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ABSTRACT
The distribution difference among multiple data domains
has been considered for the cross-domain text classification
problem. In this study, we show two new observations along
this line. First, the data distribution difference may come
from the fact that different domains use different key words
to express the same concept. Second, the association be-
tween this conceptual feature and the document class may
be stable across domains. These two issues are actually the
distinction and commonality across data domains.

Inspired by the above observations, we propose a gen-
erative statistical model, named Collaborative Dual-PLSA
(CD-PLSA), to simultaneously capture both the domain dis-
tinction and commonality among multiple domains. Dif-
ferent from Probabilistic Latent Semantic Analysis (PLSA)
with only one latent variable, the proposed model has two
latent factors y and z, corresponding to word concept and
document class respectively. The shared commonality inter-
twines with the distinctions over multiple domains, and is
also used as the bridge for knowledge transformation. We ex-
ploit an Expectation Maximization (EM) algorithm to learn
this model, and also propose its distributed version to han-
dle the situation where the data domains are geographically
separated from each other. Finally, we conduct extensive ex-
periments over hundreds of classification tasks with multiple
source domains and multiple target domains to validate the
superiority of the proposed CD-PLSA model over existing
state-of-the-art methods of supervised and transfer learn-
ing. In particular, we show that CD-PLSA is more tolerant
of distribution differences.
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1. INTRODUCTION
Many classification techniques work well only under a

common assumption that the training and test data are from
the same data distribution. However, in many emerging
real-world applications, new test data usually come from fast
evolving information sources with different but semantically-
related distributions. For example, to build an enterprize
news portal we need to classify the news about a certain
company into some predefined categories, such as “merger
and acquisition”, “product announcement”, “financial scan-
dal”, and so on. This classification model may be trained
from the news about one company, and may fail on the
news for another company since the business areas for the
two companies may be different. To deal with this change
of data distributions, one solution is to include more labeled
data in the new domains into the training set. However,
it is often expensive or impractical to re-collect the needed
training data, so reducing the need and the required effort to
label new data is highly desired. This leads to the research of
cross-domain learning (often referred to as transfer learning
or domain adaption) [1, 2, 3, 4, 5, 6, 7, 8, 9].

Unlike previous work considering the distribution of the
low-level features of raw words, we study high-level word
concepts. Here, any word concept y can be represented by a
multinomial distribution p(w|y) over words, and this distri-
bution is often domain-dependent. Let us take the word con-
cept “products” as an example, if this concept is within the
domain of the HP company, which makes printers, the values
of p(“printer”|“products”) and p(“LaserJet”|“products”)
are large within the domain of HP. If we change the domain
to IBM, the representative words of this concept turn to
be some IBM product names, and p(“printer”|“products”)
and p(“LaserJet”|“products”) will have a very small value
within the domain of IBM. Indeed, Table 4 in the experi-
mental section also lists three word concepts with their key
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words for each of the four domains. In the table, we can ob-
serve that different domains use different words to express
and describe a concept.

Moreover, we observe that, wherever a word concept ex-
ists, it has the same implication to the class of the document
which contains this concept. Let us consider the word con-
cept “products”. If a news contains the word concept “prod-
ucts”, no matter where it comes from, it is more likely to be
a news about “product announcement” rather than about
“financial scandal”. In other words, the association between
word concept y and document class z, represented by their
joint probability p(y, z), is usually stable across domains.

In the above example, p(w|y) and p(y, z) corresponds to
the two sides of a word concept y, extension and intension
respectively. In general, the extension of a concept is just the
collection of individual objects to which it is correctly applied,
while the intension of a concept is the set of features which
are shared by everything to which it applies1. Following the
general definitions of concept extension and intension their
definitions for word concept are as follows.

Definition 1 (Extension of Word Concept). The
extension of a word concept y is the degree of applicability
of that concept for each word w, denoted by p(w|y).

That is to say, when p(w|y) is large, w is a typical object to
which the word concept y can be applied.

Definition 2 (Intension of Word Concept). The in-
tension of a word concept y is expressed by its association
with each document class z, denoted by their joint probability
p(y, z) in this study.

For a word concept y, the values of p(y, z) over different
document classes z can be considered as the intrinsic features
of concept y.

Similarly, we can also define the extension and intension
of document concept z as p(d|z) (a multinomial distribution
over document d) and p(y, z) respectively. Since we con-
sider each document class for classification as a document
concept here, document class and document concept are in-
terchangeable in this paper.

With the above definitions, we further argue that the ex-
tension of any word concept or document concept is often
domain-dependent, while its intension is often stable across
different domains. Thus, the extension and intension of con-
cepts are actually the distinction and commonality across
data domains respectively. Motivated by this understand-
ing, we propose a generative statistical model, Collaborative
Dual-PLSA (CD-PLSA), to simultaneously capture both do-
main distinction and commonality. The main idea of this
model is illustrated in Figure 1. In this figure, we have s
source domains and t target domains (s and t can be any pos-
itive integers), represented by the dashed rectangle on the
left and right respectively. In each dashed rectangle there
are two solid rectangles at the above and below, bounding
the extensions of word concepts and document concepts re-
spectively. All these extensions, as the distinction for each
domain, share the same intensions of word and document
concepts as their commonality (the polygon in the middle).
Since we know the class label of each document in the source
domains, we actually know the extensions of the document

1http://www.philosophypages.com/lg/e05.htm
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Figure 1: Extension and Intension of Concepts

concepts in the source domains. Thus, these observed exten-
sions of the document concepts (the filled circles) are used
as the supervision information, which is transferred through
the bridge of concept intensions (the polygon in the middle)
to the other parts of the model (the unfilled circles).

Contributions. In the following, we highlight some key
contributions of this paper.

1) For the problem of text categorization across domains,
we define the concepts of the extensions and intensions of
words and documents, and show that concept extensions
and intensions are actually the distinction and commonality
across data domains.

2) We propose the generative model of CD-PLSA to mine
the distinction and commonality of various data domains,
and exploit an EM algorithm to learn the CD-PLSA model.
Note that our model can simultaneously handle not only
multiple source domains but also multiple target domains.
To tackle the situation where the data domains are geo-
graphically separated from each other, we also provide a
distributed solution to the CD-PLSA model.

3) Through comprehensive experiments, we show the ef-
fectiveness of the CD-PLSA model compared with the state-
of-the-art methods. In particular, we clearly identify the
scenarios where all the benchmark methods fail because the
data distribution gap is too great to be handled, while the
CD-PLSA model still performs well.

4) We further argue, contrary to popular belief that dis-
criminative classifiers are always to be preferred, that gener-
ative classifiers (such as CD-PLSA proposed in this paper)
may perform better in transfer learning since they can model
the distribution differences among domains.

Overview. The remainder of this paper is organized as
follows. In Section 2 we review some preliminaries and then
give the problem formulation. Its solution by EM is followed
in Section 3. Next, a distributed solution to CD-PLSA is de-
scribed in Section 4 and the experimental results to validate

360



our algorithm are described in Section 5. Finally, the related
works and conclusions are given in Sections 6 and 7.

2. PRELIMINARIES AND PROBLEM FOR-
MULATION

In this section, we first briefly review Probabilistic Latent
Semantic Analysis (PLSA), and then introduce an extension
of PLSA, Dual-PLSA. Finally, we formulate our problem for
cross-domain classification.

2.1 A Review of PLSA
Probabilistic Latent Semantic Analysis [10] is a statistical

model to analyze co-occurrence data by a mixture decompo-
sition. Specifically, given the word-document co-occurrence
matrix O whose element Ow,d represents the frequency of
word w appearing in document d, PLSA models O by using
a mixture model with latent topics (each topic is denoted by
y) as follows,

p(w,d) =
X

y

p(w, d, y) =
X

y

p(w|y)p(d|y)p(y). (1)

Figure 2(a) shows the graphical model for PLSA. The pa-
rameters of p(w|y), p(d|y), p(y) over all w, d, y are obtained
by the EM solution to the maximum likelihood problem.

w y d

(a) PLSA

w y z d

(b) D-PLSA

w y z d

c

(c) CD-PLSA

Figure 2: The Graphical Models

2.2 The Dual-PLSA Model
In the PLSA model, the documents and words share the

same latent variable y. However, documents and words usu-
ally exhibit different organizations and structures. Specif-
ically, they may have different kinds of latent topics, de-
noted by y for word concept and z for document concept.
Its graphical model is shown in Figure 2(b). Since there
are two latent variables in this model we call it Dual-PLSA
(D-PLSA for short) in this paper.

Given the word-document co-occurrence O, we can simi-
larly arise a mixture model like Equation (1),

p(w, d) =
X
y,z

p(w,d, y, z) =
X
y,z

p(w|y)p(d|z)p(y,z). (2)

And the parameters of p(w|y), p(d|z), p(y, z) over all w, d, y, z
can also be obtained by the EM solution. In these param-
eters p(w|y) and p(d|z) are actually the extensions of the
word concept y and the document concept z respectively,
while p(y, z) is actually their intension.

This model was proposed in [11] for the clustering prob-
lem. In this paper we find that since the word topic and doc-
ument topic are separated in this model we can inject the
label information into p(d|z) when d is a labeled instance
and z is actually a document class. This way this model
can also be used for semi-supervised classification. We will
detail this in Section 5.1.2.

2.3 The Collaborative Dual-PLSA Model
Based on D-PLSA, we propose a statistical generative

model for text classification cross multiple domains. Sup-
posed we have s+ t data domains, denoted as D = (D1, · · · ,
Ds, Ds+1, · · · , Ds+t). Without loss of generality, we assume
the first s domains are source domains with label informa-
tion and the left t domains are target domains without any
label information. Simply, for each domain we can gener-
ate its own extensions and intensions of word and document
concepts. However, this simple method generates s + t dif-
ferent sets of concept intensions. To obtain only one set of
concept intensions, the variables y and z for word concept
and document concept respectively must be independent of
the variable c for the data domain. Therefore, we propose
the graphical model in Figure 2(c) to catch the requirements
that 1) y and z are independent of c; 2) the word w is de-
pendent of both y and c; 3) the document d is dependent of
both z and c. Given this graphical model the joint proba-
bility over all the variables is

p(w,d, y, z, c) = p(w|y, c)p(d|z, c)p(y, z)p(c). (3)

The word-document co-occurrence matrix in the c-th do-
main is denoted by Oc, whose element Ow,d,c represents the
co-occurrence frequencies of the triple (w, d, c). If we denote
the two latent variables y, z as Z, given the whole data X
from different domains we formulate the problem of maxi-
mum log likelihood as

log p(X |θ) = log
X
Z

p(Z, X |θ), (4)

where θ includes the parameters of p(y, z), p(w|y, c), p(d|z, c)
and p(c).

We have to mention that although the extensions of the
same word concept y on different domains are different, these
extensions are semantically related to a certain degree. The
reason is that they are trained collaboratively by sharing
the same intension of p(y, z). By the experimental results
in Section 5.2.3 we will intuitively show the difference and
relatedness among the extensions, which corresponds to the
same word concept, on the multiple domains. In this sense
we call our model Collaborative Dual-PLSA. Next, we de-
velop an EM solution to the problem in Equation (4).

3. AN EM SOLUTION TO THE COLLABO-
RATIVE DUAL-PLSA MODEL

An Expectation-Maximization (EM) algorithm is to max-
imize the lower bound (via Jensen’s inequality) L0 of (4):

L0 =
X
Z

q(Z)log {p(Z, X |θ)
q(Z)

}, (5)

where q(Z) could be arbitrary. We set q(Z) = p(Z|X ; θold)
and substitute into (5):

L0 =
X
Z

p(Z|X ; θold)log p(Z, X |θ)
| {z }

L

−
X
Z

p(Z|X ; θold)log p(Z|X ; θold)

| {z }
const

= L + const.

(6)
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3.1 E step: constructing L
According to the derivation in Appendix, for the problem

setting of CD-PLSA we have

L =
P

y,z,w,d,c

Ow,d,cp(y, z|w, d, c; θold)

·log [p(y, z)p(w|y, c)p(d|z, c)p(c)],
(7)

where

p(y, z|w, d, c; θold)

=
p(y, z)p(w|y, c)p(d|z, c)p(c)P

y,z p(y, z)p(w|y, c)p(d|z, c)p(c)
.

(8)

3.2 M step: maximizing L
Now we maximize L with its parameters by Lagrangian

Multiplier method. Expand L and extract the terms con-
taining p(w|y, c). Then, we have L[p(w|y,c)] and apply the
constraint

P
w

p(w|y, c) = 1 into the following equation:

∂

»
L[p(w|y,c)] + λ(

P
w

p(w|y, c) − 1)

–

∂p(w|y, c)
= 0, (9)

we have

p̂(w|y, c) ∝
X
z,d

Ow,d,c p(y, z|w, d, c; θold). (10)

Note that we should normalize p̂(w|y, c) via

p̂(w|y, c) =

P
z,d

Ow,d,c p(y, z|w, d, c; θold)

P
z,w,d

Ow,d,c p(y, z|w, d, c; θold)
. (11)

Similarly,

p̂(d|z, c) =

P
y,w

Ow,d,c p(y, z|w, d, c; θold)

P
y,w,d

Ow,d,c p(y, z|w, d, c; θold)
, (12)

p̂(y, z) =

P
w,d,c

Ow,d,c p(y, z|w, d, c; θold)

P
y,z,w,d,c

Ow,d,c p(y, z|w, d, c; θold)
, (13)

p̂(c) =

P
y,z,w,d

Ow,d,c p(y, z|w, d, c; θold)

P
y,z,w,d,c

Ow,d,c p(y, z|w, d, c; θold)
. (14)

3.3 CD-PLSA to Cross-domain Classification
In this subsection, we introduce how to leverage the pro-

posed EM algorithm for cross-domain classification. We
need to figure out two sub-tasks: 1) how to inject the la-
bel information in source domains to supervise the EM op-
timization; 2) how to assign the class label to the instances
in the target domains based on the output from the EM
algorithm.

For the first task we inject the supervising information
(the class label of the instances in the source domains) into
the probability p(d|z, c) (1 ≤ c ≤ s). Specifically, let Lc ∈
[0, 1]nc×m be the true label information of the c-th domain,
where nc is the number of instances in it, m is the number of
document classes. If instance d belongs to document class z0,

then Lc
d,z0

= 1, otherwise Lc
d,z = 0 (z �= z0). We normalize

Lc to satisfy the probabilistic condition so that the sum of
the entries in each column equals to 1,

Nc
d,z =

Lc
d,zP

d Lc
d,z

. (15)

Then p(d|z, c) is initialized as Nc
d,z. Note that since this

initial value is from the true class label we do not change
the value of p(d|z, c) (for 1 ≤ c ≤ s) during the iterative
process.

For the unlabeled target domains, p(d|z, c) (s + 1 ≤ c ≤
s + t) can be initialized similarly. This time the label infor-
mation Lc used can be obtained by any supervised classifier
(Logistic Regression is used in this paper). Note that since
this classifier may output the wrong class label we do change
the value of p(d|z, c) (for s + 1 ≤ c ≤ s + t) during the iter-
ative process.

Algorithm 1 CD-PLSA for Cross-domain Classification

Input: Given (s+ t) data domains D1, · · · , Ds, Ds+1, · · · , Ds+t,
where the first s domains are source domains while the left are
target domains. T , the number of iterations. Y , the number of
word clusters.
Output: the class label of each document d in the target domain.

1. Initialization. p(0)(w|y, c) is set to the output p(w|y) from

PLSA. The initialization of p(0)(d|z, c) is detailed in Sec-

tion 3.3. p(0)(y, z) is set randomly.

2. k := 1.

3. for c := 1 → s + t

Update p(k)(y, z|w, d, c) according to Equation (8) in E-
step;

4. end.

5. for c := 1 → s + t

Update p(k)(w|y, c) according to Equation (11) in M-
step;

6. end.

7. for c := s + 1 → s + t

Update p(k)(d|z, c) according to Equation (12) in M-step;

8. end.

9. Update p(k)(y, z) according to Equation (13) in M-step.

10. Update p(k)(c) according to Equation (14) in M-step.

11. k := k + 1, if k < T , turn to Step 3.

12. The class label of any document d in a target domain c is
predicted by Equation (17).

After the EM iteration we obtain all the parameters of
p(d|z, c), p(w|y, c), p(y, z), p(c), based on which we compute
the posteriori probability p(z|d, c) as follows,

p(z|d, c) =
p(z, d, c)

p(d, c)
∝ p(z, d, c) = p(d|z, c)p(z, c)

= p(d|z, c)p(z)p(c) = p(d|z, c)p(c)
X

y

p(y, z)

∝ p(d|z, c)
X

y

p(y, z).

(16)

Then, the class label of any document d in a target domain
c is predicted to be

arg max
z

p(z|d, c). (17)
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The detailed procedure of CD-PLSA for cross-domain clas-
sification is depicted in Algorithm 1. Note that our algo-
rithm can deal with the situations there are multiple source
domains and multiple target domains.

4. A DISTRIBUTED IMPLEMENTATION OF
THE CD-PLSA MODEL

In this section we extend the proposed EM algorithm
into a distributed version, which can work in the situa-
tion that the source domains D1, · · · ,Ds and the target do-
mains Ds+1, · · · ,Ds+t are geographically separated. This
distributed computing helps when we cannot gather all the
raw data from the separated data domains together due to
security or other issues.

In this distributed setting, we need a cental node, denoted
by mn, as the master node, and all the nodes for the data do-
mains are used as slave nodes, denoted by sn(1), · · · , sn(s+t).
We find that 1) p(y, z|w, d, c; θold), p(w|y, c) and p(d|z, c) in

Equation (8), (11) and (12) can computed locally on sn(c); 2)
p(y, z) can be computed locally on the master node. Specif-
ically, let

�(c)
y,z =

X
w,d

Ow,d,c p(y, z|w, d, c; θold), (18)

V(c) =
X

y,z,w,d

Ow,d,c p(y, z|w, d, c; θold), (19)

Then,

p(y, z) =

P
c

�(c)
y,z

P
y,z,c

�(c)
y,z

, p(c) =
V(c)P

c

V(c)
. (20)

In each iteration, the master node first sends the values of
p(y, z) and p(c) to each slave node. Then, each slave node

sn(c) (for c ∈ {1, · · · , (s + t)}) computes p(y, z|w, d, c; θold),

p(w|y, c), p(d|z, c), �(c)
y,z and V(c) locally, and sends the lo-

cal statistics �(c)
y,z and V(c) to the master node. Finally, the

master node updates p(y, z) and p(c) according to Equa-
tion (20) when receiving all the local statistics from slave
nodes, and starts the new round of iteration. It is clear

that there are only some statistics, including �(c)
y,z, p(y, z),

V(c) and p(c), transmitted between the master and slave
nodes (depicted in Figure 3), rather than communicating
and exposing the raw domain data. Let T be the number
of iterative rounds, Y be the number of word clusters, C be
the number of document classes, then the total communica-
tion overhead are 2T · (s + t) · (Y · C + 1) (the size of both

p(y, z) and �(c)
y,z are Y · C ). Therefore, this distributed

algorithm is communication-efficient and also alleviate the
privacy concerns to some degree.

mn
( ) ( )
,( , )c c
y z v

( ( , ), ( ))p y z p c
sn(c)

Figure 3: The statistics transmitted between the
master and slave nodes.

5. EXPERIMENTS
In this section we design systemic experiments to demon-

strate the effectiveness of CD-PLSA. In these experiments

we focus on two-class classification problems, each of which
involves with four domains: one source domain plus three
target domains or three source domains plus one target do-
main. The classification accuracy is the evaluation metric
in this work.

5.1 The Experimental Setup

5.1.1 Data Preparation
20-Newsgroup2 is one of the widely used data set for

cross-domain learning. This corpus has approximately 20,000
newsgroup documents, which are evenly divided into 20 sub-
categories. Some related subcategories are grouped into a
top category, which is used as document class. Then we
construct a cross-domain classification problem as follows.
For two top categories A and B their four subcategories are
denoted as A1, A2, A3, A4 and B1, B2, B3, B4, respectively.
We select (without replacement) a subcategory from A (e.g.,
A2) and a subcategory from B (e.g., B3) to form a data do-
main. We repeat the selection four times to get the four data
domains. Then, we select any one of the generated four do-
mains as source domain and the left three domains as target
domains. This way we can generate totally 96 (4·P 4

4 ) prob-
lems of cross-domain classification with one source domain
and three target domains. Similarly, we can construct 96
problems with three source domains and one target domain.
In the experiments we use three top categories comp, rec
and sci. Their corresponding subcategories are listed in Ta-
ble 1. The value of 15 is used as the threshold of document
frequency to cut down the number of words used in the co-
occurrence matrices.

Table 1: The top categories and their subcategories
Top

Subcategories
Categories

comp
comp.{graphics, os.ms-windows.misc}

comp.sys.{ibm.pc.hardware, mac.hardware}
rec

rec.{autos, motorcycles}
rec.sport.{baseball, hockey}

sci sci.{crypt, med, electronics, space}

5.1.2 The Baseline Methods
We compare CD-PLSA with several baseline classification

methods, including the supervised learning algorithm Lo-
gistic Regression (LG) [12], and the cross-domain learning
approaches Co-clustering based Classification (CoCC)3 [5]
and Local Weighted Ensemble (LWE) [2]. Since CoCC can
not tackle the scenario with multiple source domains, we
adapt the method of CoCC for handling m source domains
as follows. For each source domain and the target domain
we train a CoCC model, and then combine these m mod-
els by voting with equal weights. LG is adapted to deal
with multiple source domains similarly with CoCC (Note
that LG achieves the similar performance when trained on
the merged data of all source domains). Additionally, the
algorithm D-PLSA (depicted in Section 2.2) is also used as
the baseline. Since there are not domain labels in D-PLSA
all the instances appear as if they are from the same do-
main. In other words the source of each instance is ignored
in D-PLSA. Our experiments will show that ignoring this
information results in the significant performance sacrifice.

2http://people.csail.mit.edu/jrennie/20Newsgroups/.
3We thank the author provides the codes.
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Figure 4: The Performance Comparison among CD-
PLSA, D-PLSA, LWE, CoCC and LG on data set rec
vs. sci

5.1.3 Implementation Details
Since the models of D-PLSA and CD-PLSA have the ran-

dom initialization process, we conduct the experiments three
times and the average results are recorded for these two al-
gorithms. Preliminary test shows that our algorithm is not
sensitive to the number Y of word clusters (in the range of
[25, 28]), thus we set Y to 64. The number of iteration in
both D-PLSA and CD-PLSA4 is set to 50. The parameters

4Under these parameters, CD-PLSA can finish our task in
240 seconds. Note that there are about 7300 features and
7500 documents in each problem.
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Figure 5: The Performance Comparison among CD-
PLSA, D-PLSA, LWE, CoCC and LG on data set
comp vs. sci

of CoCC and LWE are set to the same values as those in
their original papers.

5.2 Experimental Results
5.2.1 Multiple Target Domains

Here, we show a comparison of the proposed CD-PLSA
model with the baseline methods on the learning tasks with
multiple target domains. Since we have the data from the
three top categories, we can select any two of them to con-
struct 96 problems. Here, we only list the results from rec vs.
sci and comp vs. sci. All the results are shown in Figures 4
and 5. Each of these two figures have three sub-figures, each
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of which contains the results on one of the three target do-
mains. In each sub-figure, the 96 problems are sorted by
the increasing order of the accuracy from LG. Thus, the x -
axis in each figure actually indicates the degree of difficulty
in knowledge transformation. From these figures, we can
observe that:

1) The t-test with 95% confidence over all the 192 (96×2)
problems in Figures 4 and 5 shows that CD-PLSA signifi-
cantly outperforms the other four baseline methods. Fur-
thermore, we find that the improvements of CD-PLSA over
the baseline methods are more remarkable when the accu-
racy of LG is lower than 70%. Table 2 records the average
results over the corresponding tasks. The Left and Right
rows represent the average values of the tasks when the ac-
curacy of LG is lower or higher than 70% respectively, while
Total denotes the average values over all the 96 problems.
You can see that the difference between the average values
of CD-PLSA and any baseline method in the Left row is
much greater than that in the Right row. That is to say,
although the baseline methods may output much lower ac-
curacies when the accuracy of LG is lower than 70%, CD-
PLSA works still well. The reason may be that the degree of
difference in data distributions across domains is too large
to be handled by the baseline methods, while our method is
more tolerant of distribution differences.

2) We also observe the advantage of CD-PLSA over D-
PLSA in these results. The reasons are as follows. In D-
PLSA, the data domain where each instance comes from is
ignored, and all the instances are treated as if they come
from the same domain. However, the distinction and com-
monality can only be found by the comparison of at least
two domains. Thus, with only one domain our algorithm
may sacrifice due to the loss of the information of data do-
mains. On the other hand, we can say that the data domain
for each instance introduces significant improvements to our
model CD-PLSA.

5.2.2 Multiple Source Domains
Here, we conduct experiments to show that the CD-PLSA

model can also work on multiple source domains. We eval-
uate all the methods on the problem with 3 sources and 1
target. Figure 6 shows the results. Indeed, similar results
can be observed as those in Section 5.2.1, which again show
that CD-PLSA outperforms all the compared methods.

We also show Table 3 with the average values over the cor-
responding 96 problems of the two data sets. The calculation
of these values are the same with that in Table 2. Again,
these results show that CD-PLSA outperforms the baseline
methods on the tasks with multiple source domains, and it
can better tolerate the distribution differences.

Table 3: Average Performances (%) on 96 Problems
of Each Data Set for Multiple Source Domains
Data Sets LG CoCC LWE D-PLSA CD-PLSA

rec Left 64.01 80.07 71.41 92.03 94.06
vs. sci Right 79.84 97.70 93.62 96.77 96.46

Total 72.42 89.44 83.21 94.55 95.33

comp Left 60.15 74.88 76.77 63.21 80.54
vs. sci Right 79.91 95.58 92.14 94.38 94.51

Total 74.97 90.41 88.30 86.59 91.02

5.2.3 Understanding the Extension of a Word con-
cept over Multiple Domains

Here, we show the difference and relatedness among the
extensions of a word concept over multiple domains. Fixing

a word concept y and a domain c, we list the top N (N = 20
here) words in terms of p(w|y, c). They are actually the rep-
resentative words for the word concept in a certain domain.
The extensions of three word concepts in the four domains
are listed in Table 4.

Indeed, the extensions of a word concept on the four do-
mains are related to each other in the sense that their repre-
sentative words corresponds to the same semantic. For ex-
ample, the third word concept is actually about “Space Sci-
ence”, while the representative words in each extension are
different. Specifically, the representative words of this con-
cept in Domain 1 include “rocket”, “ESA” (European Space
Agency), and “satellite” etc, while those in Domain 2 con-
tain “acceleration”, “NASA”, and “earth” etc. These results
also intuitively show that our model can successfully mine
distinction and commonality among multiple domains.

5.3 Experimental Summary
We summary all the experimental results as follows:
1) CD-PLSA significantly outperforms all the baseline meth-

ods. This superiority becomes more remarkable when the
accuracy from LG is lower than 70%. This indicates that,
when the degree of difficulty in knowledge transfer is large,
our model still works well while the others may fail. Thus,
CD-PLSA is more robust for transfer learning.

2) The CD-PLSA model is further improved by explic-
itly considering the data domain where each instance comes
from. Since the distinction and commonality can only be
identified by the comparison of at least two domains, if all
the instances are treated as if they come from the same do-
main, the effectiveness in mining distinction and common-
ality may compromise. Indeed, the data domain labels on
each instance provide a partition of all the data if we group
the instances from the same domain into one cluster. Thus,
this information is additional supervision to our model.

3) To intuitively understand the extensions of a word con-
cept over different domains, we list the key words of a con-
cept in different domains. These key words, the bi-product
of our model, coincide with our assumption that different
domains use different words to describe the same concept.

6. RELATED WORKS AND DISCUSSIONS
In this section, we will survey some related work, and

then give some discussions on generative and discriminative
classifiers for cross-domain learning.

6.1 Cross-domain Learning
Cross-domain Learning has attracted great attention in

recent years, and the works in this field can be grouped into
four categories based on the different types of techniques
used for knowledge transfer, namely feature selection based,
feature space mapping, weight based, and model combina-
tion based methods.

Feature selection based methods are to identify the com-
mon features (at the level of raw words) between source and
target domains, which are useful for transfer learning. Jiang
et al. [13] argued that the features highly related to class la-
bels should be assigned to large weights in the learnt model,
thus they developed a two-step feature selection framework
for domain adaptation. They first selected the general fea-
tures to build a general classifier, and then considered the
unlabeled target domain to select specific features for train-
ing target classifier. Zhuang et al. [14] formulated a joint op-
timization framework of the two matrix tri-factorizations for
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Table 2: Average Performances (%) on 96 Problems of Each Data Set for Multiple Target Domains
Data Target-1 Target-2 Target-3
Sets

LG CoCC LWE
D- CD-

LG CoCC LWE
D- CD-

LG CoCC LWE
D- CD-

PLSA PLSA PLSA PLSA PLSA PLSA

rec Left 60.33 86.32 69.78 83.16 93.98 59.72 89.34 73.24 86.23 95.82 61.00 89.62 72.49 84.70 95.39
vs. sci Right 80.82 93.70 93.47 94.31 94.09 80.88 96.47 94.29 96.72 97.64 81.11 95.55 94.02 95.94 96.32

Total 65.46 88.17 75.70 85.95 94.00 64.13 90.82 77.62 88.42 96.20 66.03 91.10 77.87 87.51 95.62

comp Left 57.93 69.10 77.64 62.54 80.64 64.66 89.52 88.44 92.71 94.08 61.02 77.30 82.05 76.86 86.53
vs. sci Right 75.70 94.14 91.56 94.74 94.54 74.70 94.95 92.36 95.29 95.65 74.36 94.64 92.65 94.30 95.02

Total 60.52 72.75 79.67 67.23 82.66 70.93 92.91 90.89 94.33 95.06 66.86 84.89 86.68 84.49 90.25
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Figure 6: The Performance Comparison among CD-PLSA, D-PLSA, LWE, CoCC and LG on two data sets

Table 4: Word concepts with their key words for each domain

Domain 1
rocket, esa, assist, frank, af, thu, helsinki, ron, atlantic, jet, observer,

satellite, venus, sei, min, ir, russia, stars, star, ray

Associated with Domain 2
relay, km, rat, pixel, command, elements, arc, acceleration, nasa, earth,

fuse, ground, bulletin, pub, anonymous, faq, unix, cit, ir, amplifier

Concept: Space Science Domain 3
from, earth, science, word, pictures, years, center, data, national, dale,

nasa, gif, reports, mil, planet, field, jpl, ron, smith, unix

Domain 4
service, archive, unit, magnetic, thousands, technology, information, arc, keys,

faq, probes, ir, available, gov, embedded, tens, data, system, unix, mil

Domain 1
support, astronomer, near, thousands, million, you, vnet, copy, ad, bright, lab, idea,

data, hardware, engines, ibm, project, soviet, software, program

Associated with Domain 2
legally, schemes, protected, bytes, mq, disks, patch, registers, machine, pirates,

install, card, rom, screen, protection, disk, ram, tape, mb, copy

Concept: Computer Science Domain 3
discomfort, friend, normal, self, tests, programmer, steve, state, program,

lab, you, your, jon, my, headache, trial, she, pain, page, trials

Domain 4
wcs, cipher, scheme, brute, user, file, encryption, message, serial, decryption,

crypto, keys, cryptosystems, skipjack, plaintext, secure, key, encrypted, nsa, des

Domain 1
saves, power, was, at, disappointment, al, europeans, will, ny, north,

their, they, deal, best, year, sports, cs, new, series, gm

Associated with Domain 2
crash, price, vehicle, insurance, handling, gas, xs, dealer, cruiser,

leather, buy, latech, fj, paint, ride, buying, bmw, engine, car, honda

Concept: Car Domain 3
or, value, they, wade, good, car, better, best, three, performance, more,

runner, than, average, dl, extra, base, cs, al, year

Domain 4
dealer, camry, saab, engine, eliot, requests, mazda, liter, mustang,
diesel, wagon, nissan, mileage, byte, saturn, toyota, si, cars, car, db

∗ Domain 1: rec.sport.hockey vs. sci.space, Domain 2: rec.motorcycles vs. sci.electronics
Domain 3: rec.sport.baseball vs. sci.med, Domain 4: rec.autos vs. sci.crypt.

the source and target domain data respectively, in which the
associations between word clusters and document classes are
shared between them for knowledge transfer. Although the
basic assumption of this method is similar to our method,
it lacks the probabilistic explanation of the model and is
not easy to be extended to handle the tasks with multiple
source and target domains. Dai et al. [5] proposed a Co-
clustering based approach for this problem. In this method,
they identified the word clusters among the source and tar-
get domains, via which the class information and knowledge
propagated from source domain to target domain.

Feature space mapping based methods are to map the
original high-dimensional features into a low-dimensional
feature space, under which the source and target domains
comply with the same data distribution. Pan et al. [15]

proposed a dimensionality reduction approach to find out
this latent feature space, in which supervised learning al-
gorithms can be applied to train classification models. Gu
et al. [16] learnt the shared subspace among multiple do-
mains for clustering and transductive transfer classification.
In their problem formulation, all the domains have the same
cluster centroid in the shared subspace. The label infor-
mation can also be injected for classification tasks in this
method. Xie et al. [17] tried to fill up those missing val-
ues of disjoint features to drive the marginal distributions
of two domains closer, and then found the comparable sub-
structures in the latent space where both marginal and con-
ditional distribution are similar. In this laten space, given
an unlabeled instances in the target domain the most similar
labeled instances are retrieved for classification.
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Weight based methods can be further grouped into two
kinds, i.e. the instance weighting based and model weight-
ing based methods. Instance weighting based approaches
re-weight the instances in source domains according to the
similarity measure on how they are close to the data in the
target domain. Specifically, the weight of an instance is
increased if it is close to the data in the target domain, oth-
erwise the weight is decreased. Jiang et al. [18] proposed a
general instance weighting framework, which has been val-
idated to work well on NLP tasks. Dai et al. [7] extended
boosting-style learning algorithm to cross-domain learning,
in which the training instances with different distribution
from the target domain are less weighted for data sampling,
while the training instances with the similar distribution to
the target domain are more weighted. On the other side
model weighting based methods give different weights to the
classification models in an ensemble. Gao et al. [2] proposed
a dynamic model weighting method for each test example
according to the similarity between the model and the local
structure of the test example in the target domain.

Model combination based methods, considering the situa-
tion of multiple source domains, integrate the source-domain
local models according to certain criterion. Ping at al [6]
proposed the regularization framework which maximizes not
only the posteriori in each source domain, but also the con-
sensus degree of these models’ prediction results on the tar-
get domain. Dredze at al [19] proposed a online model up-
date method for each coming instance, which guarantee that
after each iteration the combined model yields a correct pre-
diction for the current instance with high probability while
also making the smallest change from the existing models
from the source domains.

The most related works are [20, 8]. The work of Zhai
et al. [20] connects the variations of a topic under different
contexts by leveraging the same background for this topic.
Our work can also use this technique to explore possible im-
provements. In this sense, their work is orthogonal to ours.
Xue et al. [8] proposed the model of topic-bridged PLSA for
cross-domain text categorization, and the basic assumption
of this work is that the source and target domains share
the same topics. Specifically, they conduct two topic model-
ings over the source and target domains jointly, and induce
the supervision of the labeled source domain data by the
pair-wise constraints, similar to the must-link and cannot-
link constraints used in semi-supervised clustering. Different
from topic-bridged PLSA, our model explicitly explores the
commonality (concept intension) and distinction (concept
extension) of the topics across multiple domains rather than
assume that these topics are exactly the same. Additionally,
since our model has two latent variables for word concept
and document class, it can naturally include the supervision
from the source domain, rather than add a penalty of the
pair-wise constraints to the original log-likelihood function.

6.2 Discussion on Generative vs. Discrimina-
tive Classifiers for Transfer Learning

Given the observed data x and their labels y, we can for-
mulate the learning of a classifier as calculating the poste-
rior distribution p(y|x). A discriminative classifier models
this distribution directly while a generative classifier models
the joint probability p(x, y), after which p(y|x) is calculated
via Bays rules. There is a widely-held belief in literatures
that discriminative classifiers preferred to generative ones in
practise. For example, Vapnik articulated in [21] that

One should solve the classification problem di-
rectly and never solve a more general problem as
an intermediate step such as modeling p(x|y).

However, when learning and applying discriminative clas-
sifiers, we essentially assume that all the data instances are
generated from the identical distribution. This assumption
may not hold when data are from different sources. Ideally,
the conditional probability p(y|x) may be the same across
different domains, however, the marginal probability p(x) on
each domain is prone to be different. The problem is that
since the training of p(y|x) based on the data in a source do-
main is biased towards the local marginal probability p(x)
it is difficult to achieve the ideal p(y|x) by discriminative
models even using the data from all the source domains.
On the other hand, the generative classifiers, like CD-PLSA
proposed here, provide us facilities to explicitly model the
data distribution differences across domains. Thus, it may
introduce extra values in prediction. Therefore, we argue
that generative models may be suited for transfer learning.

7. CONCLUSIONS
In this paper, we investigated how to exploit the exten-

sion and intension of word and document concepts for cross-
domain learning. The extension of word (document) con-
cepts differs in various domain (distinction), but the inten-
sion of word (document) concepts is domain-independent
(commonality). To this end, we proposed a CD-PLSA model
to effectively capture the distinction and commonality across
multiple domains for text classification, also developed an
EM solution to it. Finally, the experimental results show
that CD-PLSA significantly outperforms the baseline meth-
ods on the tasks with multiple source domains or multiple
target domains, and it is more tolerant to distribution dif-
ferences among the multiple domains.
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APPENDIX
First, we now consider the log joint probability log p(Z, X |θ)
and the posterior probability of the latent factors p(Z|X ; θold)
separately.

According to Figure 2 and the d-separation criterion, we
have

log p(Z, X |θ) = log
Y
n

p(Zn, Xn|θ) =
X

n

log p(Zn, Xn|θ),
(21)

where Xn, Zn are the n-th entries of X and Z respectively.
Similarly, we have

p(Z|X ; θ) =
Y
m

p(Zm|X ; θ) =
Y
m

p(Zm|Xm; θ) (22)

Then L become (using (21) and (22)):

L =
X
Z

p(Z|X ; θold)log p(Z, X |θ)

=
X
Z

Y
m

p(Zm|Xm; θold)
X

n

log p(Zn, Xn|θ)

=
X

n

X
Z

Y
m

p(Zm|Xm; θold)log p(Zn, Xn|θ)

=
X

n

X
Zn

X
Z−n

Y
m�=n

p(Zm|Xm; θold)

·p(Zn|Xn; θold)log p(Zn, Xn|θ)

=
X

n

X
Zn

p(Zn|Xn; θold)log p(Zn, Xn|θ)

· P
Z−n

Q
m�=n

p(Zm|Xm; θold)

=
X

n

X
Zn

p(Zn|Xn; θold)log p(Zn, Xn|θ).

(23)
Now we write the observed data Xn in detail as (w, d, c),

each component of Zn as (y, z). Then, we have

L =
P

w,d,c

Ow,d,c

P
y,z

p(y, z|w, d, c; θold)

·log p(y, z, w, d, c|θ)
=

P
y,z,w,d,c

Ow,d,cp(y, z|w, d, c; θold)

·log [p(y, z)p(w|y, c)p(d|z, c)p(c)],

(24)

where Ow,d,c is the co-occurrence number of w, d, c.
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