zero values in yu are randomly dropped out in-
dependently with probability q. The resulting vector ỹu is still a
sparse vector, where the indexes of the non-zero values are a subset
of those of the original vector.

CDAE first maps the input to a latent representations zu, which
is computed as follows:6

zu = h
(
W>ỹu + Vu + b

)
, (10)

where h(·) is an element-wise mapping function (e.g., identity func-
tion h(x) = x or sigmoid function h(x) = σ(x) = 1/(1+e−x)),
and b ∈ RK is the offset vector.

At the output layer, the latent representation is then mapped back
to the original input space to reconstruct the input vector. The out-

6 Here we compute the hidden representation using the sum of the
weight vectors. Other choices such as concatenation and max pool-
ing are also possible.

Algorithm 1 Learning algorithm for CDAE

Initialize parameters with random values.
iter ← 0

3: while iter < maxIter or error on validation set decreases do
for all u ∈ U do

Sample ỹu ∼ p(ỹu|yu) using Equation 9.
6: Compute zu using Equation 10.

Sample negative samples Su ⊂ Ōu.
for all i ∈ Ou ∪ Su do

9: UpdateW ′
i and b′i using Equation 14, 15 and 20.

end for
Compute ∂`

∂zu
using Equation 16.

12: for all j ∈ {j|j ∈ I and ỹuj > 0} do
UpdateWj using Equation 17 and 20.

end for
15: Update Vu using Equation 18 and 20.

Update b using Equation 19 and 20.
end for

18: iter ← iter + 1
end while

put value ŷui for node i is computed as follows:

ŷui = f
(
W ′>

i zu + b′i

)
, (11)

where W ′ ∈ RI×K and b′ are the weight matrix and the offset
vector for the output layer, respectively. f(·) is also a mapping
function.

We learn the parameters of CDAE by minimizing the average
reconstruction error:

arg min
W ,W ′,V ,b,b′

1

U

U∑
u=1

Ep(ỹu|yu) [` (ỹu, ŷu)]+R
(
W ,W ′,V , b, b′

)
,

(12)
whereR is the regularization term to control the model complexity.
In this paper we use the squared L2 Norm.

R (·) =
λ

2

(
‖W ‖22 + ‖W ′‖22 + ‖V ‖22 + ‖b‖22 + ‖b′‖22

)
(13)

We apply Stochastic Gradient Descent (SGD) to learn the pa-
rameters. Algorithm 1 provides the detailed procedure. Because
the number of output nodes equals the number of items, the time
complexity of one iteration over all users isO(UIK), which is im-
practical when the number of users and the number of items are
large. Instead of computing the gradients on all the outputs, we
only sample a subset of the negative items Su from Ōu and com-
pute the gradients on the items in Ou ∪ Su. The size of Su is
proportional to the size of Ou. So the overall complexity of the
learning algorithm is linear in the size of O and the number of la-
tent dimensions K. A similar method has been discussed in [5].
An alternative solution is to build a Hierarchical Softmax tree on
the output layer [10], but it requires the loss function on the output
layer to be softmax loss.

The gradients for the parameters are as follows:
∂`

∂W ′
i

=
∂`

∂ŷui

∂ŷui
∂W ′

i

+ λW ′
i (14)

∂`

∂b′i
=

∂`

∂ŷui

∂ŷui
∂b′i

+ λb′i (15)

∂`

∂zu
=

∑
i∈Ou∪Su

∂`

∂ŷui

∂ŷui
∂zu

+ λzu (16)



Table 2: Sample Mapping Functions. Note that all the opera-
tions in this table are element-wise.

h(x) Gradient ∂h
∂x

Identity x 1
Sigmoid σ(x) σ(x)(1− σ(x))

Tanh tanh(x) 1− tan2(x)

∂`

∂Wj
=

∂`

∂zu

∂zu
∂Wj

+ λWj (17)

∂`

∂Vu
=

∂`

∂zu

∂zu
∂Vu

+ λVu (18)

∂`

∂b
=

∂`

∂zu

∂zu
∂b

+ λb (19)

We apply AdaGrad [4] to automatically adapt the step size during
the learning procedure. The update formula is as follows:

θ(t+1) = θ(t) −
ηg

(t)
θ√

β +
∑t
s=1 g

(s)
θ

, (20)

where θ(t) is the value of the parameter θ at the t-th SGD step and
g
(t)
θ is its gradient at step t.

Recommendation. At prediction time, CDAE takes user u’s exist-
ing reference set (without corruption) as input, and the items from
the candidate set Ōu that have largest prediction values on the out-
put layer are recommended to him/her.

3.2 Discussion
Components. CDAE is very flexible in that the mapping function
h(·), point-wise or pair-wise objectives, the loss function `(·), and
the corruption probability q can all be chosen to suit the applica-
tion. Table 2 lists mapping function choices explored in this paper.
As for the loss function, all the choices discussed in Section 2.1,
both point-wise and pair-wise, can be used. Different choices of
these functions result in different variants of the model with dif-
ferent representation capabilities. Our experiments show that no
single variant always produces the best results. One benefit of the
proposed general framework is that one can try several variants and
find the one that best fits the task.

It’s worth noting that pair-wise objective does not perform much
better than point-wise objective for CDAE, at least in our experi-
ments. Similar results have also been reported in [7]. This may be
a characteristic of implicit feedback data. See section 5.4 for more
details.
Generalization of other models. CDAE is a generalization of
latent factor models. The representations mentioned in Section 2.1
can all be interpreted as special cases of this framework.

Specifically, if we choose the identity mapping function for both
h(x) and f(x) and not add noise to the inputs, the output value of
ŷui in Equation 11 becomes:

ŷui = f
(
W ′>

i zu + b′i

)
= W ′>

i h
(
W>ỹu + Vu + b

)
+ b′i

∼= W ′>
i

(∑
j∈Ou

ỹuiWj + Vu

)
.

(21)

In the last step we omit the bias term to make the comparison
clearer. We can see that the representation in Equation 21 is equiv-
alent to that in Equation 5, i.e., the LFSM model.

If we set the corruption level q to 1, all the non-zero values in
the input vector would be dropped out. We get the following pre-
diction:

ŷui = W ′>
i Vu, (22)

which is equivalent to the representation in Equation 2, i.e., the
LFM model. Alternatively, if we remove the user input node and
its associated weights, the resulting model is equivalent to FSM in
Equation 4:

ŷui = W ′>
i

(∑
j∈Ou

ỹuiWj

)
. (23)

Another possible mapping function is the linear function h(x) =
U>x, where U is a K × K transform matrix. If we use a user-
specific matrix Uu ∈ RK×K on the hidden layer, the representa-
tion becomes

ŷui = W ′>
i

(
U>u

(∑
j∈Ou

ỹuiWj

))
, (24)

which is related to the Latent Collaborative Retrieval model pro-
posed in [30].

We tried the linear mapping function in our experiments, but
found that its performance is not as good as others. One reason
is likely that it has many more parameters to estimate, which can
easily lead to overfitting. We also experimented with setting Uu to
be a diagonal matrix to reduce the number of parameters, but the
improvements over the identity were still not significant. With this
in mind, we do not include the linear mapping function in Table 2,
nor report the results in the rest of this paper.
Summary. CDAE is a flexible framework for top-N recommenda-
tion. It generalizes several very popular existing methods. The pro-
posed framework is naturally compatible with the denoising trick,
which can further improve the results of recommendation, as shown
in the next section.

4. RELATED WORK
An overview of the model-based collaborative filter methods has

been discussed in Section 2.1. In this section, we discuss the few
related work on neural networks for recommender systems.

Restricted Boltzmann Machines (RBM) [18] is the first work that
applies neural network models to recommender systems. However,
RBM targets rating prediction, not top-N recommendation, and its
loss function considers only the observed ratings. It is technically
challenging to incorporate negative sampling, which would be re-
quired for top-N recommendation, into the training of RBM. For
this reason, we do not compare with RBM in our experiments, but
test several other neural network baselines that work for top-N rec-
ommendation (see Section 5.4).

We are aware of a concurrent proposal called AutoRec [20],
which uses the Auto-Encoder for rating prediction. The main dif-
ferences are as follows: 1) AutoRec only considers the observed
ratings in the loss function, which does not guarantee the perfor-
mance for top-N recommendation. 2) They use the vanilla Auto-
Encoder structure, while we prove that introducing user factors in
the model can greatly improve performance. 3) AutoRec does not
employ the denoising technique, which is a major part of our work.

Another related work is [27], which also uses the Auto-Encoder
for recommender systems. This work studies the particular prob-
lem of article recommendation, and improves the well-known model
Collaborative Topic Regression [26] by replacing its Topic Model
component by a Bayesian Auto-Encoder, which is used for learn-
ing the latent feature representations for the articles. Different from



Table 3: Dataset Statistics

#users #items #dyads density(%)
ML 69K 8.8K 5M 0.82
Netflix 37K 11K 4.8M 1.18
Yelp 9.6K 7K 243K 0.36

this model, our model is a generic model and addresses the general
top-N recommendation problem, and the inputs are user behaviors
instead of item/article features.

5. EXPERIMENTAL RESULTS
Our experimental evaluation consists of two parts. First, we

study the effects of various choices of the components of CDAE.
Second, we compare CDAE against other state-of-the-art top-N
recommendation methods. The source code of CDAE will be avail-
able from https://github.com/jasonyaw/CDAE.

5.1 Data Sets and Experimental Setup
We use 3 popular data sets: MovieLens 10M (ML)7, Netflix8 and

Yelp (from Yelp Dataset Challenge9 in 2014). For each data set, we
keep those with ratings no less than 4 stars and treat all other ratings
as missing entries. Those ratings that are retained are converted to
a yui score of 1. This processing method is widely used in previous
work on recommendation with implicit feedback (e.g., [15, 31, 7]).
We iteratively remove users and items with fewer than 5 ratings.
For each user, we randomly hold 20% of the ratings in the test set,
and put the other ratings in the training set. The statistics of the
resulting data sets are shown in Table 3.

5.2 Implementation Details
We perform 5-fold cross validation on the training data sets to

select the best hyperparameters for all the models, and then use the
best hyperparameters to train models on the whole training data
sets.

We use Stochastic Gradient Decent (SGD) to learn the parame-
ters for both the proposed method and comparison partners. Ada-
Grad [4] is used to automatically adapt the step size during the
learning procedures. We set β = 1 and try different step sizes
η ∈ {1, 0.1, 0.01, 0.001} and report the best result for each model.

For negative sampling, we experiment with different numbers
of negative samples and find that NS = 5 consistently produces
good results. This means that, for each user, the number of negative
samples is 5 times the number of observed ratings of this user.

5.3 Evaluation Metrics
In the case of top-N recommender systems, we present each user

with N items that have the highest predicted values but are not
adopted by the user in the training data. We evaluate different ap-
proaches based on which of the items are actually adopted by the
user in the test data.

Precision and Recall. Given a top-N recommendation list CN,rec,
precision and recall are defined as

Precision@N =
|CN,rec

⋂
Cadopted|
N

Recall@N =
|CN,rec

⋂
Cadopted|

|Cadopted|
,

(25)

7http://grouplens.org/datasets/movielens
8http://www.netflixprize.com
9http://www.yelp.com/dataset_challenge

where Cadopted are the items that a user has adopted in the test
data. The precision and recall for the entire recommender sys-
tem are computed by averaging the precision and recall over all
the users, respectively.
Mean Average Precision (MAP). Average precision (AP) is a ranked
precision metric that gives larger credit to correctly recommended
items in top ranks. AP@N is defined as the average of precisions
computed at all positions with an adopted item, namely,

AP@N =

∑N
k=1 Precision@k × rel(k)

min{N, |Cadopted|}
, (26)

where Precision(k) is the precision at cut-off k in the top-N list
CN,rec, and rel(k) is an indicator function equaling 1 if the item at
rank k is adopted, otherwise zero. Finally, Mean Average Precision
(MAP@N) is defined as the mean of the AP scores for all users.

Usually, these metrics are consistent with each other, i.e., if a
model performs better than another model on one metric, it is more
likely that it will also produce better results on another metric. Due
to space limits, we mainly show the results of MAP@N with N =
{1, 5, 10} on several evaluation tasks since it takes the positions
into consideration.

5.4 Analysis of CDAE Components
The main components of the proposed CDAE model include the

types of the mapping functions, the loss function and the level of
corruption. Different choices of these components result in differ-
ent variants of the model that make different top-N recommenda-
tions. In this subsection, we study these variants on the 3 data sets.

For the mapping function, we show results for the identity func-
tion and sigmoid function on the hidden layer and the output layer.
(Results for the tanh function are similar to those of the sigmoid
function and hence omitted.) There are 23 = 8 total combinations
of choices for the mapping functions (on both layers) and the loss
function. Among them, the logistic loss function requires ŷ to be
a value between 0 and 1, so it must be associated with a sigmoid
function on the output layer. Note that the combination of the sig-
moid function and the logistic loss is equivalent to the cross entropy
loss discussed in Section 2.1. Therefore, we study 4 variants10 of
our model in this subsection. Table 4 describes the function choices
for each variant.

Table 4: Four possible variants of the CDAE model.

Hidden Layer Output Layer Loss Function
M1 Identity Identity Square
M2 Identity Sigmoid Logistic
M3 Sigmoid Identity Square
M4 Sigmoid Sigmoid Logistic

In our extensive experiments, we observed that the pair-wise ob-
jective function did not perform much better than point-wise ob-
jectives for CDAE. One possible cause is that for the implicit feed-
back with binary ratings, point-wise loss functions are sufficient for
separating those items preferred by the user and those not preferred.
In other words, a well-designed point-wise loss can be discriminat-
ing enough to model the user’s preference in these datasets, and the
pair-wise loss is not needed. For this reason, results on pair-wise
objective functions are omitted in the rest of this paper. On a related
note, as we show in section 5.5, the BPR model, which uses pair-
wise loss, does not perform better than MF, which uses point-wise

10We omit the results of another 2 variants (replacing the loss func-
tions of M2 and M4 with square loss) since their performances are
similar to those of M2 and M4 respectively.

https://github.com/jasonyaw/CDAE
http://grouplens.org/datasets/movielens
http://www.netflixprize.com
http://www.yelp.com/dataset_challenge
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Figure 2: Model performance comparison on Yelp data.

loss. Similar results have also been reported in [7]. This might be
due to the same reason as for CDAE. Moreover, BPR is designed to
optimize for the AUC, not top-N metrics such as precision, recall,
or MAP. Hence, for multiple models for top-N recommendation,
pair-wise loss functions may not be necessary for all data sets.

We train each of the four variants under varying corruption levels
(q in Equation 9) from {0, 0.2, 0.4, 0.6, 0.8, 1}. The number of
latent dimensionsK is set to 50 unless otherwise stated. The results
on the three data sets are shown in Figure 2, 3 and 4 respectively.

The general observation is that the best model depends on the
data set. No single variant of CDAE always produces the best re-
sults. So one should choose the components (mapping function,
objective function, loss function, and corruption level) depending
on the data. Consider the two different extremes of corruption level:
q = 0 (no input corruption) and q = 1 (complete input corruption).
For variant M1, the results of q = 0 are much worse than those of
q = 1. This indicates that simply summing up all the input vec-
tors (q = 0) is insufficient for learning good representations, and
is in fact worse than dropping out all of them (q = 1). Note that
introducing non-linear functions can largely alleviate the problem,
as evidenced in the results for the other three variants with q = 0.
Adding noise on the input can also prevent this problem (see the
results of M1 with various corruption levels), which means that the
denoising technique can help with learning more robust represen-
tations.

The denoising technique appears beneficial especially for vari-
ants M1 and M2. On the Yelp data set, all four variants can be im-
proved by adding relatively higher levels of noise (e.g., q = 0.8).
Variant M2 is the best model for the Netflix data set, and setting
q = 0.2 and q = 0.4 can slightly improve the results. On Movie-
Lens data, setting q = 0.8 makes M2 almost as good as M4, the
best model. However, in some cases, the best results are those with-
out any input corruption (q = 0).

In general, M4 produces relatively better results on all three data
sets. In particular, it achieves the best MAP scores on Yelp and
MovieLens. This indicates that non-linear functions help to in-
crease the representation capability of the model, thus improving
the recommendations.
Comparison with DAE. A main difference between CDAE and
classical DAE is the user-specific input between the input layer
and the hidden layer, namely, the vector Vu. We study two cases
here – with the user-specific vectors (CDAE) and without the user-
specific vectors (DAE). We conduct experiments on the three data
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Figure 3: Model performance comparison on Netflix data.
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Figure 4: Model performance comparison on MovieLens data.
Table 5: Comparison with DAE on the Yelp data.

MAP@1 MAP@5 MAP@10
Model DAE CDAE DAE CDAE DAE CDAE

M1 0.0275 0.0327 0.0164 0.0201 0.0172 0.0210
M2 0.0369 0.0420 0.0225 0.0241 0.0236 0.0254
M3 0.0443 0.0460 0.0270 0.0285 0.0289 0.0303
M4 0.0529 0.0528 0.0315 0.0319 0.0329 0.0334

Table 6: Comparison with DAE on the MovieLens data.

MAP@1 MAP@5 MAP@10
Model DAE CDAE DAE CDAE DAE CDAE

M1 0.2807 0.2933 0.1619 0.1730 0.1278 0.1402
M2 0.3134 0.3368 0.1785 0.1900 0.1408 0.1509
M3 0.3270 0.3494 0.1953 0.2099 0.1579 0.1722
M4 0.3625 0.3860 0.2123 0.2252 0.1684 0.1797

sets, and get relatively similar results. We show the results on the
Yelp data and on the MovieLens data in Table 5 and 6 respectively.
We can see that for models M1 and M2, using user-specific vectors
greatly improves the results on the Yelp data. As the performances
of the models get better for M3 and M4, the gain becomes rela-
tively smaller. For the MovieLens data, using user-specific vectors
consistently outperforms the alternative choice.



Table 7: Effects of using tied weights on MovieLens data.
“TW” means using tied weights, while “NTW” means no tied
weights.

MAP@1 MAP@5 MAP@10
Model TW NTW TW NTW TW NTW

M1 0.1739 0.2933 0.0983 0.1730 0.0763 0.1402
M2 0.3707 0.3368 0.2086 0.1901 0.1643 0.1509
M3 0.3482 0.3494 0.2044 0.2099 0.1669 0.1722
M4 0.3530 0.3860 0.2007 0.2252 0.1609 0.1797

Table 8: Effects of using tied weights on Netflix data. “TW”
means using tied weights, while “NTW” means no tied weights.

MAP@1 MAP@5 MAP@10
Model TW NTW TW NTW TW NTW

M1 0.1172 0.1301 0.0551 0.0695 0.0428 0.0571
M2 0.2567 0.2608 0.1418 0.1431 0.1177 0.1199
M3 0.1172 0.2000 0.0551 0.1162 0.0428 0.1011
M4 0.2287 0.2474 0.1260 0.1370 0.1066 0.1143
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Figure 5: The effects of the number of latent dimensions.

Tied weights. We study the effects of using tied weights (TW) for
the weight matrices, where we forceW = W ′. Results on Movie-
Lens and Netflix data sets are shown in Table 7 and 8, respectively.
We refer to the cases of “no tied weights” as NTW. The results on
Yelp data are similar to those on Netflix data, so we omit them here.
Other than variant M2 on MovieLens data, the results of NTW are
much better than TW. On Netflix data, NTW consistently outper-
forms TW by at least 10%. On both data sets, the best MAP scores
are from models with NTW (M4+NTW in Table 7 and M2+NTW
in Table 8, respectively). Thus we do not recommended using tied
weights for CDAE.

The number of latent dimensions. We study the effects of the
number of latent dimensions K. Results on Yelp data and Netflix
data are shown in Figure 5. From the figures, we can see that the
performance increases with larger K, but only up to a point. When
K becomes large enough, the performance no longer improves and
can in fact decrease due to overfitting.

5.5 Experimental Comparisons with Previous
Models

In this section, we compare CDAE with a number of popular
top-N recommendation methods. Note that comparisons against

Denoising Auto-Encoder (DAE) and its non-denoising variant (when
q = 0) are already discussed in Section 5.4.

These baseline methods are:

• POP: Items are recommended based on how many users have
rated them.

• ITEMCF [19]: We use Jaccard similarity measure and set
the number of nearest neighbor to 50.

• MF (with negative sampling) [9]: We train the Latent Fac-
tor Model with point-wise objective functions (with square,
log, hinge and cross entropy losses) and negative sampling11,
and report the best results.

• BPR [15]: BPR is the state-of-the-art method for recommen-
dation based on implicit feedback. As discussed in Section
2.1, BPR-MF is a Latent Factor Model with the pair-wise log
loss function. In addition to the log loss used in the original
paper [15], we also experiment with square and hinge loss
functions and report the best results.

• FISM [7]: FISM is a variant of FSM with point-wise square
loss function12. We also test log loss and hinge loss and re-
port the best results.

For all the baseline methods, we carefully choose the hyperpa-
rameters by cross validation to ensure fair comparisons. We train
the 4 variants of CDAE discussed in Table 4 with different cor-
ruption levels, and report the best results. For all the latent factor
models (including MF, BPR, FISM and CDAE), we set the num-
ber of latent dimensions to 50 and use an additional dimension to
model the bias. Other implementation details are as discussed in
Section 5.2.

Figure 6, 7 and 8 show the MAP@N scores of all models on
Yelp, MovieLens and Netflix, respectively. Since Recall is another
widely used metric for comparing top-N recommendation models,
we also include plots of the Recall scores on the three data sets in
Figure 9, 10 and 11.

In general, the results of MAP and Recall are consistent, i.e., the
performance orderings of models are almost the same. One excep-
tion is on the Yelp data, where MF gets better MAP@N scores than
BPR, but BPR has better Recall@N scores.

According to the results of MAP@10 and Recall@10, CDAE
consistently outperforms other compared methods. On the Yelp
data, CDAE outperforms the other methods with a large margin
on all the evaluation metrics. The MAP@10 score and Recall@10
score of CDAE are at least 15% better than those of the second best
model MF. For the Netflix data set, ITEMCF achieves much better
results than other methods such as MF, BPR and FISM, particularly
on the metrics MAP@1 and Recall@1. CDAE is the only model
that can beat ITEMCF on metrics MAP@10 and Recall@10, where
CDAE outperforms ITEMCF by around 10%.

It is surprising to see that BPR and FISM achieve lower MAP
scores than MF on Yelp and Netflix data sets. The only data set
on which they achieve better results is MovieLens, but the perfor-
mance gains are not significant.

11We note that, for implicit feedback data, MF with negative sam-
pling has the same objective function with WRMF [6] – both of
them assign high confidence on the observed/positive feedback and
low cofidence on the missing/negative feedback. We do not com-
pare with WRMF because its computational speedup trick for ALS
only works with squared loss.

12We also tried the pair-wise loss functions, but the results are not
as good as for the point-wise functions. The same observation is
reported in the original paper.
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6. CONCLUSION
In this paper, we presented the Collaborative Denoising Auto-

Encoder (CDAE) for the top-N recommendation problem. CDAE
learns distributed representations of the users and items via formu-
lating the user-item feedback data using a Denoising Auto-Encoder
structure. Several previous work can be seen as special cases of
the proposed model. We conducted a comprehensive set of ex-

periments on three data sets to study how the choice of the model
components impacts the performance. We also compared CDAE
against several other state-of-the-art top-N recommendation meth-
ods and the results show that CDAE outperforms the rest of the
methods by a large margin.

The proposed model enables a wide range of future work on ap-
plying neural networks to recommender systems. Here we list some
potential directions.



Deep Neural Network. The neural network structure used in our
paper is shallow. A straightforward extension is to stack the model
as done in the stacked DAE [25]. Our preliminary experiments
on the stacked CDAE do not show significant improvement over
CDAE. We plan to investigate the reason and try to improve it.
Also, the idea of marginalized DAE [3] might be able to speed up
the training and improve the performance. It would also be inter-
esting to consider applying other neural network structures such as
Convolutional Neural Networks and Recurrent Neural Networks to
this framework.

Feature-aware Recommendation. User and item features can be
important for producing semantically meaningful models and deal-
ing with the cold-start problem. It is worth exploring how to incor-
porate user and item features to improve the proposed model.

Context-aware Recommendation. In many applications, one might
benefit from incorporating contextual information (such as time, lo-
cation, browser session, etc.) into the recommendation process in
order to recommend items to users in certain circumstances. We
leave such extensions as future work.
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