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Abstract
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2004

Collaborative filtering was initially proposed as a framework for filtering information

based on the preferences of users, and has since been refined in many different ways.

This thesis is a comprehensive study of rating-based, pure, non-sequential collaborative

filtering. We analyze existing methods for the task of rating prediction from a machine

learning perspective. We show that many existing methods proposed for this task are

simple applications or modifications of one or more standard machine learning methods

for classification, regression, clustering, dimensionality reduction, and density estima-

tion. We introduce new prediction methods in all of these classes. We introduce a

new experimental procedure for testing stronger forms of generalization than has been

used previously. We implement a total of nine prediction methods, and conduct large

scale prediction accuracy experiments. We show interesting new results on the relative

performance of these methods.
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Chapter 1

Introduction

The problem of information overload was identified as early as 1982 in an ACM Pres-

ident’s Letter by Peter J. Denning aptly titled Electronic Junk [17]. Denning argued

that the deployment of office information systems technology coupled with a quickly in-

creasing use of electronic mail was sure to overwhelm computer users. Since that time

many new sources of information have become available through the Internet including

a vast archive of hundreds of millions of Usenet news articles, and an immense collection

of billions of web pages. In addition, mainstream media continue to produce new books,

movies, and music at a staggering pace.

The response to the accelerating problem of information overload by the computer

science community was the founding of a new research area called information filtering.

Work in this area has largely focused on filtering text documents based on representations

of their content. However, Goldberg, Nichols, Oki, and Terry founded an orthogonal

research direction termed collaborative filtering based on filtering arbitrary information

items according to user preferences [23, p. 61]. In the current literature, collaborative

filtering is most often thought of as the problem of recommendation, the filtering-in of

information items that a particular individual will like or find usefull.

However, it is incorrect to think of collaborative filtering as a single problem. Rather,

1



Chapter 1. Introduction 2

the field of collaborative filtering consists of a collection of collaborative filtering problems,

which differ according to the type of input information that is assumed. Only a fraction of

these formulations has been studied in depth. In order to properly situate the work which

appears in this thesis, we begin by describing a space of formulations of collaborative

filtering problems in chapter 2.

We focus on a pure, non-sequential, rating-based formulation of collaborative filtering

as detailed in section 2.2. This formulation is the one most often associated with collabo-

rative filtering, and is the subject of the majority of the collaborative filtering literature.

Qualitatively, this formulation has many nice properties. In particular, the recommen-

dation task decomposes into the task of rating prediction, and the task of producing

recommendations from a set of rating predictions. The latter is trivially accomplished

by sorting information items according to their predicted ratings, and thus the rating

prediction task will be our primary interest.

In chapter 3 we introduce the fundamental statistical, computational, and experimen-

tal techniques that are needed to derive, and analyze rating prediction methods within

the pure, non-sequential, rating-based formulation of collaborative filtering. We describe

optimization and learning methods, give a brief overview of complexity analysis for rating

prediction methods, and describe experimental protocols and error measures for empirical

evaluation.

As we will see in the following chapters, a great deal of research has been performed

within the pure, non-sequential, rating-based formulation of collaborative filtering. While

early work focused on the neighborhood methods introduced by Resnick et al. [49],

new and inventive techniques have been introduced from a wide variety of disciplines

including artificial intelligence, human factors, knowledge discovery, information filtering

and retrieval, machine learning, and text modeling.

Regardless of their origins, many rating prediction methods can be seen as modifi-

cations or applications of standard machine learning methods. Thus, machine learning
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offers a unifying perspective from which to study existing collaborative filtering research.

In chapter 4 we describe rating prediction methods based on classification and regression.

We present the well known class of neighborhood methods and show how they can be

derived from standard K nearest neighbor classification and regression [49]. We intro-

duce a new rating prediction method based on learning a set of naive Bayes classifiers.

In chapter 5 we describe applications of clustering methods to rating prediction and in-

troduce a new rating prediction method based on K-medians clustering. In chapter 6 we

present rating prediction methods based on dimensionality reduction techniques includ-

ing weighted singular value decomposition [53], principal components analysis [24], and

probabilistic principal components analysis [13]. We introduce a new rating prediction

algorithm that extends the existing work on weighted singular value decomposition. In

chapter 7 we describe a number of methods based on density estimation in probabilis-

tic models including a multinomial model, a mixture of multinomials model, the aspect

model [29], and the user rating profile model [38]. We introduce a new family of models

called the Attitude model family.

We implement a total of nine rating prediction methods and perform large scale pre-

diction accuracy experiments. In chapter 8 we present a comparison of these methods in

terms of learning complexity, prediction complexity, space complexity of learned repre-

sentation, and prediction accuracy.



Chapter 2

Formulations

The original Information Tapestry system proposed by Goldberg et al. allowed users to

express their opinions in the form of text annotations that were associated with particular

electronic mail messages and documents. Other Tapestry users were able to specify filters

for incoming documents in the form of SQL-like expressions based on the document’s

content, the content of the annotations, the number of annotations, and the identity of

the authors of the annotations associated with each document [23].

The field of collaborative filtering research consists of a large number of information

filtering problems, and this collection of formulations is highly structured. In this chap-

ter we introduce a space of collaborative filtering problem formulations, and accurately

situate the current work.

2.1 A Space of Formulations

In this section we structure the space of formulations according to three independent char-

acteristics: the type of preference indicators used, the inclusion of additional features,

and the treatment of preference dynamics. A choice for each of these three character-

istics yields a particular formulation. The proposed structure covers all formulations of

collaborative filtering currently under study, and many that are not.

4



Chapter 2. Formulations 5

2.1.1 Preference Indicators

The main types of preference indicators used for collaborative filtering are numerical

ratings triplets, numerical rating vectors, co-occurrence pairs, and count vectors. A

rating triplet has the form (u, y, r) where u is a user index, y is an item index, and r is

a rating value. The triplet represents the fact that user u assigned rating r to item y.

The rating values may be ordinal or continuous. A numerical rating vector has the form

ru = (ru
1 , ..., ru

M ) where ru
y is the rating assigned by user u to item y. The components

of the vector ru are either all ordinal or all continuous values. Any component of the

vector may be assigned the value ⊥, indicating the rating for the corresponding item is

unknown.

Co-occurrence pairs have the form (u, y) where u is a user index and y is an item

index. The relation implied by observing a pair (u, y) is that user u viewed, accessed,

or purchased item y. However, it could also indicate that user u likes item y. A count

vector nu = (nu
1 , ..., n

u
M ) results when multiple co-occurrence pairs can be observed for

the same user and item. In this case nu
y may represent the number of times user u viewed

item y.

These preference indicators are not completely distinct. Any rating vector can be

represented as a set of rating triplets. The reverse is not true unless we assume there

is at most one rating specified for every user-item pair. Count vectors and sets of co-

occurrence pairs are always interchangeable. The preference indicators based on ratings

are semantically different from those based on co-occurrences, and there is no straight

forward transformation between the two.

A further distinction drawn between preference indicators is whether they are ex-

plicitly provided by the user, or implicitly collected while the user performs a primary

task such a browsing an Internet site. Claypool et al. present an interesting compari-

son between implicit preference indicators and explicit ratings [15]. Requiring a user to

supply explicit ratings results in a cognitive burden not present when implicit preference
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indicators are collected. Claypool et al. argue that the perceived benefit of supplying

explicit ratings must exceed the added cognitive burden or users will tend to rate items

sparsely, or stop rating items altogether. On the other hand, Claypool et al. argue that

because implicit indicators can be gathered without burdening the user, every user inter-

action with the collaborative filtering system results in the collection of new preference

indicators.

2.1.2 Additional Features

Another decision that has important consequences in collaborative filtering is whether

to only use preference indicators, or allow the use of additional features. In a pure

approach users are described by their preferences for items, and items are described by

the preferences users have for them. When additional content-based features are included

the formulation is sometimes called hybrid collaborative filtering. Additional features can

include information about users such as age and gender, and information about items

such as an author and title for books, an artist and genre for music, a director, genre,

and cast for movies, and a representation of content for web pages.

Pure formulations of collaborative filtering are simpler and more widely used for

research than hybrid formulations. However, recent research has seen the proposal of

several new algorithms that incorporate additional features. See for example the work

of Basu, Hirsh, and Cohen [2], Melville, Mooney, and Nagarajan [39], as well as Schein,

Popescul, and Ungar [51].

The hybrid approach purportedly reduces the effect of two well known problems with

collaborative filtering systems: the cold start problem, and the new user problem. The

cold start problem occurs when there are few entries recorded in the rating database.

In this case more accurate recommendations can me made by recommending items ac-

cording to similarities in their content-based features. The new user problem occurs in

an established collaborative filtering system when recommendations must be made for a
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user on the basis of few recorded ratings. In this case better recommendations may be

achieved by considering similarities between users based on additional user features.

2.1.3 Preference Dynamics

Very few formulations of collaborative filtering take into account the sequence in which

preference indicators are collected. Instead preference indicators are viewed as a static

set of values representing a “snapshot” of the user’s preferences. However, over long

periods of time, or in domains where user preferences are highly dynamic, older preference

indicators may become inaccurate. In certain domains a non-sequential formulation risks

predictions that decrease in accuracy as a user’s profile becomes filled with out of date

information. This problem is especially acute when implicit preference indicators are

used because the user can not directly update past preference indicator values.

Recently Pavlov and Pennock, and Girolami and Kabán have introduced methods for

dealing with dynamic user profiles. The advantage of this approach is that it can deal

naturally with user preferences changing over time. The disadvantage is that sequential

formulations requires more complex models and prediction methods than non-sequential

formulations. Pavlov and Pennock adopt a maximum entropy approach to prediction

within the sequential framework. Their method performs favorably on a document rec-

ommendation task when compared to content-based methods currently in use [46]. Giro-

lami and Kabán introduce a method for learning dynamic user profiles based on simplicial

mixtures of first order Markov chains. They apply their method to a variety of data sets

including a web browsing prediction task [21].

2.2 Pure, Non-Sequential, Rating-Based Formulation

Throughout this work we assume a pure, non-sequential, rating-based formulation of col-

laborative filtering. In this formulation users and items are described only by preference
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indicators. Preference indicators are assumed to be numerical rating vectors with ordinal

values. No additional features are included. Preference dynamics are ignored resulting

in a non-sequential treatment of preference indicator values. This formulation was pop-

ularized by Resnick, Iacovou, Suchak, Bergstorm, and Riedl through their work on the

GroupLens system [49]. We select this particular formulation because it has been the

subject of the greatest amount of previous research. It is appealing due to its simplicity,

and the fact that it easily accommodates objective performance evaluation. We give a

detailed definition of this formulation in sub-section 2.2.1. As we describe in sub-section

2.2.2, the two tasks performed under this formulation are recommendation, and rating

prediction.

2.2.1 Formal Definition

We assume that there are M items 1, ...,M in a collection that can be of mixed types:

email messages, news articles, web pages, books, songs, movies, etc. We assume there is

a set of N users 1, ..., N . A user u can provide an opinion about an item y by assigning

it a numerical rating ru
y from the ordinal scale 1, ..., V . Each user can supply at most one

rating for each item, but we do not assume that all users supply ratings for all items. We

associate a rating vector also called a user rating profile ru ∈ {1, ..., V,⊥}M with each

user u. Recall that the symbol ⊥ is used to indicate an unknown rating value.

2.2.2 Associated Tasks

The main task in any formalation of collaborative filtering is recomendation. given the

rating vectors ru of the N users, and the rating vector ra of a particular active user a, we

wish to recommend a set of items that the active user might like or find useful. As we

have already noted, in a rating based formulation the task of recommendation reduces

to the task of rating prediction and the task of producing recommendations from a set of

predictions. In rating prediction we are given the rating vectors ru of the N users, and
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the rating vector ra of a particular active user a. We wish to predict rating values r̂a
y for

all items that have not yet been assigned ratings by the active user.

Given a method for predicting the ratings of unrated items, a method for recommen-

dation can easily be constructed by first computing predictions r̂a
y for all unrated items,

sorting the predicted ratings, and recommending the top T items. Therefore, the focus

of research within the pure, non-sequential, rating-based formulation is developing highly

accurate rating prediction methods.



Chapter 3

Fundamentals

In this chapter we introduce the background material that is needed for developing rating

prediction methods, analyzing their complexity, and performing experiments in the col-

laborative filtering domain. We approach collaborative filtering from a machine learning

standpoint, which means we draw heavily from the fields of optimization, and probability

and statistics. Familiarity with the basics of non-linear optimization is assumed. The

collaborative filtering problems we consider are too large for higher order optimization

procedures to be feasible, so we resort to gradient descent and its variants in most cases.

Familiarity with probability and statistics and Bayesian belief networks is also as-

sumed. In chapters 6 and 7 we introduce probabilistic models for collaborative filtering

containing latent variables, variables whose values are never observed. Learning these

models requires the use of an expectation maximization procedure. In this chapter we

review the Expectation Maximization algorithm of Dempster, Laird and, Rubin [16]. We

also introduce the more recent free energy interpretation of standard EM due to Neal and

Hinton [44]. We follow the free energy approach of Neal and Hinton for the development

of all models in chapter 7.

As we will see in the following chapters, different learning and prediction methods

differ greatly in terms of computational complexity, and the complexity of the models

10
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they construct. We introduce the basic elements of the complexity analysis we apply.

Lastly, we describe the experimental protocols used to obtain rating prediction per-

formance results. We discuss the various error measures that are commonly used in

collaborative filtering research. We also introduce the EachMovie and MovieLens data

sets, and describe their main properties.

3.1 Probability and Statistics

In chapters 6 and 7 we introduce methods for rating prediction based on learning prob-

abilistic models of rating profiles. The power of these models comes from the fact that

they include latent variables as well as rating variables. The rating variables correspond

to the rating of each item, and are observed or unobserved depending on a particular

user’s rating profile. The latent variables, which are always unobserved, facilitate the

modeling of complex dependencies between the rating variables.

Let x be a vector of observed variables, z be a vector of latent variables, and θ be

the model parameters. Let y = (x, z) be a vector of all variables in the model. If y were

completely observed we could apply standard maximum likelihood estimation to obtain

θ∗ = argmaxθ log P (y|θ). However, with the z unobserved, y becomes a random variable

and we must apply the Expectation Maximization algorithm of Dempster et al. [16].

The Expectation Maximization algorithm is an iterative procedure for maximum like-

lihood estimation in the presence of unobserved variables. The algorithm begins by ran-

domly initializing the parameters. The initial guess at the parameter values is denoted

θ̂0. In the expectation step the expected value of the log likelihood of the complete data

y is estimated. The expectation is taken with respect to a distribution over y computed

using the observed data x and the current estimate of θ, θ̂t. This expression is called

the Q-function and is written Q(θ|θ̂t) = E[log P (y|θ)|x, θ̂t] to indicate the dependence

on the current estimate of the parameter vector θ. In the maximization step θ̂t+1 is set
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to the value which maximizes the expected complete log likelihood, Q(θ|θ̂t). These two

updates are iterated as shown below until the likelihood converges.

E-Step: Q(θ|θ̂t)← E[log P (y|θ)|x, θ̂t)

M-Step: θ̂t+1 ← arg max
θ

Q(θ|θ̂t)

Neal and Hinton view the standard EM algorithm in a slightly different fashion.

They describe the expectation step as computing a distribution qt(z) = P (z|x, θ̂t) over

the range of z. In the maximization step θ̂t+1 is set to the value of θ which maximizes

Eqt [log P (y|θ)], the expected complete log likelihood under the q-distribution computed

during the previous expectation step.

E-Step: qt+1(z)← P (z|x, θ̂t)

M-Step: θ̂t+1 ← arg max
θ

Eqt [log P (y|θ)]

For more complex models where the parameters of the q-distribution or the param-

eters of the model can not be found analytically, the free energy approach of Neal and

Hinton leads to more flexible model fitting procedures than standard EM [44]. As Neal

and Hinton show, standard EM is equivalent to performing coordinate ascent on the

free energy function F [q, θ] = Eq[log P (x, z|θ)] + H[q], where H[q] = −Eq[log q(z)]. The

q-distribution may be the exact posterior over z or an approximation. The free energy

F [q, θ] is related to the Kullback-Liebler divergence between the q-distribution q(z|x)

and the true posterior p(z|x) as follows: log P (x, z|θ) = F [q, θ]+D(q(z||x)||p(z|x)). The

Kullback-Liebler divergence is a measure of the difference between probability distribu-

tions. It is zero if the distributions are equal, and positive otherwise, thus the free energy

F [q, θ] is a lower bound on the complete data log likelihood. The EM algorithm can then

be expressed as follows:

E-Step: qt+1 ← arg max
q

F [q, θ̂t]

M-Step: θ̂t+1 ← arg max
θ

F [qt+1, θ]
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Since both the E-step and the M-step maximize the same objective function F [q, θ],

fitting procedures other than standard EM can be justified. In the case where the pa-

rameters of qt+1 or θ̂t+1 must be found iteratively, different interleavings of the iterative

updates can be used and the free energy F [q, θ] is still guaranteed to converge. However,

a local maximum of the free energy will only correspond to a local maximum of the

expected complete log likelihood when q∗ is a true maximizer of F [q, θ̂∗].

3.2 Complexity Analysis

Achieving higher prediction accuracy on rating prediction tasks often comes at the cost

of higher computational or space complexity. We analyze the complexity of all learning

and prediction methods which we implement to assess this fundamental tradeoff.

Many of the methods we will describe, such as those based on expectation maximiza-

tion, involve iterating a set of update rules until convergence. When the computational

complexity of a learning or prediction method depends on iterating a set of operations

until the convergence of an objective function is obtained, we introduce the notation I

to indicate this dependence. For most learning and prediction algorithms I will be a

function of the number of users N , the number of items M , the number of vote values

V , and a model size parameter K. We provide average case estimates of the number of

iterations needed to obtain good prediction performance for data sets tested.

The space complexity of the representations found by most methods will be a function

of the number of items M , the number of vote values V , and a model size parameter K.

For instance based methods and certain degenerate models, the space complexity of the

learned representation will also depend on the number of users N .
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3.3 Experimentation

In this section we describe the experimental methodology followed in this thesis. We

review different experimental protocols that have been proposed in the literature for

evaluating the empirical performance of collaborative filtering methods. We also discuss

the various data sets that are commonly used in rating experiments, and describe some

of their important properties.

3.3.1 Experimental Protocols

Most rating prediction experiments found in the literature follow a protocol popularized

by Breese, Heckerman, and Kadie [10]. In these experiments the available ratings for

each user are split into an observed set, and a held out set. The observed ratings are

used for training, and the held out ratings are used for testing the performance of the

method. The training set may be further split if a validation set is needed. However,

this protocol only measures the ability of a method to generalize to other items rated by

the same users who were used for training the method. We call this weak generalization.

A more important type of generalization, and one overlooked in the existing collabo-

rative filtering literature, is generalization to completely novel user profiles. We call this

strong generalization. In a strong generalization protocol the set of users is first divided

into training users and test users. Learning is performed with all available ratings from

the training users. A validation set may be extracted from the training set if needed. To

test the resulting method, the ratings of each test user are split into an observed set and

a held out set. The method is shown the observed ratings, and is used to predict the

held out ratings. A crucial point in this discussion is that some collaborative filtering

methods are not designed for use with novel user profiles. In this case only the weak

generalization properties of the method can be evaluated.

In both forms of generalization, testing is done by partitioning each user’s ratings



Chapter 3. Fundamentals 15

into a set of observed items, and a set of held out items. This can be done in a variety of

ways. If K items are observed and the rest are held out, the resulting protocol is called

Given-K. When all of a user’s ratings are observed except for one, the protocol is often

referred to as all-but-1. Since the number of observed ratings varies naturally in the data

sets used for empirical evaluations, we adopt an all-but-1 protocol for both weak and

strong generalization. Note that in all cases the error rates we report are taken over sets

of held out ratings used for testing, not the set of observed ratings for for training.

Collaborative filtering data sets are normally quite large, and the error estimates

produced by the weak and strong generalization protocols seem to exhibit relatively low

variance. Nevertheless, cross validation is used to average error rates across multiple ran-

domly selected training, and testing sets, as well as observed and unobserved rating sets.

We report the mean test error rate and standard error of the mean for all experiments.

3.3.2 Error Measures

Two principal forms of error measure have been used for evaluating the performance

of collaborative filtering methods. The first form attempts to directly evaluate recom-

mendation performance. Such evaluation methods have been studied by Breese et al.

[10], but are not commonly used. The lack of sufficiently dense rating data sets renders

recommendation accuracy estimates unreliable.

The second form of error measure is used to evaluate the prediction accuracy of a

collaborative filtering method. Several popular instances of this form of error measure

are mean squared error (MSE), mean absolute error (MAE), and mean prediction error

(MPE). The definitions of all three error measures can be found below assuming N users,

and one test item per user as in an all-but-1 protocol.

MSE =
1

N

N
∑

u=1

(r̂u
yu − ru

yu)2 (3.1)

MAE =
1

N

N
∑

u=1

|r̂u
yu − ru

yu | (3.2)
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MPE =
1

N

N
∑

u=1

[r̂u
yu 6= ryu ] (3.3)

Since we will be experimenting with data sets having different numbers of rating values

we adopt a normalized mean absolute error, which enables comparison across data sets.

We define our NMAE error measure to be MAE/E[MAE] where E[MAE] denotes the

expected value of the MAE assuming uniformly distributed observed and predicted rating

values. An NMAE error of less than one means a method is doing better than random,

while an NMAE value of greater than one means the method is performing worse than

random. Note that this is a different definition of NAME than proposed previously by

Goldberg et al. [24]. In the definition of Goldberg et al. the normalizing value is taken to

be rmax− rmin, the difference between the largest and smallest rating values. However, a

large portion of the resulting error scale is not used because it corresponds to errors that

are far worse than a method which makes uniformly random predictions. For example,

on a scale from one to five rmax − rmin = 4 while E[MAE] = 1.6.

3.3.3 Data Sets

The single most important aspect of empirical research on rating prediction algorithms

is the availability of large, dense data sets. Currently only two ordinal rating data sets

are freely available for use in research. These are the EachMovie (EM) data set and the

MovieLens (ML) data set. EachMovie is a movie rating data set collected by the Compaq

Systems Research Center over an 18 month period beginning in 1997. The base data set

contains 72916 users, 1628 movies and 2811983 ratings. Ratings are on a scale from 1

to 6. The base data set is 97.6% sparse. MovieLens is also a movie rating data set. It

was collected through the on going MovieLens project, and is distributed by GroupLens

Research at the University of Minnesota. MovieLens contains 6040 users, 3900 movies,

and 1000209 ratings collected from users who joined the MovieLens recommendation

service in 2000. Ratings are on a scale from 1 to 5. The base data set is 95.7% sparse. A



Chapter 3. Fundamentals 17

Table 3.1: Each Movie and MovieLens Data Set Statistics
Data Set EM Ratings EM Sparsity (%) ML Ratings ML Sparsity (%)
Base 2811983 97.6 1000209 95.7
Weak 1 2119898 95.6 829824 95.4
Weak 2 2116856 95.6 822259 95.4
Weak 3 2118560 95.6 825302 95.4
Strong 1 348414 95.7 164045 95.4
Strong 2 348177 95.7 172344 95.2
Strong 3 347581 95.7 166870 95.4

third data set often used in collaborative filtering research is the freely available Jester

Online Joke data set collected by Goldberg et al. [24]. Jester differs from EachMovie

and MovieLens in that the ratings are continuous and not ordinal. The data set is also

much smaller containing 70000 users, but only 100 jokes. Since this work focuses on a

formulation with ordinal ratings, the Jester data set is not used.

For the purpose of experimentation we apply further pruning to the base data sets by

eliminating users and items with low numbers of observed ratings. We require a minimum

of twenty ratings per user. In the case of EachMoive, this leaves about 35000 users and

1600 items from which we randomly select 30000 users for the weak generalization set,

and 5000 users for the strong generalization set. Filtering the MovieLens data set leaves

just over 6000 users and 3500 movies from which we randomly select 5000 users for

the weak generalization set and 1000 users for the strong generalization set. For both

EachMovie and MovieLens, the selection of users for weak and strong generalization is

performed randomly three times creating a total of twelve data sets. Table 3.1 indicates

that the filtering and sampling methods used to extract the various data sets from the

base EachMove and MovieLens data sets largely preserve rating sparsity levels. Figures

3.1 and 3.2 show that the rating distributions are also largely preserved. Each bar chart

gives the empirical distribution over rating values for a single data set. The horizontal

axis is ordered from lowest to highest rating value.
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Figure 3.1: EachMovie Rating Distributions
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Figure 3.2: MovieLens Rating Distributions

3.3.4 The Missing at Random Assumption

One important consideration when dealing with data sets that contain large amounts of

missing data is the process that causes the data to be missing. This process is referred to

as the missing data mechanism. If the probability of having a missing value for a certain

variable is unrelated to the value of the variable, then the ratings are said to be missing

completely at random. If the probability that a variable is unobserved given the values

all variables is equal to the the probability that a variable is unobserved given the values

of just the observed variables, then the data is said to be missing at random [36]. If

the data is missing completely at random or simply missing at random then the missing

data mechanism can be ignored. If the data is not missing at random then ignoring the

missing data mechanism can bias maximum likelihood estimates computed from the data

[36].

Given a data set with missing values, it is impossible to determine whether the miss-

ing values are missing at random because their values are unknown. However, we can

hypothesize based on prior knowledge of the process that generated the data. For in-

stance, we might believe that a user is likely to only see movies that they believe they will

like, and only rate movies that they have seen. In this case the probability of observing

a rating value will depend on the user’s estimate of their rating for the item. Thus the

data is not missing at random, and ignoring the missing data mechanism may result in

biased learning procedures.
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Taking account of the missing data mechanism can be fairly easy when the goal is to

find maximum likelihood estimates for simple statistics like the mean of the data. In the

collaborative filtering case we are interested in optimizing the parameters of probabilistic

models using maximum likelihood methods. This is a more complicated task, and the

problem of incorporating missing data mechanisms into generative models has not been

studied at all in the collaborative filtering literature. All existing research explicitly or

implicitly makes the assumption that ratings are missing at random. While this is a very

interesting issue, it is beyond the scope of the present research. In this thesis we assume

that all missing ratings are missing at random, but acknowledge that the bias introduced

into learning and prediction may be significant.
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Classification and Regression

Given an M dimensional input vector xi, the goal of classification or regression is to

accurately predict the corresponding output value ci. In the case of classification the

outputs c take values from a finite set referred to as the set of class labels. In the case

of regression, the outputs c are real valued. Each component xij of input vector xi may

may be categorical or numerical. Classification and regression share a common learning

framework: a set of training instances {xi, ci} is given, and the mapping from input

vectors to output values must be learned.

Rating prediction for collaborative filtering is rarely thought of in terms of classifica-

tion or regression, despite the fact that some of the most well known methods fall under

this heading. To see that classification offers a useful framework for personalized rating

prediction consider constructing a different classifier for every item. The classifier for

item y classifies users according to their rating for item y. The input features consist of

ratings for items other than item y. We learn the set of classifiers independently. Some

users will not have recorded a rating for item y, but it suffices to discard those users

from the training set when learning the classifier for item y. Collaborative filtering can

be performed as regression in a precisely analogous fashion.

Billsus and Pazzani propose an alternate framework for performing rating prediction

20
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as classification or regression [5]. They begin by re-encode ordinal rating values on a

scale of 1 to V using a binary 1-of-V encoding scheme. This is necessary when using

certain classifiers that can not be applied in the presence of missing data, but is not

necessary in general. The framework of Billsus and Pazzani also obscures the true rela-

tionship between standard classification techniques from machine learning, and the set

of methods popularized by Resnick et al. [49], Shardanand and Maes [52], and Her-

locker et al [27]. These algorithms have been called memory-based [10], similarity-based,

and neighborhood-based [27] in the literature. As we show in the following section,

neighborhood-based collaborative filtering methods can be interpreted as modifications

of the well known K-Nearest Neighbor classifier [42].

While not explored to date, the use of other standard classifiers for rating prediction

is also possible. We detail the application of the naive Bayes classifier, and briefly discuss

the use of other classifiers such as decision trees and artificial neural networks.

4.1 K-Nearest Neighbor Classifier

The K-Nearest Neighbor (KNN) classifier is one of the classical examples of a memory-

based, or instance-based machine learning method. A KNN classifier learns by simply

storing all the training instances that are passed to it. To classify a new query vector

xq given the stored training set {xi, ci}, a distance dqi = d(xq,xi) is computed for all i.

Let xn1 , ...,xnk
be the K nearest neighbors of xq, and cn1 , ..., cnK

be the corresponding

outputs. The output for xq is then calculated as an aggregate of the class labels cn1 , ..., cnK

[42, p. 230-231].

In the standard case where the input vectors consist of real numbers and the outputs

are discrete classes, the distance function d() is taken to be euclidean distance given by

equation 4.1. The predicted output value is taken to be the class of the majority of xq’s

K nearest neighbors as seen in equation 4.2. If the outputs are continuous, then the
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predicted output is computed as the mean of the outputs of xq’s k nearest neighbors as

seen in equation 4.3. This yields K-Nearest Neighbor regression.

d(xq,xi) =

√

√

√

√

√

M
∑

j=1

(xnj − xij)2 (4.1)

cq = arg max
c∈C

K
∑

k=1

δ(c, cnk
) (4.2)

cq =
1

K

K
∑

k=1

cnk
(4.3)

One standard extension to KNN that can increase accuracy is to incorporate a sim-

ilarity weight wqi. The similarity weights is calculated as the inverse of the distance

wqi = 1/dqi. This technique is applicable to both the classification, and regression cases.

The modified classification and regression rules are given in equations 4.4 and 4.5 [42, p.

233-234]. An additional benefit of incorporating similarity weights is that the number

of neighbors K can be set to the number of training cases N , and the presence of the

weights automatically discounts the contribution of training vectors that are distant from

the query vector.

cq = arg max
c∈C

K
∑

k=1

wqnj
δ(c, cnk

) (4.4)

cq =

∑K
k=1 wqnk

cnk
∑k

k=1 wqnk

(4.5)

4.1.1 Neighborhood-Based Rating Prediction

Neighborhood-based rating prediction algorithms are a specialization of standard KNN

regression to collaborative filtering. To make a prediction about an item y, recall that

the input feature vector consists of all items in the dataset other than y. Some users will

not have rated some items so the distance metric can only be calculated over the items

that the active user a and each user u in the data set have rated in common.

Many specialized distance and similarity metrics have been proposed. The survey
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by Herlocker et al. mentions Pearson correlation, Spearman rank correlation, vector

similarity, entropy, and mean squared difference [27]. The Pearson correlation similarity

metric is shown in equation 4.6. Pearson correlation was used by Resnick et al. in the

GroupLens system [49], and a slight variation was used by Shardanand and Maes in the

Ringo music recommender [52].

wP
au =

∑

{y|ra
y ,ru

y 6=⊥}(r
a
y − r̄a)(ru

y − r̄u)
√

∑

{y|ra
y ,ru

y 6=⊥}(ra
y − r̄a)2

∑

{y|ra
y ,ru

y 6=⊥}(ru
y − r̄u)2

(4.6)

A straight forward application of the KNN classification and regression rules to rating

prediction results in the rules shown in equations 4.4 and 4.8. We have accounted for

negative weights which do not occur when euclidean distance is used. We assume the

active user’s K nearest neighbors are given by u1, ..., uK .

r̂a
y = arg max

v∈V

K
∑

k=1

wauk
δ(v, ruk

y ) (4.7)

r̂a
y =

∑K
k=1 wauk

ruk

i
∑k

k=1 |wauk
|

(4.8)

When using certain similarity metrics including Pearson correlation and vector sim-

ilarity, Resnick et al. [49] and Breese et al. [10] advocate a slight modification of the

prediction rules given above. Since Pearson correlation is computed using centered rat-

ings (ratings with the user mean subtracted), Resnick et al. compute centered ratings

in the GroupLens algorithm, and then add the mean rating of the active user back in.

Breese et al. do the same for vector similarity. Equation 4.9 shows the exact from of this

prediction method, algorithm 4.1 gives the complete prediction algorithm.

r̂a
y = r̄a +

∑K
k=1 wP

auk
(ruk

y − r̄uk)
∑K

k=1 |w
P
auk
|

(4.9)

While the early work by Resnick et al. used all users to compute predictions [49],

Shardanand and Maes include only those users whose correlation with the active user

exceeds a given threshold [52]. Gokhale and Claypool explored the use of correlation

thresholds, as well as thresholds on the actual number of rated items common to the
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Input: ra, r, K
Output: r̂a

for (u = 1 to N) do

wau ←

∑

{y|ra
y ,ru

y 6=⊥}
(ra

y−r̄a)(ru
y−r̄u)

√

∑

{y|ra
y ,ru

y 6=⊥}
(ra

y−r̄a)2
∑

{y|ra
y ,ru

y 6=⊥}
(ru

y−r̄u)2

end for

Sort wau

for k = 1 to K do

uk ← kth closest neighbor to a
end for

for y = 1 to M do

r̂a
y ← r̄a +

∑K

k=1
wauk

(r
uk
y −r̄uk )

∑K

k=1
|wauk

|

end for

Algorithm 4.1: PKNN-Predict

active user and each user from the data set. The later were termed history thresholds

[22]. Herlocker et al. perform experiments using similar thresholds, as well as a Best-

K neighbors method that is most similar to standard KNN classification. The general

result of this work is that using a subset of all neighbors computed using a threshold or

other technique tends to result in higher prediction accuracy than when no restrictions

are placed on neighborhood size. However, a precision/recall tradeoff exists when using

thresholds due to the sparsity of data. Essentially, the number of ratings that can be

predicted for any user decreases as threshold values are increased. A true KNN approach

does not suffer from this problem, but incurs an added computational cost.

4.1.2 Complexity

As an instance based learning method, the training for any neighborhood-based rating

prediction algorithm consists of simply storing the profiles of all training users. These

profiles must be kept in memory at prediction time, which is a major drawback of these

methods. However, if sparse matrix storage techniques are used, the storage space needed

depends only on the total number of observed ratings. Computing all rating predictions
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for the active user a with a neighborhood method requires O(N) similarity weight cal-

culations each taking at most O(M) time for a total of O(NM). If a method is used to

select neighbors with weights above a given threshold, then an additional O(N) time is

needed. If a method is used to select the K nearest neighbors, then an additional time

complexity of O(N log N) is needed. Finally, computing all rating predictions for the

active user takes O(NM) in general or O(KM) if only the K nearest neighbors are used.

In all of these variations the contribution of the weight calculation is O(NM), and

prediction time scales linearly with the number of users in the database. With a realistic

number of users this becomes quite prohibitive. Note that certain definitions of prediction

allow for the similarity weights to be computed as a preprocessing step; however, we

assume that the active user may be a novel user so that its profile is not known before

prediction time.

4.1.3 Results

A weighted nearest neighbor rating prediction algorithm using the Pearson correlation

similarity metric was implemented. We elected to use the active user’s K nearest neigh-

bors to compute predictions. We call this method PKNN-Predict, and list the pseudo

code in algorithm 4.1. PKNN-Predict has total time complexity O(NM+N log N+KM).

Note that if we let K = N we recover the original GroupLens method.

We tested the predictive accuracy of PKNN-Predict using three neighborhood sizes

K = {1, 10, 50}. Both weak generalization and strong generalization experiments were

performed using the EachMovie and MovieLens data sets. The mean error values are

reported in terms of NMAE, along with the corresponding standard error values.

From these results we see that across all data sets and experimental protocols, the

lowest mean error rates are obtained using one nearest neighbor to predict rating values.

However, there is little variation in the results for different settings of K in the range

tested.
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Table 4.1: PKNN-Predict: EachMovie Results
Data Set K = 1 K = 10 K = 50
Weak 0.4886± 0.0014 0.4890± 0.0014 0.4898± 0.0014
Strong 0.4933± 0.0006 0.4936± 0.0006 0.4943± 0.0006

Table 4.2: PKNN-Predict: MovieLens Results
Data Set K = 1 K = 10 K = 50
Weak 0.4539± 0.0030 0.4549± 0.0030 0.4569± 0.0031
Strong 0.4621± 0.0022 0.4630± 0.0023 0.4646± 0.0023

4.2 Naive Bayes Classifier

The Naive Bayes classifier is robust with respect to missing feature values, which may

make it well suited to the task of rating prediction. The naive Bayes classifier can be

compactly represented as a Bayesian network as shown in figure 4.1. The nodes represent

random variables corresponding to the class label C, and the components of the input

vector X1, ..., XM . The Bayesian network in figure 4.1 reveals the primary modeling

assumption present in the naive Bayes classifier: the input attributes Xj are independent

given the value of the class label C. This is referred to as the naive Bayes assumption

from which the name of the classifier is derived.

Training a naive Bayes classifier requires learning values for P (C = c), the prior

probability that the class label C takes value c; and P (Xj = x|C = c), the probability

that input feature Xj takes value x given the value of the class label is C = c. These

X1 X2 XM

C

Figure 4.1: Naive Bayes Classifier
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probabilities can be estimated using frequencies computed from the training data as seen

in equations 4.10 and 4.11. Given a new input pattern xq, we classify it according to the

rule shown in equation 4.12.

P (C = c) =
1

N

N
∑

i=1

δ(ci, c) (4.10)

P (Xj = x|C = c) =

∑N
i=1 δ(xij, x)δ(ci, c)

∑

x

∑N
i=1 δ(xij, x)δ(ci, c)

(4.11)

cq = arg max
c

P (C = c)
∏

j

P (Xj = xqj|C = c) (4.12)

When applying a classifier to domains with attributes of unknown quality, feature

selection is often used to pick a subset of the given features to use for classification.

In a filter approach to feature selection, a set of features is selected as a preprocessing

step, ignoring the effect of the selected features on classifier accuracy [33]. In a wrapper

approach to feature selection, classification accuracy is used to guide a search through

the space of feature subsets [33].

One feature selection filter often used with the naive Bayes classifier is based on the

empirical mutual information between the class variable and each attribute variable. The

empirical mutual information score is computed for each attribute, and the attributes are

sorted with respect to their scores. The K attributes with the highest score are retained

as features. In the present case where all variables are discrete, the empirical mutual

information can be easily computed based on the distributions found when learning the

classifier. The formula is given in equation 4.13. The mutual information can also be

computed during the learning process learning.

MI(Xj, C) =
∑

x

∑

c

P (Xj = x,C = c) log
P (Xj = x,C = c)

P (Xj = x)P (C = c)
(4.13)

One issue with the use of mutual information as a feature selection filter is that it

may select redundant features. For example, if a model contained multiple copies of the

same feature variable, and that feature variable had maximal mutual information with
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R1 R2 Ry−1 Ry+1

Ry

RM

Figure 4.2: Naive Bayes classifier for rating prediction.

the class variable, the mutual information feature selection filter would select as many

redundant copies of that feature variable as possible. When selecting a small number of

features, this can be very problematic.

4.2.1 Naive Bayes Rating Prediction

To apply the naive Bayes classifier to rating prediction we independently learn one clas-

sifier for each item y. We train the classifier for item y using all users u in the data set

who have supplied a rating for item y. The input vectors used to construct the classifier

for item y consist of ratings for all items other than item y. We will refer to item y as the

class item, and the remaining items as feature items. We can express this naive Bayes

classifier for item y in terms of a Bayesian network as seen in figure 4.2.

To learn the naive Bayes rating predictor we must estimate P (Ry = v) and P (Rj =

w|Ry = v). The naive Bayes learning rules given in equations 4.10 and 4.11. can be

applied without modification, but we smooth the probabilities by adding prior counts to

avoid zero probabilities. Training rules that include smoothing are shown in equations

4.14, and 4.15. The complete learning procedure is given in algorithm 4.2 where θyv

encodes P (Ry = v), and βyvjw encodes P (Rj = w|Ry = v).

P (Ry = v) =
1

N + V
(1 +

N
∑

u=1

δ(ru
y , v)) (4.14)

P (Rj = w|Ry = v) =
1 +

∑N
u=1 δ(ru

j , w)δ(ru
y , v)

V +
∑V

w=1

∑N
u=1 δ(ru

j , w)δ(ru
y , v)

(4.15)



Chapter 4. Classification and Regression 29

Input: ra, r

Output: θ, β

for y = 1 to M , v = 1 to V do

θyv ←
1

N+V
(1 +

∑N
u=1 δ(ru

y , v))
for j = 1 to M , w = 1 to V do

βyvjw ←
1+
∑N

u=1
δ(ru

j ,w)δ(ru
y ,v)

V +
∑V

w=1

∑N

u=1
δ(ru

j
,w)δ(ru

y ,v)

end for

end for

Algorithm 4.2: NBClass-Learn

Input: ra, θ, β
Output: r̂a

for y = 1 to M do

r̂a
y ← arg maxv θyv

∏

j 6=y

∏V
w=1 βyvjw

δ(ra
y ,w)

end for

Algorithm 4.3: NBClass-Predict

To predict the value of ra
y given the profile ra of a particular active user a we apply

a slightly modified prediction rule to allow for missing values. This prediction rule is

shown in equation 4.16. A complete prediction method is given in algorithm 4.3.

r̂a
y = arg max

v
P (Ry = v)

∏

j 6=y

V
∏

w=1

P (Rj = w|Ry = v)δ(ra
j ,w) (4.16)

Applying a feature selection technique as described in section 4.2 may be useful for

several reasons. First, it reduces the number of parameters that need to be stored from

O(M2V 2) to O(KMV 2). Second, the elimination of irrelevant attributes should decrease

prediction error. Feature selection by empirical mutual information is an obvious candi-

date since the probabilities needed to compute the score are found when estimating the

parameters of the classifier. However, the empirical mutual information scores computed

for different feature items will be based on different numbers of observed ratings due to

rating sparsity. Clearly we should have more confidence in a mutual information estimate

computed using more observed rating values than one computed using fewer observed

ratings. A simple heuristic score can be obtained by scaling the empirical mutual infor-
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mation value for a feature item by the number of samples used to compute it. Zaffalon

and Hutter present a principled, Bayesian approach to dealing with this problem based

on estimating the distribution of mutual information [56].

4.2.2 Complexity

The computational cost of separately learning one Naive Bayes classifier for each item

is O(NM 2V 2). Storing the probabilities for a singe classifier takes MV 2 + V space

and thus M 2V 2 + MV for all M classifiers. This space requirement begins to be pro-

hibitive; however, it can be lowered by applying feature selection independently for each

class item. For example, the empirical mutual information with the heuristic correc-

tion discussed previously can be computed between items at a computational cost of

O(NM 2V 2 + M2 log M). If the best K feature items are retained as input features, this

lowers the storage requirement to O(KMV 2). The computational complexity of predict-

ing all unknown ratings for a singe user is O(M 2V ). If we restrict the input vectors to

the best K features for each item, we obtain O(KMV ).

4.2.3 Results

Learning and prediction methods for the naive Bayes classifier were implemented ac-

cording to algorithms 4.2, and 4.3. In addition, the heuristic mutual information score

discussed in subsection 4.2.1 was applied to select the K best features after training the

classifier for each item. Despite the issues we have outlined with the use of mutual infor-

mation for feature selection, it was found to result in improved accuracy in preliminary

testing.

Both weak generalization and strong generalization experiments were performed using

the EachMovie and MovieLens data sets. The method was tested for K = {1, 20, 50, 100}.

The mean error values are reported in terms of NMAE, along with the corresponding

standard error values.
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Table 4.3: NBClass-Predict: EachMovie Results
Data Set K = 1 K = 20 K = 50 K = 100
Weak 0.5789± 0.0007 0.5258± 0.0022 0.5270± 0.0019 0.5271± 0.0011
Strong 0.5820± 0.0043 0.5319± 0.0057 0.5317± 0.0042 0.5295± 0.0047

Table 4.4: NBClass-Predict: MovieLens Results
Data Set K = 1 K = 10 K = 50 K = 100
Weak 0.4803± 0.0027 0.4966± 0.0021 0.5042± 0.0026 0.5086± 0.0014
Strong 0.4844± 0.0016 0.4833± 0.0052 0.4942± 0.0065 0.4940± 0.0111

4.3 Other Classification and Regression Techniques

While the application of other standard types of classification and regression techniques

including decision tree classifiers and, artificial neural networks is possible, the presence

of missing values in the input is more problematic. In the case of decision tress, missing

attribute values can be dealt with by propagating fractional instances during learning [42,

p. 75]. This is the method used in the popular decision tree learning algorithm C4.5 [48].

In the case of neural networks missing values must be explicitly represented. Two main

possibilities exist. First, ‘missing’ can simply be considered as an additional rating value.

There are cases in statistical analysis of categorical data where this type of treatment of

missing data is sensible; however, in the rating data case it is not justified. Second, the

1-of-V encoding scheme proposed by Billsus and Pazzani [5] can be applied. We have

experimented briefly with some of these techniques, but the results were fairly poor.

Neighborhood methods appear to achieve the best prediction accuracy in the presence of

extremely sparse rating profiles of any of the classification or regression based prediction

methods.
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Clustering

Given a set of M dimensional input vectors {xi}, the goal of clustering is to group similar

input vectors together. A number of clustering algorithms are well known in machine

learning, and they fall into two broad classes: hierarchical clustering, and standard clus-

tering [3]. In hierarchical clustering a tree of clusters is constructed, and methods differ

depending on whether the tree is constructed bottom-up or top-down. Standard cluster-

ing includes K-means, K-medians, and related algorithms. A key point in all clustering

methods is deciding on a particular distance metric to apply. For ordinal data possibilities

include, hamming distance, absolute distance, and squared distance.

Clustering has been applied to collaborative filtering in two basic ways. First, the

items can be clustered to reduce the dimension of the item space and help alleviate rat-

ing sparsity. Second, users can be clustered to identify groups of users with similar or

correlated ratings. Item clustering does not directly lead to rating prediction methods.

It is a form of preprocessing step, which requires the subsequent application of a rating

prediction method. O’Connor and Herlocker have studied item clustering as a prepro-

cessing step for neighborhood based rating prediction [45]. They apply several clustering

methods, but their empirical results show prediction accuracy actually decreases com-

pared to the unclustered base case regardless of the clustering method used. A reduction

32
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in computational complexity is achieved, however.

Unlike item clustering, user clustering methods can be used as the basis of simple

rating prediction methods. Rating prediction based on user clustering is the focus of

this chapter. We review clustering algorithms from both the standard, and hierarchical

classes. We introduce a novel K-medians like rating prediction method with good predic-

tion accuracy and low prediction complexity. We also discuss existing rating prediction

methods for hierarchical clustering.

5.1 Standard Clustering

Standard clustering methods perform an iterative optimization procedure that shifts

input vectors between K clusters in order to maximize an objective function. A rep-

resentative vector for each cluster called a cluster prototype is maintained at each step.

The objective function is usually the sum or mean of the distance from each input vector

xi to its cluster prototype [3, p.13]. The role of the underlying distance metric is crucial.

It defines the exact form of the objective function, as well as the form of the cluster

prototypes.

When squared distance is used, the objective function is the sum over input vectors

of the squared distance between each input vector and the prototype vector of the cluster

it is assigned to. For a particular assignment of input vectors to clusters, the optimal

prototype for a given cluster is the mean of the input vectors assigned to that cluster.

When absolute distance is used, the objective function is the sum of the absolute differ-

ence between the input vectors assigned to each cluster and the corresponding cluster

prototype. For a particular assignment of input vectors to clusters, the optimal proto-

type for a given cluster is the median of the input vectors assigned to that cluster. In

theory any distance function can be used, but some distance functions may not admit

an analytical form for the optimal prototype.
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To obtain a clustering of the input vectors which corresponds to a local minimum

of the objective function, an iterative optimization procedure is required. We begin

by initializing the K prototype vectors. On each step of the iteration we compute the

distance from each input vector to each cluster prototype. We then assign each input

vector to the cluster with the closest prototype. Lastly we update the cluster prototypes

based on the input vectors assigned to each prototype. The general form of this algorithm

is given below. When squared distance is used this algorithm is known as K-Means, and

when absolute distance is used it is known as K-Medians.

1. ct+1
i = arg mink d(xi,p

t
k)

2. pt+1
k = arg minp

∑N
i=1 δ(k, ct+1

i )d(xi,p
t
k)

5.1.1 Rating Prediction

In user clustering the input vectors xi correspond to the rows ru of the user-item rating

matrix. A simple rating prediction scheme based on user clustering can be obtained

by defining a distance function that takes missing values into account. We choose to

minimize total absolute distance since this corresponds to our choice of NMAE error

measure. We modify the standard absolute distance function by taking the sum over

components that are observed in both vectors as shown in equation 5.1. The objective

function we minimize is thus given by equation 5.2 where cu is the cluster user u is

assigned to.

d(ru,pk) =
∑

{y|ru
y ,pk

y 6=⊥}

|ru
y − pk

y| (5.1)

F [r, c,p] =
N
∑

u=1

d(ru,pcu) (5.2)

The minimizer of this distance function occurs when all the values of pk
y are set to ⊥.

However, if we also stipulate that the maximum number of components be defined, then

the optimal prototype for cluster Ck is the median of the rating vectors assigned to Ck,
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Input: {ru}, K
Output: {pl}

Initialize pk

while (F [r, c,p] Not Converged) do

for u = 1 to N do

cu ← arg mink

∑

{y|ru
y ,pk

y 6=⊥} |r
u
y − pk

y|
end for

for k = 1 to K, y = 1 to M do

pk
y ← median{ru

y |cu = k, ru
y 6= ⊥}

end for

end while

Algorithm 5.1: KMedians-Learn

Input: ra, {pl}, K
Output: r̂a

k ← arg minl

∑

{y|ra
y ,pl

y 6=⊥} |r
a
y − pl

y|

r̂a
y ← pk

Algorithm 5.2: KMedians-Predict

taking missing ratings into account. Specifically, the prototype value for item y is the

median of the defined ratings for item y. It is only set to ⊥ if no users assigned to cluster

k have rated item y. In our experiments undefined components are not a problem due

to the small number of clusters used compared to the large number of users.

Once the user clusters have been formed, we obtain a very simple algorithm for

predicting all ratings for the active user a. We simply determine which cluster k user a

belongs to and set r̂a to pk. We give learning and prediction procedures in algorithms

5.1 and 5.2.

5.1.2 Complexity

The complexity of learning the K-Medians cluster prototypes depends on the number

of iterations needed to reach convergence. Assuming it takes I iterations to reach con-

vergence, the total time complexity of the learning algorithm is O(INMK). The space
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Table 5.1: K-Medians Clustering: EachMovie Results
Data Set K = 5 K = 10 K = 20 K = 40
Weak 0.4810± 0.0023 0.4676± 0.0016 0.4631± 0.0015 0.4668± 0.0013
Strong 0.4868± 0.0007 0.4725± 0.0021 0.4688± 0.0012 0.4694± 0.0035

Table 5.2: K-Medians Clustering: MovieLens Results
Data Set K = 5 K = 10 K = 20 K = 40
Weak 0.4495± 0.0027 0.4596± 0.0052 0.4573± 0.0067 0.4677± 0.0058
Strong 0.4637± 0.0056 0.4585± 0.0056 0.4556± 0.0053 0.4612± 0.0091

complexity for the learned cluster prototype parameters is MK. Given a novel user

profile, the time needed to compute predictions for all items is O(MK).

5.1.3 Results

The KMedians-Learn method was run on the EachMovie and MovieLens weak data sets

with K = {5, 10, 20, 40}. The cluster prototypes were initialized to K different randomly

chosen user profile vectors. Preliminary testing indicated that good prediction accuracy

was obtained after less than 25 iterations. This value was used as a hard limit on the

number of iterations allowed in the learning implementation. After learning was complete

the KMedians-Predict method was run on both weak and strong generalization data sets,

and the mean prediction error rates were calculated. The NMAE values along with the

standard error level are shown in tables 5.1, and 5.2.

5.2 Hierarchical Clustering

A hierarchical clustering method constructs a tree of clusters from the input vectors {xi}.

The main property of a cluster tree or dendrogram is that the children of each cluster

node Cl form a partition of the input vectors contained in Cl [3]. There are two ways of

constructing a cluster tree: agglomeratively and divisively.

In agglomerative clustering each input vector is initially placed in its own cluster. On

each subsequent step the two most similar clusters are identified and merged to obtain
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their common parrent. The merging continues until only one node remains. This node

forms the root of the tree and contains all the input vectors.

The central issue in agglomerative clustering is deciding which pair of clusters to

merge next. A pair of clusters is selected by computing a linkage metric between all pairs

of clusters, and choosing the pair of clusters that is closest with respect to the metric.

Common linkage metrics include single linkage, complete linksage, and average linkage

[18]. The linkage metric depends on a distance function between input vectors d(xa,xb).

Single Linkage ls(Ck, Cl) = min
xr∈Ck,xt∈Cl

d(xr,xt)

Complete Linkage lc(Ck, Cl) = max
xr∈Ck,xt∈Cl

d(xr,xt)

Average Linkage la(Ck, Cl) = mean
xr∈Ck,xt∈Cl

d(xr,xt)

A second method for cluster tree construction is to begin with all input vectors in

the root node, and to recursively split the most appropriate node until a termination

condition is reached. The construction method may be terminated when each leaf node

contains less than a maximum number of input vectors, when a maximum number of

clusters is reached, or when each cluster satisfies a condition on within-cluster similarity.

In the case of collaborative filtering we typically want a small set of clusters with

respect to the number of items so divisive clustering a better choice in terms of total

computational complexity. In divisive clustering the main issues are which cluster to

select for splitting, and how to split the input vectors within a cluster. Both issues again

require the definition of a distance measure d(xa,xb) between input vectors.

Clusters are selected for splitting based on any number of heuristics including size,

within-cluster similarity, and cluster cohesion [18]. A standard technique for splitting

a cluster Cl is to randomly select an input vector xr from the elements of Cl, and to

determine the element xt of Cl that is furthest from xr. These two input vectors are

placed in their own clusters, and the remaining input vectors are assigned depending on

which of xr or xt they are closer to.
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5.2.1 Rating Prediction

Seng and Wang present a user clustering algorithm based on divisive hierarchical cluster-

ing called the Recommendation Tree algorithm (RecTree) [14]. In the RecTree algorithm

a cluster node is expanded if it is at a depth less than a specified maximum, and its size

is greater than a specified maximum. The exact sequence in which nodes are expanded

is not critical, and a simple depth-first or breadth-first expansion of the nodes can be

used until one of the termination conditions is met.

Interestingly, Seng and Wang do not use a common method for splitting the input

vectors assigned to a cluster in the RecTree algorithm. Instead, they apply a K-means

algorithm with K = 2 to each cluster. If the total number of leaf clusters is K ′, then

the RecTree algorithm computes the clustering more efficiently than applying K-means

to the data with K ′ clusters. However, the quality of the clustering produced by the

RecTree algorithm will likely be lower than that obtained using K-means directly.

Ratings could be predicted using the computed prototypes similar to the method

proposed above for K-medians. However, Seng and Wang choose to apply neighborhood-

based rating prediction within each user cluster. This means the RecTree algorithm as

given by Seng and Wang is more of a pre-processing method than a true rating prediction

method. Experimental results presented by Seng and Wang show that the RecTree

algorithm performs slightly better than neighborhood-based rating prediction methods

on certain tasks [14].
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Dimensionality Reduction

Dimensionality reduction is a technique analogous to clustering. Instead of assuming

that a single, discrete latent variable is the underlying cause for the observed data, we

assume there are a small number of continuous latent variables. In general, the process

of dimensionality reduction can be described as mapping a high dimensional input space

into a lower dimensional latent space. A special case of dimensionality reduction is

matrix factorization where a data matrix D is reduced to the product of several low rank

matrices.

In this chapter we introduce three standard techniques used for dimensionality reduc-

tion: singular value decomposition (SVD), factor analysis (FA), and principal components

analysis (PCA). We discuss how each technique can be applied or adapted to rating pre-

diction. We provide rating prediction results for weighted singular value decomposition.

We also introduce a new rating prediction technique which extends weighted singular

value decomposition to novel user profiles.

6.1 Singular Value Decomposition

Singular value decomposition is a technique for matrix factorization. Given a data matrix

D of size N ×M , the singular value decomposition of D is a factorization D = UΣV T

39
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where U is of size N ×M , Σ is of size M ×M , and V is of size M ×M . In addition, U

and V are orthonormal, and Σ is diagonal. The standard solution to the singular value

decomposition is to let Σ = diag(σ1, σ2, ..., σM ) where σi is the ith largest eigenvalue of

DDT , the columns of U are defined to be the eigenvectors of DDT , and the columns of V

are defined to be the eigenvectors of DT D. The columns of U and V are ordered according

to the sizes of their corresponding eigenvalues. Given this solution to the SVD, it is well

known that UKΣKV T
K is the best rank-K approximation to D under the Frobenius norm.

ΣK is obtained by preserving the first K diagonal elements of Σ and truncating the rest.

UK and VK are obtained by preserving the first K columns of U and V and truncating

the rest. The Frobenius norm is simply the sum of squares of all elements of a matrix,

which in this case given by equation 6.1.

F(D − UKΣKV T
K ) =

N
∑

n=1

M
∑

m=1

(Dnm − (UKΣKV T
K )nm)2 (6.1)

The components of the low rank approximation UKΣKV T
K also have interpretations

in terms of a latent space mapping. The columns of UK can be interpreted as specifying

a set of K basis vectors for an N dimensional space, while the columns of VK specify

a set of K basis vectors in an M dimensional space. ΣK is responsible for scaling the

dimensions of the latent space and can be multiplied into UK and Vk.

6.1.1 Weighted Low Rank Approximations

As we have mentioned, UKΣKV T
K is the best rank K approximation to D under the

Frobenius norm F . As Srebro and Jaakola argue, in certain situations it is natural

to consider a weighted Frobenius norm [53]. For instance, if estimates of the noise

variance associated with each measurement are available, and those estimates differ across

measurements. Another case of special interest here is when some entries in the matrix

are not observed. In this case unobserved elements of the matrix can be given a weight

of 0, while observed elements are given a weight of 1. It is important to note that the
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SVD of a matrix is undefined if the matrix contains missing entries.

In general the optimal rank K approximation to the data matrix D minimizes the

difference between D and UV T under the weighted Frobenius norm FW as shown in

equation 6.2. Here the only restriction on U and V are that U is of size N ×K, and that

V is of size M ×K. W is an N ×M matrix which specifies a non-negative weight value

for each element of D.

FW (D − UV T ) =
N
∑

n=1

M
∑

m=1

Wnm(Dnm − (UV T )nm)2 (6.2)

Srebro and Jaakola show that the problem of computing an optimal rank K weighted

approximation does not have an analytical solution, despite the fact that a minimizer

can be found exactly under the unweighted Frobenius norm using standard SVD [53].

Srebro and Jaakola also show the existence of local minima in the weighted case. In

the unweighted case every local minima is also a global minima. The obvious method

for finding a locally optimal solution is thus to directly minimize FW (D − UV T ) with

respect to U and V using numerical optimization. Srebro and Jaakola present a numerical

optimization method that performs coordinate descent in U and V . The minimum of

FW (D − UV T ) with respect to U can be found exactly for any given V . However, when

the exact form of the minimizer is substituted into the gradient equation for V , the

resulting system does not have an analytic solution. Thus, standard gradient descent

must be used to find the minimum of FW(D − UV T ) with respect to V for a given

U . We give the coordinate descent iteration equations below. The notation Ui, Wi, Di

indicates the ith row of the corresponding matrix. The notation � denotes elementwise

multiplication. diag(v) is the diagonal matrix with the elements of the vector v along its

diagonal.

U∗
i = (V T diag(Wi)V )−1V T diag(Wi)Di (6.3)

∂FW (D − U ∗V T )

∂V
= 2(W � (V U ∗T −DT ))U ∗ (6.4)
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In addition to the straightforward optimization approach for the general weighted low

rank approximation problem, Srebro and Jaakola develop a simple EM algorithm for the

missing data problem. This algorithm is based on iteratively applying standard SVD to

obtain successively better low rank approximations D̂ = UKΣKV T
K . In this case if an

element of D is unobserved it is assigned a weight of 0, and if it is observed it is assigned

a weight of 1. In the expectation step of the EM algorithm, the missing values of D are

filled in with values from the low rank reconstruction D̂ forming a complete matrix X.

In the maximization step a low rank approximation of X is computed and new values

for U , Σ, and V are found. The low rank approximation needed in the M-step can be

found using standard SVD since X is a completely specified matrix. The steps of this

procedure are given in detail below.

E-Step X = W �D + (1−W )� D̂ (6.5)

M-Step [U, Σ, V ] = SVD(X) (6.6)

D̂ = UKΣKV T
K (6.7)

In fact, this EM algorithm holds for any weight matrix W so long as Wij lies in the interval

[0, 1] for all i and j [53]. Srebro and Jaakola note that both the number of iterations

needed to achieve convergence, and the quality of the solution of the EM procedure

depend strongly on the amount of missing data in the zero-one weight case [53]. They

suggest an alternate procedure where the value of K is initialized significantly above the

desired value, and on each iteration of the EM procedure the value of K is reduced until

the desired value is reached. Once the desired value of K is reached, the EM procedure

is run to convergence with K held constant.

6.1.2 Learning with Weighted SVD

While the presence of missing data prohibits the use of standard SVD for rating pre-

diction, it does not pose a problem for either of the weighted low rank approximation
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Input: R, W , L, K
Output: Σ, V

R̂← 0
while (FW (R− R̂) Not Converged) do

X ← W �R + (1−W )� R̂
[U, Σ, V ] = SVD(X)
U ← UL, Σ← ΣL, V ← VL

R̂← UΣV T

if (L > K) then

Reduce L
end if

end while

Algorithm 6.1: wSVD-Learn

schemes proposed by Srebro and Jaakola. The EM procedure is particularly attractive

since many numerical computing packages include robust routines for computing the SVD

of a complete matrix. Letting R represent the matrix of user ratings where each row of

the matrix represents a different user profile, the EM procedure of Srebro and Jaakola

can be applied without modification. In the presence of large amounts of missing data

the quality of the solution can be greatly improved by slowly lowering the rank of the

approximation from L to the desired K, as Srebro and Jaakola suggest. We give the

complete learning procedure in algorithm 6.1.

6.1.3 Rating Prediction with Weighted SVD

Predicting ratings for profiles used to compute the low rank approximation is trivial given

the final approximation matrix R̂. The rating value predicted for user u and item y is

simply r̂u
y = R̂uy. However, Srebro and Jaakola do not propose a method for prediction

with novel user profiles [53]. In the complete data case the rank K latent space description

l of a user profile r can easily be found by observing that r = lΣV T and thus l = rV Σ−1.

We propose a simple iterative prediction method for novel user profiles based on this

relationship. We give the prediction scheme in algorithm 6.2.
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Input: ra, wa, Σ, V , K
Output: r̂a

r̂a ← 0
while (Fwa(ra − r̂a) Not Converged) do

x← wa � ra + (1− wa)� r̂a

la ← xV Σ−1

r̂a ← laΣV T

end while

Algorithm 6.2: wSVD-Predict

Recalling that Σ is a diagonal matrix with a trivial inverse, it is clear that each step

of this iteration scheme can be quickly computed. In fact, a matrix of novel user profiles

could be substituted for the single profile vector r, and a set of predictions could be found

simultaneously for all profiles in the matrix.

6.1.4 Complexity

The complexity of computing the singular value decomposition of a complete N ×M

matrix is O(NM 2 + M3) using Golub and van Loan’s R-SVD algorithm [25, p. 254]. A

slight gain can be made by employing the economy sized singular value decomposition,

which only computes the first M singular values and vectors if M < N . The complexity

of the weighted singular value decomposition EM algorithm is clearly dominated by the

cost of performing the SVD at each step. The total computational complexity of the

learning algorithm is given by O(INM 2 + IM3) where I is the number of iterations

performed. In practice this means the weighted singular value decomposition learning

method is extremely slow.

Predicting all ratings given a novel user profile using the proposed iterative scheme

has computational complexity O(IKM). Approximately one hundred iterations leads to

acceptable convergence on the data sets we have studied. The only parameters we need

to store are the K singular values and the M ×K latent item space matrix V for a total

of MK + K.
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Table 6.1: wSVD-Predict: EachMovie Results
K = 5 K = 10 K = 20 K = 30

Weak 0.5083± 0.0027 0.4725± 0.0023 0.4562± 0.0032 0.4618± 0.0034
Strong 0.5012± 0.0030 0.4752± 0.0005 0.4672± 0.0012 0.4673± 0.0021

Table 6.2: wSVD-Predict: MovieLens Results
K = 4 K = 6 K = 8 K = 10

Weak 0.5450± 0.0011 0.5018± 0.0025 0.4914± 0.0021 0.4886± 0.0065
Strong 0.5260± 0.0024 0.4862± 0.0025 0.4710± 0.0042 0.4728± 0.0057

6.1.5 Results

The wSVD-Learn and wSVD-Predict methods described in algorithms 6.1 and 6.2 were

implemented, and tested for both their strong and weak generalization performance.

Due to the computational complexity of computing the SVD in each iteration of the

wSVD-Learn algorithm, learning was performed using all 5000 training profiles for the

MovieLens data set, but only the 5000 most dense training profiles for the EachMovie

data set. The computation time needed to compute the SVD on all 30000 EachMovie

training users was simply too prohibitive. EachMovie was tested using latent spaces of

size 5, 10, 20,30. MovieLens was tested using latent spaces of size 4, 6, 8, 10. To reduce

total computation time a limit of 100 iterations was imposed on all iterations.

6.2 Principal Components Analysis

Principal components analysis is a method for dimensionality reduction that seeks to

identify orthogonal axes of variance given a data matrix D whose N rows consist of

samples from an M dimensional space. Principal components analysis relies on a theorem

of linear algebra which states that for any real symmetric matrix A there exists a unitary

matrix Λ such that Σ = ΛT AΛ, and Σ is diagonal. A solution to this problem can be

found using the eigenvectors of A. In particular, let the columns of Λ be the eigenvectors

of A ordered according to decreasing eigenvalues. Then ΛT AΛ must be diagonal with

Σii = λi, the ith largest eigenvalue of A. In the case of principal components analysis, we
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let A = 1
N−1

DT D, the covariance matrix of D which is clearly real and symmetric. The

eigenvalues of A then indicate the amount of variance along the direction given by the

corresponding eigenvector. A reduction to dimension K is obtained by projecting the

data matrix D on the subspace consisting of eigenvectors corresponding to the largest

K eigenvalues of A. This projection preserves the maximum amount of variance of any

projection to K dimensions.

Many current computational packages include routines for extracting eigenvalues and

eigenvectors from a matrix, rendering the computation of principal components quite

easy. An alternative method for performing PCA is to exploit the relationship between

the diagonalization of DT D and the singular value decomposition of the centered data ma-

trix D. Approximating D by UΣV T we have DT D = (UΣV T )T (UΣV T ) = V ΣUT UΣV T

and since the columns of U are orthonormal we get DT D = V Σ2V T . Since the columns

of V are also orthonormal we get Σ2 = V T DT DV , which is a PCA solution since Σ2 is a

diagonal matrix.

6.2.1 Rating Prediction with PCA

Like with standard SVD, standard PCA can not be used in cases where the input matrix

D contains missing data. Goldberg, Roeder, Gupta and Perkins propose a solution to

this problem using a set of items they call the gauge set [24]. The gauge set consists of

a small number of items that all users must rate completely. The same gauge set is used

for all users. This means that PCA can be applied to the portion of the rating matrix

consisting of ratings for the gauge set items. Goldberg et al. retain only the two first

principal components, although in theory any number could be used.

A direct rating prediction scheme is not possible using this application of PCA. In-

stead, Goldberg et al. cluster users in the two dimensional latent space using a recursive

rectangular clustering method, which is an instance of hierarchical divisive clustering (see

sub-section 5.2). Next, they determine a mean rating vector for each cluster based on the
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ratings of users in each cluster. When a prediction is needed for a new user, that user’s

rating profile for the gauge set is projected into the low dimensional latent space, and

the user’s cluster is determined. Next, predictions for unknown items are drawn from the

pre-computed mean rating vector. This is precisely the simple mean rating prediction

scheme discussed in sub-section 5.1.1. The combination of PCA applied to a small gauge

set, clustering users in the latent space, and predicting cluster mean values results an the

method Goldberg et al. refer to as the EigenTaste algorithm [24].

From a practical point of view there are several problems with this method. First,

the gauge set must consist of the same items for all users, and all users must rate all the

gauge set items. Goldberg et al. consider collaborative filtering of jokes in which case

it is easy for a user to determine a rating for any item. However, this is not the case

in collaborative filtering applications where items may not have concise and informative

text based descriptions such as collaborative filtering of movies, music, or books. Another

problem that is not addressed by Goldberg et al. is the selection of the items in the gauge

set. Clearly this problem is key if we wish to extract the maximum amount of information

about a set of users while asking a small number of rating queries.

6.3 Factor Analysis and Probabilistic PCA

Factor analysis is a dimensionality reduction method based on a simple, constrained

linear Gaussian model. The standard factor analysis model is specified in equation 6.8

where x is an observed data vector, z is a vector in the latent space, Λ an N ×K matrix

which maps the K dimensional latent space vectors into the N dimensional data space, µ

specifies a mean in the data space common to all data vectors, and ε is randomly sampled

Gaussian noise unique to each data vector [54]. Λ is often referred to as the factor loading

matrix. The corresponding graphical model is shown in figure 6.1.

x = Λz + µ + ε (6.8)
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Figure 6.1: Factor Analysis and Probabilistic PCA Graphical Model.

In standard factor analysis P (Z) = N (0, I). The covariance of the Gaussian noise ε

is assumed to be a diagonal matrix Ψ. Thus the conditional probability of a data vector

given the latent space vector and parameters Λ, µ and Ψ is also Gaussian. It is given by

P (x|z, µ,Ψ) = N (x|µ+Λz, Ψ). In fact, since we are dealing with products of Gaussians,

the joint distribution P (x, z), the marginal distribution P (x), and thus the conditional

distribution P (z|x) are all Gaussian distributions. This factor analysis model is fit using

an expectation maximization algorithm. The updates are given next.

E-Step Ln = (I + ΛT Ψ−1Λ)−1 (6.9)

mn = LnΛT Ψ−1(xn − µ)

M-Step Λ =

(

N
∑

n=1

xnmnT

)(

N
∑

n=1

Ln

)−1

(6.10)

Ψ =
1

N
diag

(

N
∑

n=1

xnxnT + Λ
N
∑

n=1

mnxnT

)

Probabilistic principal components analysis is a dimensionality reduction technique

that can be seen both as a generalization of standard principal components analysis,

and as a restricted version of factor analysis. Like factor analysis, probabilistic PCA

is based on a simple, constrained linear Gaussian model as seen in equation 6.8. The

only difference between the two is that in probabilistic PCA the covariance matrix Ψ is

restricted to be spherical, not only diagonal. In other words, Ψ = σ2I for some σ2. Not

surprisingly, the EM algorithm for probabilistic PCA is almost identical to that of factor

analysis as seen next.
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E-Step Ln = (I + σ−2ΛT Λ)−1 (6.11)

mn = σ−2LnΛT (xn − µ)

M-Step Λ =

(

N
∑

n=1

xnmnT

)(

N
∑

n=1

Ln

)−1

(6.12)

σ2 =
1

NM
trace

(

N
∑

n=1

xnxnT + Λ
N
∑

n=1

mnxnT

)

The spherical covariance restriction decouples the parameters of the linear model leading

to analytical solutions for Λ and σ in the complete data case. However, in the missing

data case analytical solutions are not possible.

6.3.1 Rating Prediction with Probabilistic PCA

Canny has developed an EM algorithm for probabilistic principal components analysis

specifically aimed at rating prediction for collaborative filtering [13]. Canny begins by

defining an M×M trimming matrix T u for each user u where T u
yy is 1 if user u specified a

rating for item y, and 0 other wise. The expectation step of the expectation maximization

algorithm for probabilistic PCA remains simple, but the maximization step contains some

subtleties related to the fact that the trimming matrix T u is different for each user u.

However, Canny is still able to find updates in closed form [13]. We give the sparse

probabilistic PCA algorithm below where ⊗ represents the Kronecker tensor product,

st(X) is the vector obtained by vertically stacking the columns of X, and |ru| is the

number of observed items for user u.

E-Step Lu = (I + σ−2ΛT T uΛ)−1 (6.13)

mu = σ−2Lu(T uΛ)T (ru − µ)

M-Step st(Λ) =

(

U
∑

n=1

1

|ru|
st(T urumnT )

)(

U
∑

n=1

1

|ru|
T u ⊗ (zumnT + σ2Lu

)−1

(6.14)

σ2 =
1

N

U
∑

n=1

1

|ru|
(ruT T uru − trace(ΛmuruT T u))



Chapter 6. Dimensionality Reduction 50

To use this model for rating prediction on novel user profiles ru it suffices to compute

Λu, Lu, and mu according to the formulas in the E-Step above, and then to compute

Λmn + µ. Note that estimating the mean vector µ can be done using either the sample

mean of each users ratings, or the individual means for each item taken over all users.

Canny presents experimental results comparing pPCA-based rating prediction with

the GroupLens neighborhood method, and several other methods. Several data sets

are used including the EachMovie data set. The experimental procedure employed by

Canny is similar to the strong generalization all-but-1 experimental procedures used

here. Converted to our NMAE error measure, the pPCA method achieved an error rate

of 0.5585 when trained with 5000 users. When trained with 50000 users, the error rate

dropped to 0.5400.



Chapter 7

Probabilistic Rating Models

In this chapter we discuss a set of methods for collaborative filtering based on unsuper-

vised learning of specialized probabilistic models. Several such models have been studied

in the literature to date including a multinomial mixture model [10] [38], Hofmann’s

aspect model [29], and Marlin’s user rating profile model [38]. We begin the discussion

by describing a simple multinomial model, which forms the basis of the more complex

models we investigate in this chapter. We move on to the mixture of multinomials model,

and the aspect model which are both discrete mixture models. The User Rating Profile

model is a continuous mixture model and can be seen as an extension of several existing

models including the aspect model, and the latent Dirichlet allocation model of Blei,

Ng, and Jordan [7]. We introduce the Attitude model family, a completely novel family

of product models for categorical data. We will be concerned not only with deriving

learning and prediction methods for all of these models, but also with describing the un-

derlying modeling assumptions. We will be particularly interested the generative process

underlying each model, and whether the generative process makes intuitive sense in the

context of collaborative filtering.

The models we describe differ significantly from factor analysis (FA) and probabilistic

principal component analysis (pPCA), which both assume ratings are generated by a

51
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linear process with additive Gaussian noise. In both pPCA and FA the observed rating

variables are modeled as real valued random variables. Recall that we have defined

ratings to be ordinal valued, so the density under a linear Gaussian model is incorrect.

As a result, pPCA and FA models can predict values that do not correspond to ordinal

ratings. In fact, they may even predict some ratings that are off the predefined rating

scale. However, such models are still useful for prediction if we do not mind truncating

values that are off the rating scale, and making predictions that are not actual rating

values. The models we describe in this chapter all assume that the distribution over

rating values is a multinomial, or conditional multinomial. This means we treat ratings

as categorical random variables, which is a better approximation for ordinal ratings than

continuous random variables, but ignores the inherent ordering of the rating values.

7.1 The Multinomial Model

The multinomial model is a simple probabilistic model for categorical data. The main

modeling assumption at the profile level is that the values of ratings for each item

are statistically independent of each other. This corresponds to the assumption that

P (R = ru) =
∏M

y=1 P (Ry = ru
y ). At the data set level the multinomial model asserts

that there is only one type of user. In the corresponding generative process, a rating

profile is generated by independently sampling one rating for each item according to the

unique multinomial distribution over ratings for that item. It is important to note that

the generative process outputs a complete user profile with no missing ratings. From an

inference standpoint, the complete independence assumption means that knowing any

subset of the rating values in a user profile tells you nothing more about the ratings

of the remaining items. The multinomial model is thus too weak to provide personal-

ized recommendations. However, it serves as a good introduction to models based on

multinomial rating distributions.
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Figure 7.1: Multinomial Model

We show the graphical model in figure 7.1. Each node labeled Ry represents a multi-

nomial random variable corresponding to the rating for item y. The value of random

variable Ry is said to be observed if the active user has specified a rating for item y as

given by ra
y , and is unobserved otherwise. The node labeled β is a model parameter that

encodes the multinomial distributions for each item. It can be thought of as a V ×M

matrix where βvy represents P (Ry = v).

7.1.1 Learning

Since all variables are independent, learning the parameters of the multinomial model

simplifies to estimating the P (Ry = v) for all y and v. This is quickly and easily done

using frequency counts. It is generally a good idea to smooth the probability estimates

in the case where little data is available for items to avoid zero probabilities . In the

equation below we compute the standard Laplace estimate of P (Ry = v). We give a

learning method for the multinomial model in algorithm 7.1.

P (Ry = v) =
1 +

∑N
u=1 δ(ru

y , v)

V +
∑V

v′=1

∑N
u=1 δ(ru

y , v′)
(7.1)

7.1.2 Rating Prediction

Given a learned multinomial model, we have already mentioned that the predictions for

unknown items are independent of the ratings specified in the profile of the active user,

ra. However, there are still several methods for computing a prediction based on the
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Inputs: {ru}
Outputs: r̂

Initialize θ, β
for y = 1 to M do

for v = 1 to V do

pv ←
1+
∑N

u=1
δ(ru

y ,v)

V +
∑V

v′=1

∑N

u=1
δ(ru

y ,v′)

end for

r̂y ← median p
end for

Algorithm 7.1: Multi-Learn

Input: ra, r̂
Output: r̂a

r̂a ← r̂

Algorithm 7.2: Multi-Predict

distribution over ratings, and each method minimizes a different error measure. For

a particular item y, if we predict the expected rating r̂a
y =

∑V
v=1 vP (Ry = v) we will

minimize the mean squared error defined in equation 3.1. If we predict the median

rating defined by r̂a
y = {v|P (Ry < v) ≤ 1/2, P (Ry > v) ≥ 1/2} we minimize the mean

absolute error defined in equation 3.2. Lastly, if we predict the most probable rating

value defined as r̂a
y = arg maxv P (Ry = v) we minimize the mean prediction error defined

in equation 3.3. This result holds not only for the multinomial model, but for all models

based on multinomials over ratings. Existing work on these models often combines mean

prediction with the mean absolute error measure. If the goal is to minimize prediction

error, then this is clearly the incorrect choice. We use median prediction with all models

since it minimizes the mean absolute error measure we have chosen.

7.1.3 Complexity

Learning the multinomial model has time complexity O(MNV ). As a non-personalized

prediction method, predictions for each item need only be computed once, a step that can
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be incorporated into the learning phase at an addition cost of O(MV ). At prediction time

all unknown ratings for the active user can be looked up in the pre-computed prediction

vector at no additional computational cost as we show in algorithms 7.1 and 7.2.

7.1.4 Results

Learning and prediction methods for the multinomial model were implemented, and

tested for both their strong and weak generalization performance. On the EachMovie

data set a weak generalization NMAE rate of 0.5383 ± 0.0022 was obtained, along with

a strong generalization NAME rate of 0.5446 ± 0.0029. On the MovieLens data set a

weak generalization NMAE rate of 0.4694 ± 0.0020 was obtained, along with a strong

generalization NAME rate of 0.4746 ± 0.0035. The multinomial model is too simplistic

to be of serious interest; however, these results serve as a useful baseline for comparing

the performance of the more complex models we will study next.

7.2 Mixture of Multinomials Model

The mixture of multinomials model posits that there are K types of users underlying all

profiles, and that the values of rating variables are independent of each other and the

user’s identity given the user’s type. A user’s type is modeled as a latent variable Z that

takes K settings. The assertion that the ratings of items are conditionally independent

given the value of the latent variable Z is sometimes called the naive Bayes assumption.

From a generative point of view, a profile is generated by sampling a user type z

according to a prior distribution over user types, and then sampling a rating for each

item according to the distribution over ratings for that item, given the chosen user type.

The model parameters are the components of the multinomial distribution over settings

of the latent variable, and the components of the distribution over rating values for each

item and user type.
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Figure 7.2: Mixture of Multinomials Model.

We show the graphical model in figure 7.2. Again, each node labeled Ry represents a

multinomial rating random variable for item y. The node labeled Z is the latent variable

corresponding to the user type. The node labeled β is a parameter that encodes the

multinomial distributions for each item given a value of the latent variable. It can be

thought of as a V ×M ×K matrix where βvyz represents P (Ry = v|Z = z). The node

labeled θ is a parameter that encodes a prior distribution over the latent variable Z. It

can be thought of as a length K vector where θz gives P (Z = z).

The joint probability of observing a user of type z with profile ru is given by 7.2. Of

course, we never actually know the value of the latent variable because we are never told

what type a user is. To compute the marginal probability of a particular user profile

with the user type unobserved, we simply sum out the latent variable obtaining 7.3. The

resulting density is a mixture of K multinomial distributions.

P (R = ru, Z = z) = P (Z = z)
M
∏

y=1

P (Ry = ru
y |Z = z) (7.2)

P (R = ru) =
K
∑

z=1

P (Z = z)
M
∏

y=1

P (Ry = ru
y |Z = z) (7.3)
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7.2.1 Learning

Learning in the mixture of multinomials model is more difficult than in the simple multi-

nomial case because the value of the latent variable is never observed. This necessitates

the use of an Expectation Maximization (EM) procedure [16]. We have already described

several EM algorithms in connection with weighted singular value decomposition, factor

analysis, and probabilistic principal components analysis in Chapter 6. In this sub-section

we derive an EM procedure for the mixture of multinomials model by applying the free

energy approach of Neal and Hinton described in chapter 3 [44]. This approach provides

a unified framework for deriving many variants of EM.

To begin we define the total free energy of the mixture of multinomials model, which

depends on the definition of a distribution q(Z|R = ru). In general the distribution

q(Z|R = ru) can be an approximation to the true posterior P (Z|R = ru); however, in

the case of the mixture of multinomials model the true posterior can be found exactly.

We parameterize the distribution q(Z|R = ru) as a multinomial with components φu
z .

The total free energy function F [φ, θ, β] is shown in equation 7.4.

F [φ, θ, β] =
N
∑

u=1

Eq[log P (R = ru, Z = z|θ, β)] +
N
∑

u=1

H[q(Z = z|R = ru)] (7.4)

=
N
∑

u=1

K
∑

z=1

q(Z = z|R = ru) log P (R = ru, Z = z|θ, β)

−
N
∑

u=1

K
∑

z=1

q(Z = z|R = ru) log q(Z = z|R = ru)

=
N
∑

u=1

K
∑

z=1

φu
z log



θz

M
∏

y=1

V
∏

v=1

β
δ(ru

y ,v)
vyz



−
N
∑

u=1

K
∑

z=1

φu
z log φu

z (7.5)

Learning is now cast as the task of optimizing the function F [φ, θ, β] with respect to

the q distribution parameters φu
z , and the model parameters θz and βvyz. We derive an

iterative gradient descent procedure for optimizing the parameters as is done in standard

EM. For the mixture of multinomials model this is easily accomplished as we show below.

We first derive the update for the φu
z parameters. Recall that these parameters encode

multinomial distributions so we must enforce the normalization constraint
∑K

z=1 φu
z = 1.
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∂F [φ, θ, β]

∂φu
z

= log



θz

M
∏

y=1

V
∏

v=1

β
δ(ru

y ,v)
vyz



−
φu

z

φu
z

− log φu
z − λ = 0 (7.6)

log φu
z = log



θz

M
∏

y=1

V
∏

v=1

β
δ(ru

y ,v)
vyz



− 1− λ

φu
z = e−1−λθz

M
∏

y=1

V
∏

v=1

β
δ(ru

y ,v)
vyz

K
∑

z=1

φu
z =

K
∑

z=1

e−1−λθz

M
∏

y=1

V
∏

v=1

β
δ(ru

y ,v)
vyz

e1+λ =
K
∑

z=1

θz

M
∏

y=1

V
∏

v=1

β
δ(ru

y ,v)
vyz

λ = log
K
∑

z=1

θz

M
∏

y=1

V
∏

v=1

β
δ(ru

y ,v)
vyz

φu
z =

θz

∏M
y=1

∏V
v=1 β

δ(ru
y ,v)

vyz

∑K
z′=1 θz′

∏M
y=1

∏V
v=1 β

δ(ru
y ,v)

vyz′

(7.7)

Next we move on to the updates for the model parameters. We begin with θ, which has

the same constraint as φu. Namely, we must ensure that
∑K

z=1 θz = 1.

∂F [φ, θ, β]

∂θz

=
N
∑

u=1

φu
z

∏M
y=1

∏V
v=1 β

δ(ru
y ,v)

vyz

θz

∏M
y=1

∏V
v=1 β

δ(ru
y ,v)

vyz

− λ = 0 (7.8)

θz =
1

λ

N
∑

u=1

φu
z

K
∑

z=1

θz =
1

λ

K
∑

z=1

N
∑

u=1

φu
z

λ =
K
∑

z=1

N
∑

u=1

φu
z

θz =

∑N
u=1 φu

z
∑K

z=1

∑N
u=1 φu

z

(7.9)

Lastly, we derive the update for the β model parameter. Recall that βvyz gives the

multinomial parameters of the distribution P (Ry = v|Z = z). In optimizing with respect

to βvyz we must enforce the constraint that
∑V

v=1 βvyz = 1.
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Inputs: {ru},K
Outputs: θ, β

Initialize θ, β
while (F [φ, θ, β] Not Converged) do

for u = 1 to N do

φu
z ←

θz

∏M

y=1

∏V

v=1
βvyz

δ(ru
y ,v)

∑K

z′=1
θz′

∏M

y=1

∏V

v=1
βvyz′

δ(ru
y ,v)

end for

for z = 1 to K do

θz ←
∑N

u=1
φu

z
∑K

z=1

∑N

u=1
φu

z

for y = 1 to M , v = 1 to V do

βvyz ←
∑N

u=1
φu

z δ(ru
y ,v)

∑V

v′=1

∑N

u=1
φu

z δ(ru
y ,v′)

end for

end for

end while

Algorithm 7.3: MixMulti-Learn

∂F [φ, θ, β]

∂βvyz

=
N
∑

u=1

φu
z

δ(ru
y , v)

βvyz

− λ = 0 (7.10)

βvyz =
1

λ

N
∑

u=1

φu
zδ(r

u
y , v)

V
∑

v=1

βvyz =
1

λ

V
∑

v=1

N
∑

u=1

φu
zδ(r

u
y , v)

λ =
V
∑

v=1

N
∑

u=1

φu
zδ(r

u
y , v)

βvyz =

∑N
u=1 φu

zδ(r
u
y , v)

∑V
v′=1

∑N
u=1 φu

zδ(r
u
y , v′)

(7.11)

Given these update rules, the optimization procedure for learning the mixture of

multinomials model is straightforward. We randomly initialize the parameters θ and β

ensuring that the constraints
∑K

z=1 θz = 1, and
∑V

v=1 βvyk = 1 hold. Iterating the derrived

updates until the value of the objective function F [φ, θ, β] converges defines a standard

EM algorithm as given in algorithm 7.3.
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Input: ra, θ, β
Output: r̂a

for (z = 1 to K) do

φz ←
θz

∏M

y=1

∏V

v=1
β

δ(ra
y ,v)

vyz

∑K

z′=1
θz′

∏M

y=1

∏V

v=1
β

δ(ra
y ,v)

vyz′

end for

for y = 1 to M do

for v = 1 to V do

pv ←
∑K

z=1 βvyzφz

end for

r̂y ← median pv

end for

Algorithm 7.4: MixMulti-Predict

7.2.2 Rating Prediction

Once learning has converged, the resulting model (θ, β) can be used to predict ratings

given any novel user profile ra. Rating prediction with the mixture of multinomials

model consists of first estimating P (Ry = v|ra, θ, β) as shown in equation 7.12, and

then applying a prediction rule such as median prediction to the estimated distribution.

Estimating the distribution consists of an inference step that determines the mixing

coefficients P (Z = z|ra), and the actual mixture step. Intuitively P (Z = z|ra) is the

degree to which the active user exhibits traits of a type z user through the profile ra. In

the mixture step, the distribution over ratings for an item is computed as a mixture of

the distributions over ratings for the item given by each user type. Note that while the

generative semantics of the mixture of multinomials model assert that every user belongs

to exactly one of the K user types, the predicted distributions are actually computed

as if the user was a mixture of different user types. The complete prediction method is

given in algorithm 7.4.

P (Ry = v|ra, θ, β) =
K
∑

z=1

P (Ry = v|Z = z)P (Z = z|ra) (7.12)

=
K
∑

z=1

βvyz

θz

∏M
y=1

∏V
v=1 β

δ(ra
y ,v)

vyz

∑K
z′=1 θz′

∏M
y=1

∏V
v=1 β

δ(ra
y ,v)

vyz′
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7.2.3 Complexity

In the E-step of the MixMulti-Learn algorithm we compute an estimate φu
z for all z and u.

The total computational complexity of the E-Step is O(NMV K). The M-step consists

of computing updates for θz and βvyz. The computational complexity of the update for θ

is O(MK). The computational complexity of the update for β is O(NMV K). Letting I

be an upper bound on the number of iterations needed to reach convergence we obtain a

total time complexity of O(INMV K). The number of parameters that need to be stored

for the mixture of multinomials model is K + MV K.

The MixMulti-Predict algorithm first computes φz for the active user at a computa-

tional cost of O(MV K). For each item a distribution over ratings is calculated at a cost

of O(V K) per item. The total computational cost of the MixMulti-Predict algorithm is

thus O(MV K).

7.2.4 Results

The MixMulti-Learn and MixMulti-Predict methods described in algorithms 7.3 and 7.4

were implemented, and tested for both their strong and weak generalization performance.

EachMovie was tested using 5, 10, 20, and 30 user types. MovieLens was tested using 4,

6, 8, and 10 user types. The learning method was found to converge reliably in 30 to 40

iterations with θ and β initialized randomly. The results of the prediction performance

experiments with the mixture of multinomials model are shown in tables 7.1, and 7.2.

Table 7.1: MixMulti-Predict: EachMovie Results
K = 5 K = 10 K = 20 K = 30

Weak 0.4755± 0.0013 0.4579± 0.0006 0.4559± 0.0010 0.4557± 0.0012
Strong 0.4744± 0.0038 0.4631± 0.0027 0.4602± 0.0011 0.4573± 0.0007

Table 7.2: MixMulti-Predict: MovieLens Results
K = 4 K = 6 K = 8 K = 10

Weak 0.4444± 0.0032 0.4480± 0.0020 0.4535± 0.0020 0.4528± 0.0049
Strong 0.4573± 0.0124 0.4383± 0.0048 0.4405± 0.0045 0.4339± 0.0023
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7.3 The Aspect Model

In this section we describe the aspect model for rating prediction [29]. The rating pre-

diction version of the aspect model is closely related to the aspect model for probabilistic

latent semantic analysis of text documents, also referred to as pLSA or pLSI [28]. To

avoid confusion we will refer to the rating prediction version as the triadic aspect model,

and the text analysis version as the dyadic aspect model. It is important to understand

the relationship between the dyadic and triadic models, and more generally the relation-

ship between vectorspace or bag-of-words text analysis, collaborative filtering, and rating

prediction. These relationships play a crucial role in the development of the next section.

In the dyadic aspect model applied to text analysis, a corpus of documents is modeled

as a set of pairs (d, w), where d is a document index and w is a word index. A fixed

vocabulary is assumed. This type of data is often called co-occurrence or dyadic data,

thus our choice of name for the model. The graphical representation of the dyadic aspect

model applied to text analysis appears in figure 7.3. Each document is represented as

a unique distribution over the K settings of the latent variable Z. Each setting of the

latent variables Z corresponds to an underlying “topic”. Associated with each topic is

a distribution over words in the vocabulary. Thus, a document is seen as a distribution

over topics where each topic is described by a different distribution over words. A word

is generated for a document by choosing a topic and then selecting a word according

to the distribution over words for the chosen topic. This is an interesting model for

Z

D

W

Figure 7.3: Dyadic aspect model.

R

YZ

U

Figure 7.4: Triadic aspect model.
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text because it allows different documents to be generated by different distributions over

topics (settings of the latent variable), which is not possible with a multinomial mixture

model where all documents would share a common distribution over topics.

The dyadic aspect model can also be applied to collaborative filtering, but within a

different formulation. Recall from our discussion of preference indicators in sub-section

2.1.1 that co-occurrence data is semantically distinct from explicit ratings. To apply the

dyadic aspect model to a pure, non-sequential, co-occurrence formulation of collaborative

filtering, we simply exchange documents for users and words for items. The data consists

of (u, y) pairs representing the fact that user u accessed, or viewed item y. A data set

may contain the same pair multiple times, just as a corpus of text documents may contain

the same word-document pair multiple times.

The correct analogy between collaborative filtering and bag-of-words text modeling

should now be clear: only the pure, non-sequential, co-occurrence formulation of collab-

orative filtering is equivalent to the bag-of-words representation of text documents. Any

model that can be applied in one domain can be applied in the other. Formulations

based on other types of preference indicators including ratings are not equivalent to the

this representation of text documents, and models of each are not exchangeable.

However, a slight extension of the dyadic aspect model yields the triadic aspect model,

which is capable of representing preferences based on explicit ratings. The particular

instance of the triadic aspect model we are interested in assumes that the basic data

element is a triple (u, y, v) where u is a user, y is an item, and v is a rating value.

Each triple represents the fact that user u assigned rating v to item y. Hofmann’s

depiction of the model is shown in figure 7.4 [29]. Each setting of the latent variable Z

can be interpreted as a “user type”, or “user attitude”. A particular user u is modeled

as a unique distribution over user types P (Z|U = u). These distributions are seen

as parameters and are encoded by θu. A user type is represented as a multinomial

distribution P (R|Z = z, Y = y) over rating values for each item.
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R1

β

R2

Z1 Z2

RM

ZM

θ U

Figure 7.5: Vector aspect model.

The triadic aspect model is flawed in several ways, and it shares some of these flaws

with the dyadic version. First, the distribution over types for each user u must be specified

outside of the generative process as a parameter θu. If we wish to generate ratings for N

users then we must be given N distributions θ1, ..., θN . The triadic aspect model itself

provides no probabilistic mechanism for sampling θu. As a result the model has improper

generative semantics at the user level. The number of model parameters also grows with

the number of user profiles we are trying to model. This is a highly undesirable feature

for a model based approach. In addition, the model lacks a principled inference procedure

for novel user profiles since the θu parameters are unknown for an arbitrary profile. This

means it is impossible to perform rating prediction with novel user profiles.

The lower levels of the generative process are also problematic. Once the θu param-

eters are given, the generative process iterates through all the users. For each user and

each item a value of Z is sampled from P (Z|θu, U = u), and a rating is sampled from

P (R|Z = z, Y = y). While it is possible to force the aspect model into generating a com-

plete profile for each user by clamping the U and Y nodes to the desired values, there is

nothing in the model itself which restricts it to one rating per user-item combination.

The problems with the generative process at the higher levels of the model have a

nontrivial solution as we will see in the next section. However, we can fix the repeated

sampling problems at the lower levels of the aspect model quite easily. We simply expand
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the lower levels of the model to ensure that exactly one rating is generated for each item.

The necessary modification has no impact on model fitting or inference if we assume that

the data contains at most one rating for each user-item pair. It also has no effect on the

definition or interpretation of the model parameters. Our vector version of the aspect

model appears in figure 7.5. The joint probability of a user rating profile and choice of

user attitudes is shown in equation 7.13. The probability of of a user rating profile is

shown in equation 7.14. The likelihood of the complete set of user profiles under the

aspect model is given in equation 7.15.

P (ru, z|θu, β)
M
∏

y=1

V
∏

v=1

(P (Zy = zy|θ
u)P (Ry = ru

y |Zy = zy, β))δ(ru
y ,v) (7.13)

P (ru|θ, β) =
M
∏

y=1

V
∏

v=1

(
K
∑

z=1

P (Zy = z|θu)P (Ry = ru
y |Z = z, β))δ(ru

y ,v) (7.14)

P (r|θ, β) =
N
∏

u=1

M
∏

y=1

V
∏

v=1

(
K
∑

z=1

P (Zy = z|θu)P (Ry = ru
y |Z = z, β))δ(ru

y ,v) (7.15)

7.3.1 Learning

In this subsection we derive an EM procedure for model fitting based on the vector aspect

model. We again apply the free energy approach of Neal and Hinton. Hofmann gives a

set of update rules for the triadic version of the aspect model, but the rules we derive for

the vector aspect model make the handling of missing rating values explicit.

In the generative process recall that for each item we independently choose one setting

of the latent variable Z. We assume a corresponding factorization of the q-distribution

q(Z = z|R = ru) =
∏M

y=1 q(Zy = zy|R = ru). Note that Zy depends only on the

value of ru
y so we can further factorize the q-distribution obtaining

∏M
y=1 q(Zy = zy|r

u
y )

We parameterize q(Zy = z|ru
y ) as a multinomial distribution with parameters given by

φu
vyz. Note that this distribution is normalized with respect to Z so that we must have

∑

z φu
vyz = 1. The total free energy function F [φ, θ, β] is shown next.
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F [φ, θ, β] =
N
∑

u=1

Eq[log P (R = ru,Z = z|θ, β)] +
N
∑

u=1

H[q(Z = z|R = ru)] (7.16)

=
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y = v)

K
∑

z=1

q(Zy = z|Ry = v) log P (Ry = v, Z = z|θu, β)

−
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

z=1

q(Zy = z|Ry = v) log q(Zy = z|Ry = v)

=
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

z=1

φu
vyz log(βvyzθ

u
z )−

N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

z=1

φu
vyz log φu

vyz

We first work out the update for the φu
vyz parameters. Recall that these parameters are

multinomial distributions so we must enforce the normalization constraint
∑K

z=1 φu
vyz = 1

for all u.

∂F [φ, θ, β]

∂φu
vyz

= δ(ru
y , v) log(βvyzθ

u
z )− δ(ru

y = v)(log φu
vyz + 1)− λ = 0 (7.17)

log φu
vyz = log(βvyzθ

u
z )− 1−

λ

δ(ru
y , v)

φu
vyz = βvyzθ

u
z e

−1− λ
δ(ru

y ,v)

K
∑

z=1

φu
vyz =

K
∑

z=1

βvyzθ
u
z e

−1− λ
δ(ru

y ,v)

e
1+ λ

δ(ru
y ,v) =

K
∑

z′=1

βvyz′θ
u
z′

1 +
λ

δ(ru
y , v)

= log(
K
∑

z′=1

βvyz′θ
u
z′)

λ = δ(ru
y , v)(log(

K
∑

z′=1

βvyz′θ
u
z′)− 1)

φu
vyz = βvyzθ

u
z e

−1−
δ(ru

y ,v)(log(
∑K

z′=1
β

vyz′θ
u
z′

)−1)

δ(ru
y ,v)

=
βvyzθ

u
z

∑K
z′=1 βvyz′θu

z′

(7.18)

Next we move on to the problem of the updates for the model parameters. Unlike

the mixture of multinomials case, each user has a unique distribution over user types

parameterized by θu. Again we must ensure that
∑K

z=1 θu
z = 1.
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∂F [φ, θ, β]

∂θu
z

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)

φu
vyz

θu
z

− λ = 0 (7.19)

λ =
M
∑

y=1

V
∑

v=1

δ(ru
y , v)

φu
vyz

θu
z

θu
z =

1

λ

M
∑

y=1

V
∑

v=1

δ(ru
y , v)φu

vyz

K
∑

z′=1

θu
z′ =

1

λ

K
∑

z′=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)φu

vyz′

λ =
1

∑K
z′=1

∑M
y=1

∑V
v=1 δ(ru

y , v)φu
vyz′

θu
z =

∑M
y=1

∑V
v=1 δ(ru

y , v)φu
vyz

∑K
z′=1

∑M
y=1

∑V
v=1 δ(ru

y , v)φu
vyz′

(7.20)

Lastly, we derive the update for the β model parameter. β encodes the multinomial

parameters of the distribution P (Ry = v|Z = z) as in the mixture of multinomials

model. In optimizing with respect to βvyz we enforce the constraint that
∑V

v=1 βvyz = 1.

∂F [φ, θ, β]

∂βvyz

=
N
∑

u=1

δ(ru
y , v)

φu
vyz

βvyz

− λ = 0 (7.21)

βvyz =
1

λ

N
∑

u=1

δ(ru
y , v)φu

vyz

V
∑

v′=1

βv′yz =
1

λ

V
∑

v′=1

N
∑

u=1

δ(ru
y , v′)φu

v′yz

λ =
V
∑

v′=1

N
∑

u=1

δ(ru
y , v′)φu

v′yz

βvyz =

∑N
u=1 δ(ru

y , v)φu
vyz

∑V
v′=1

∑N
u=1 δ(ru

y , v′)φu
v′yz

(7.22)

Given these update rules, the optimization procedure for learning the aspect model

is straightforward. We randomly initialize the parameters θ and β ensuring that the

constraints
∑K

z=1 θu
z = 1, and

∑V
v=1 βvyz = 1 hold for all u,y and z. We then iterate the

updates until the value of the objective function F [φ, θ, β] converges. The vector aspect

model learning procedure is specified in algorithm 7.5.
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Inputs: {ru}, K
Outputs: θ, β

Initialize θ, β
while (F [φ, θ, β] Not Converged) do

for u = 1 to N , v = 1 to V , z = 1 to Z do

φu
vyz ←

βvyzθu
z

∑K

z′=1
βvyz′θ

u
z′

end for

for u = 1 to N , z = 1 to K do

θu
z ←

∑M

y=1

∑V

v=1
δ(ru

y ,v)φu
vyz

∑K

z′=1

∑M

y=1

∑V

v=1
δ(ru

y ,v)φu
vyz′

end for

for y = 1 to M , v = 1 to V , z = 1 to K do

βvyz ←
∑N

u=1
δ(ru

y ,v)φu
vyz

∑V

v′=1

∑N

u=1
δ(ru

y ,v′)φu
v′yz

end for

end while

Algorithm 7.5: Aspect-Learn

7.3.2 Rating Prediction

Rating prediction with the aspect model is somewhat different than with the mixture of

multinomials model. Once learning has converged we have a model (θ,β), but this model

can only be used to make predictions for the N training users in the data set since we

can not properly perform inference. Assuming the active user a is one of the N training

users we find the distribution over ratings for an unknown item y according to equation

7.23.

P (Ry = v|ra, U = a, θ, β) = P (Ry = v|U = a, θa, β)

=
K
∑

z=1

P (Ry = v|Z = z)P (Z = z|U = u)

=
K
∑

z=1

βvyzθ
a
z (7.23)
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Input: ra, θa, β
Output: r̂a

for y = 1 to M do

for v = 1 to V do

pv ←
∑K

z=1 βvyzθ
a
z

end for

r̂y ← median pv

end for

Algorithm 7.6: Aspect-Predict

7.3.3 Complexity

In the E-step of the Aspect-Learn algorithm we compute an estimate φu
vyz. The total

computational complexity of the E-Step is thus O(NMV K). The M-step consists of

computing updates for θu
z and βvyz. The computational complexity of the update for θ

is O(NMV K). The computational complexity of the update for β is also O(NMV K).

Letting I be an upper bound on the number of iterations needed to reach convergence

we obtain a total time complexity of O(INMV K). The number of parameters that need

to be stored for the aspect model is KN + MV K.

7.3.4 Results

The Aspect-Learn and Aspect-Predict methods described in algorithms 7.5 and 7.6 were

implemented, and tested for their weak generalization performance. As mentioned pre-

viously, a learned aspect model can not be applied to a set of novel users in a principled

manner. Thus the strong generalization error of the model can not be assessed.

As with the mixture of multinomials model, the learning method was found to con-

verge reliably in 30 to 40 iterations with θ and β initialized randomly. However, with

larger numbers user types, the vector aspect model tended to over fit the training data

with respect to the prediction error measure in preliminary testing. Hofmann suggests

using early stopping of the EM iteration to help overcome this problem. In the implemen-
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tation an additional validation set was extracted from the training set. During EM the

validation error was evaluated after every iteration. When the validation error increased

on three successive iterations, the method was stopped. The best set of parameters ac-

cording to the validation error estimate were selected as the final model. The results of

the prediction performance experiments with the vector aspect model are shown in tables

7.1, and 7.2.

Table 7.3: Aspect-Predict: EachMovie Results
K = 5 K = 10 K = 20 K = 30

Weak 0.4744± 0.0038 0.4631± 0.0027 0.4602± 0.0011 0.4573± 0.0007

Table 7.4: Aspect-Predict: MovieLens Results
K = 4 K = 6 K = 8 K = 10

Weak 0.4573± 0.0124 0.4383± 0.0048 0.4405± 0.0045 0.4339± 0.0023

7.4 The User Rating Profile Model

In this section we present the User Rating Profile (URP) model recently introduced by

Marlin [38]. As was mentioned in the previous section, the triadic aspect model is flawed

in several ways. Changing the lower level of the model from a triadic to vector repre-

sentation correct one set of problems, but issues remain with the user level generative

semantics. The main problem is that the P (Z|U = u) distributions are viewed as pa-

rameters outside the generative process of the model. As a result the aspect model lacks

a maximum likelihood procedure for performing inference on novel user profiles. This

means it is impossible to make rating predictions for users not in the training set. There

are also a variety of undesirable secondary effects including the number of parameters

in the model increasing with the number of users in the training set. The URP model

has been proposed as a generative version of the vector aspect model, which solves all of

these problems.
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Figure 7.7: URP model.

Blei, Ng, and Jordan point out similar problems with the high level generative seman-

tics of the dyadic aspect model. They propose the Latent Dirichlet Allocation (LDA)

model as a correct generative version of the dyadic aspect model [7]. The obvious cor-

rection to the dyadic aspect model is to remove the index variable D and view the

distribution over Z as a hidden variable θ. The complete generative process is to sample

θ for each document, and Z and W for each of the M positions in the document. The

simplest generative model with proper document level semantics would place a uniform

distribution on θ. However, other priors on θ can also be used such as the Dirichlet

prior, which is conjugate to the multinomial distribution. If a Dirichlet prior is used, the

model we have just described is precisely the Latent Dirichlet Allocation (LDA) model

proposed by Blei et al. [7].

Recall from our discussion of the dyadic, triadic, and vector aspect models that

dyadic models can only be applied to a formulation of collaborative filtering based on

co-occurrence data. Therefore LDA is clearly not applicable to rating-based collaborative

filtering. Blei et al. slightly confuse this issue by applying LDA to a rating-based collab-

orative filtering data set using a preprocessing step [7, p. 1014]. All rating values above

a threshold were set to 1 and those below the threshold were set to 0. This converts the

rating data into a special form of co-occurrence data where the pair (u, y) indicates that
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user u likes item y.

The user rating profile (URP) model is a true generative model for rating profiles. It

can be seen as a generative version of the vector aspect model in the same sense that LDA

can be seen as a generative version of the dyadic aspect model. To obtain URP from the

vector aspect model we remove the user index node U and view the distribution over the

latent variable Z as a random variable θ instead of a parameter. As in LDA we place a

Dirichlet prior on θ since it is more general than a uniform prior, and is convenient to

work with. The complete generative process for the URP model is to sample θ for each

user from a Dirichlet prior with parameter α, then for each item y sample Zy according

to P (Z|θ), and a rating value Ry according to P (Ry|Z = z, β).

Based on this description we can derive the joint probability of observing a complete

user profile ru along with corresponding values of θ and Z as shown in equation 7.24. To

obtain the probability of observing a particular user profile ru we sum and integrate out

the values of the hidden variables from the joint probability as shown in equation 7.25.

As in LDA, the Dirichlet prior renders the computation of the exact posterior distribution

shown in equation 7.26 intractable, and variational techniques must be used to fit the

URP model.

P (ru, z, θ|α, β) = P (θ|α)
M
∏

y=1

V
∏

v=1

(P (Zy = zy|θ)P (Ry = ru
y |Zy = zy, β))δ(ru

y ,v) (7.24)

P (ru|α, β) =
∫

θ
P (θ|α)

M
∏

y=1

V
∏

v=1

(
K
∑

z=1

P (Zy = z|θ)P (Ry = ru
y |Z = z, β))δ(ru

y ,v)dθ (7.25)

P (θ, z|ru, α, β) = P (ru, θ, z|α, β)/P (ru|α, β) (7.26)

7.4.1 Variational Approximation and Free Energy

The procedure used for fitting the URP model is a variational Expectation Maximization

algorithm. We choose to apply a fully factored variational q-distribution as shown in

equation 7.27. We define q(θ|γu) to be a Dirichlet distribution with Dirichlet parameters
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γu
i , and q(Zy|φ

u
y) to be a multinomial distribution with parameters φu

iy.

q(θ, z|γu, φu) = q(θ|γu)
M
∏

y=1

q(Zy = zy|φ
u
y) (7.27)

We give the probability of θ under a Dirichlet distribution with parameter α in equa-

tion 7.28. We also need the expectation E[log θi] to fully compute the free energy. We

give the formula for this expectation under a Dirichlet with parameter α in equation 7.29.

Ψ() denotes the digamma function, the first derivative of the log-gamma function.

P (θ|α) =
Γ(
∑K

i=1 αi)
∏K

i=1 Γ(αi)

K
∏

i=1

θαi−1
i (7.28)

E[log θi|α] = Ψ(αi)−Ψ(
K
∑

j=1

αj) (7.29)

The total free energy of the URP model with respect to this fully factorized q-

distribution is given by F [φ, γ, α, β] =
∑N

u=1(Eq[log P (θ, z, ru|α, β)] + H[q(θ, z|γu, φu)]).

We expand F [φ, γ, α, β] according to the factorizations of the joint and q distribu-

tions, and then compute each expectation. We use the notation Eqθ[·] and Eqz[·] to

denote expectation with respect to each part of the factorized q-distribution. Note that

Eq[·] = Eqθ[Eqz[·]] = Eqz[Eqθ[·]].

F [φ, γ, α, β] =
N
∑

u=1

Eq[log p(θ|α) + log p(z|θ) + log p(ru|z, β)− log q(θ|γu)− log q(z|φu)]

Eq[log p(θ|α)] = Eq[log Γ(
K
∑

i=1

αi)−
K
∑

i=1

log Γ(αi) +
K
∑

i=1

(αi − 1) log θi]

= log Γ(
K
∑

i=1

αi)−
K
∑

i=1

log Γ(αi) +
K
∑

i=1

(αi − 1)Eqθ[log θi]

= log Γ(
K
∑

i=1

αi)−
K
∑

i=1

log Γ(αi) +
K
∑

i=1

(αi − 1)(Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j ))

Eq[log p(z|θ)] = Eq[
M
∑

y=1

log P (Zy = z|θ)]

=
M
∑

y=1

Eqz[Eqθ[log θz]]
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=
M
∑

y=1

Eqz[Ψ(γz)−Ψ(
K
∑

j=1

γj)]

=
M
∑

y=1

K
∑

z=1

q(Zy = z|φu)(Ψ(γu
z )−Ψ(

K
∑

j=1

γu
j ))

=
M
∑

y=1

K
∑

z=1

φu
zy(Ψ(γu

z )−Ψ(
K
∑

j=1

γu
j ))

Eq[log p(ru|z, β)] = Eq[
M
∑

y=1

V
∑

v=1

δ(ru
y , v) log P (Ry = v|Z = zy, β)]

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)Eqz[log P (Ry = v|Z = zy, β)]

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

z=1

q(Zy = z|φu
zy log P (Ry = v|Z = zy, β)

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

z=1

φu
zy log βvyz

Eq[log q(θ|γu)] = Eq[log Γ(
K
∑

i=1

γu
i )−

K
∑

i=1

log Γ(γu
i ) +

K
∑

i=1

(γu
i − 1) log θi]

= log Γ(
K
∑

i=1

γu
i )−

K
∑

i=1

log Γ(γu
i ) +

K
∑

i=1

(γu
i − 1)Eqθ[log θi]

= log Γ(
K
∑

i=1

γu
i )−

K
∑

i=1

log Γ(γu
i ) +

K
∑

i=1

(γu
i − 1)(Ψ(γu

i )−Ψ(
K
∑

j=1

γu
j ))

Eq[log q(z|φu)] = Eq[
M
∑

y=1

log q(Zy = z|φu)]

=
M
∑

y=1

Eqz[log q(Zy = z|φu)]

=
M
∑

y=1

K
∑

z=1

q(Zy = z|φu) log q(Zy = z|φu)

=
M
∑

y=1

K
∑

z=1

φu
zy log φu

zy

Now we compile the expanded expectations yielding the total free energy function

F [φ, γ, α, β] shown in equation 7.30.

F [φ, γ, α, β] =
N
∑

u=1



log Γ(
K
∑

i=1

αi)−
K
∑

i=1

log Γ(αi) +
K
∑

i=1

(αi − 1)(Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j ))
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+
N
∑

u=1

M
∑

y=1

K
∑

i=1

φu
iy(Ψ(γu

i )−Ψ(
K
∑

j=1

γu
j ))

+
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

i=1

φu
iy log βvyi

−
N
∑

u=1



log Γ(
K
∑

i=1

γu
i )−

K
∑

i=1

log Γ(γu
i ) +

K
∑

i=1

(γu
i − 1)(Ψ(γu

i )−Ψ(
K
∑

j=1

γu
j ))





−
N
∑

u=1

M
∑

y=1

K
∑

i=1

φu
iy log φu

iy (7.30)

7.4.2 Learning Variational Parameters

To find the update for the variational multinomial parameter φu
yi we differentiate F [φ, γ, α, β]

with respect to φu
yi, and solve the resulting equation. Note that φu

y is a distribution and

we must enforce the normalization constraint
∑K

i=1 φu
yi = 1. Intuitively, φu

yi is the proba-

bility that user u’s rating for item y was generated by user attitude i given the value ru
y .

Note that if ru
y is unobserved the distribution becomes uniform.

∂F [φ, γ, α, β]

∂φu
yi

= Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j ) +

V
∑

v=1

δ(ru
y , v) log βvyi − 1− log φu

iy − λ

log φu
iy = Ψ(γu

i )−Ψ(
K
∑

j=1

γu
j ) +

V
∑

v=1

δ(ru
y , v) log βvyi − 1− λ

φu
iy = exp(−λ)(exp(Ψ(γu

i )−Ψ(
K
∑

j=1

γu
j ) +

V
∑

v=1

δ(ru
y , v) log βvyi − 1)

exp(λ) =
K
∑

i=1

exp(Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j ) +

V
∑

v=1

δ(ru
y , v) log βvyi − 1)

λ = log(
K
∑

i=1

exp(Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j ) +

V
∑

v=1

δ(ru
y , v) log βvyi − 1)

φu
iy =

exp(Ψ(γu
i )−Ψ(

∑K
j=1 γu

j ) +
∑V

v=1 δ(ru
y , v) log βvyi)

∑K
i=1 exp(Ψ(γu

i )−Ψ(
∑K

j=1 γu
j ) +

∑V
v=1 δ(ru

y , v) log βvyi)

=

∏V
v=1 β

δ(ru
y ,v)

vyi exp(Ψ(γu
i )−Ψ(

∑K
j=1 γu

j ))
∑K

i=1

∏V
v=1 β

δ(ru
y ,v)

vyi exp(Ψ(γu
i )−Ψ(

∑K
j=1 γu

j ))
(7.31)
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Input: α, β, r, I
Output: φ, γ

φky ← 1/K for all k, y
γk ← αk + V/K for all k
for t = 1 to I do

for y = 1 to M , k = 1 to K do

φyk ←

∏V
v=1 β

δ(ry ,v)
vyk exp(Ψ(γk)−Ψ(

∑K
j=1 γj))

∑K
i=1

∏V
v=1 β

δ(ry ,v)
vyi exp(Ψ(γi)−Ψ(

∑K
j=1 γj))

γk ← αk +
∑M

y=1 φky

end for

end for

Algorithm 7.7: URP-VarInf

Next we derive the update rule for the variational Dirichlet parameters γu
i . Intuitively

γu
i are the parameters of a Dirichlet distribution over θ given the observed ratings.

∂F [φ, γ, α, β]

∂γu
i

= αi(Ψ
′(γu

i )−Ψ′(
K
∑

j=1

γu
j )) +

M
∑

y=1

φu
iy(Ψ

′(γu
i )−Ψ′(

K
∑

j=1

γu
j ))

−γu
i (Ψ′(γu

i )−Ψ′(
K
∑

j=1

γu
j )) = 0

γu
i = αi +

M
∑

y=1

φu
iy (7.32)

By iterating the updates derived in equations 7.31 and 7.32 we are guaranteed to

reach a local maximum of the free energy function F [φ, γ, α, β] for fixed α, and β. This

iterative procedure defines a variational inference algorithm for the URP model as shown

in algorithm 7.7.

7.4.3 Learning Model Parameters

In this sub-section we derive estimates for the URP model parameters α and β. βyz repre-

sents the parameters of a multinomial distribution so we must ensure that
∑V

v=1 βvyz = 1.

While β, and both variational parameters admit closed form solutions, α does not. We

begin by deriving the updates for the β parameters, as the α parameters will require
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special treatment.

∂F [φ, θ, β]

∂βvyz

=
N
∑

u=1

δ(ru
y , v)

φu
yz

βyz

− λ = 0 (7.33)

βvyz =
1

λ

N
∑

u=1

δ(ru
y , v)φu

yz

V
∑

v′=1

βv′yz =
1

λ

V
∑

v′=1

N
∑

u=1

δ(ru
y , v′)φu

yz

λ =
V
∑

v′=1

N
∑

u=1

δ(ru
y , v′)φu

yz

βvyz =

∑N
u=1 δ(ru

y , v)φu
yz

∑V
v′=1

∑N
u=1 δ(ru

y , v′)φu
yz

(7.34)

As we will see, the αi are unfortunately coupled together and do not yield an ana-

lytic form for the maximizer. However, Minka has proposed two iterative methods for

estimating a Dirichlet distribution from probability vectors that can be used here. We

give Minka’s fixed-point iteration, which yields very similar results compared to the al-

ternative Newton iteration. Details for both procedures including the derivation for the

inversion of the psi function may be found in [40].

∂F [φ, θ, β]

∂αi

= N(Ψ(
k
∑

i=1

αj)−Ψ(αi)) +
N
∑

u=1

Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j )

Ψ(αi) = Ψ(
k
∑

i=1

αj) + 1/N(
N
∑

u=1

Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j ))

αi = Ψ−1



Ψ(
k
∑

i=1

αj) + 1/N(
N
∑

u=1

Ψ(γu
i )−Ψ(

K
∑

j=1

γu
j ))



 (7.35)

The fixed point iteration for computing αi in itself is quite simple, but it requires a

method for inverting the psi function. This can also be done iteratively using a fixed point

iteration also due to Minka [40]. Minka claims the inner loop of the iteration requires just

five iterations to reach fourteen decimal places of accuracy if the proposed initialization

scheme is used. We give the complete procedure for updating α in algorithm 7.8.

We give a variational EM procedure for model fitting based on the updates derived

for model parameters α, β, and the variational parameters γ, φ. We also discuss an

initialization method that has proved to be very effective for the URP model.
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Input: α,γ
Output: α

while (α Not Converged) do

for i = 1 to K do

xi = Ψ(
∑k

i=1 αj) + 1/N(
∑N

u=1 Ψ(γu
i )−Ψ(

∑K
j=1 γu

j ))

αi ←

{

exp(xi) + 1/2 if y ≥ −2.22
−1

xi−Ψ(1)
if y < −2.22

while αi Not Converged do

αi ← αi −
Ψ(αi)−xi

Ψ′(αi)

end while

end for

end while

Algorithm 7.8: URP-AlphaUpdate

Since each iteration of the variational inference procedure increases the total free

energy F [φ, γ, α, β], any number of variational inference steps I can be used and overall

convergence is guaranteed. Iterating to convergence corresponds to performing a full

variational E-Step. This is the approach used by Blei et all to fit the LDA model [7]. On

the other hand, a single step of variational inference can be used. This is the approach

adopted by Buntine to fit the Multinomial PCA (mPCA) model , a slight generalization

of LDA [11]. A further refinement is to allow the number of steps of variational inference

to vary for each user by defining a heuristic function that may depend on the user, H(u).

Empirically, we have found that a simple function of the number of observed ratings in

the user profile such as H(u) = b(|ru|+ 4)/4c provides a good heuristic. Note that while

in theory any choice of H(u) is valid since we are guaranteed to increase the free energy,

different choices lead to model parameters with different characteristic. The details of

the fitting procedure are given in algorithm 7.9.

7.4.4 An Equivalence Between The Aspect Model and URP

Recently Girolami and Kabán have shown an interesting equivalence between the dyadic

aspect model and LDA [20]. They show that fitting an LDA model with a uniform
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Input: {ru}, K
Output: α, β

Initialize α, β
while (F [φ, γ, α, β] Not Converged) do

for u = 1 to N do

[φu, γu]← URP-VarInf(α, β, ru, H(u))
end for

for v = 0 to V , y = 1 to M , z = 1 to K do

βvyz ←
∑N

u=1
δ(ru

y ,v)φu
yz

∑V

v′=1

∑N

u=1
δ(ru

y ,v′)φu
yz

end for

α← URP-AlphaUpdate(α, γ)
end while

Algorithm 7.9: URP-Learn

Dirichlet prior using a mixed maximum a posteriori and maximum likelihood fitting

procedure is equivalent to fitting the dyadic aspect model using maximum likelihood.

Essentially the same relationship holds between the vector aspect model and the URP

model.

In the URP model exact inference is not possible so approximate inference meth-

ods must be used for model fitting. As with LDA, an alternative to the variational

inference method we have adopted is to compute a MAP estimate of θ for each user.

The MAP estimate θa
MAP for a particular user a maximizes the posterior probabil-

ity P (θa|ra, β, α). If we assume a uniform Dirichlet prior αk = 1 for all k, Then

θa
MAP = θa

ML = arg maxθa P (ra|θu, β) = arg maxθa

∏N
u=1 P (ru|θu, β). Given the value of

θu
ML for all users u we may then obtain a maximum likelihood estimate of β by comput-

ing βML = arg maxβ

∏N
u=1 P (ru|θu

ML, β). Now we expand the quantity
∏N

u=1 P (ru|θu, β)

under the URP model as seen in equation 7.36.

P (ru|θ, β) =
N
∏

u=1

M
∏

y=1

V
∏

v=1

(
K
∑

z=1

P (Zy = z|θu)P (Ry = ru
y |Z = z, β))δ(ru

y ,v) (7.36)

This quantity is exactly the likelihood of a complete set of user profiles under the

vector aspect model as given in equation 7.15. Thus, iterating the maximization for θML
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and βML results in a set of maximum likelihood parameters for the vector aspect model.

This demonstraits that the maximum likelihood procedure used to fit the vector aspect

model can be interpreted as a mixed maximum a posteriori and maximum likelihood

fitting procedure for the URP model which enforces a uniform dirichlet prior.

Since the fitting procedure for the vector aspect model can be seen as a lower quality

approximation than the variational methods we have adopted to fit the URP model,

we expect the variational methods to result in more accurate rating prediction results.

Similarly, we might expect a model fitting procedure based on expectation propagation

to result in more accurate rating prediction results than our variational methods [41].

7.4.5 URP Rating Prediction

Computing the distribution over rating values for a particular unrated item given a user

profile ru requires applying variational inference. For rating prediction we generally run

variational inference for a fixed number of steps since even a crude approximation of the

distribution over rating values can lead to correct predictions. The rating distribution

equation for the URP model is shown in equation 7.37.

p(Ry = v|ru) =
∫

θ

K
∑

z=1

p(Ry = v|Zy = z)p(z|θ)p(θ|ru)dθ (7.37)

This quantity may look quite difficult to compute, but by interchanging the sum and

integral, and appealing to our variational approximation q(θ|γu) ≈ p(θ|u) we obtain an

expression in terms of the model and variational parameters.

p(Ry = v|ru) =
K
∑

z=1

p(Ry = v|Zy = z)
∫

θ
p(Zy = z|θ)p(θ|ru)dθ

≈
K
∑

z=1

p(Ry = v|Zy = z)
∫

θ
p(Zy = z|θ)q(θ|γu)dθ

=
K
∑

z=1

p(Ry = v|Zy = z)Eqθ[θz]

=
K
∑

z=1

βryz

γu
z

∑k
i=1 γu

i

(7.38)
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Input: ra, α, β
Output: r̂a

[φ, γ]← URP-VarInf(α, β, ra, H(a))
for y = 1 to M do

for v = 1 to V do

pv ←
∑K

z=1 βryz
γu

z
∑k

i=1
γu

i

end for

r̂a
y ← median pv

end for

Algorithm 7.10: URP-Predict

To compute p(Ry = v|ru) according to equation 7.38 given the model parameters

α and β, it is necessary to apply the variational inference procedure to compute γu.

However, this only needs to be done once for any profile ru regardless of the number of

predictions that need to be calculated.

7.4.6 Complexity

In the E-step of the URP-Learn algorithm consists of running the iterative variational

inference algorithm for each user to update the variational parameters. The complexity

of the variational inference algorithm is O(I1MV K) where I1 is a bound on the number of

steps of variational inference taken for each user. The total time complexity of the E-step

is thus O(I1NMV K). The complexity of the E-step dominates the M-step where the

model parameters are updated. Letting I2 be a bound on the number of EM iterations

needed to reach convergence, we obtain a total time complexity of O(I1I2NMV K). The

total space complexity of the learned representation is O(MV K + K).

The URP-Predict algorithm consists of first performing variational inference on the

user profile at a cost of O(I1MV K), and then computing the distribution over ratings

for each item at a cost of O(MV K). The total time complexity is thus O(I1MV K).
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7.4.7 Results

Fitting the URP model can be quite difficult starting from randomly initialized α and β

parameters. The method we have adopted for initialization is to partially fit a mixture of

multinomials model with K user types. A small, fixed number of EM iterations is used.

The mixture of multinomials model yields a multinomial distribution β ′ over ratings

conditioned on the item and user type, as well as a single multinomial distribution over

user types θ′. To initialize the URP model we set β ← β ′, α← κθ′ where κ is a positive

constant. Setting κ = 1 appears to give good results in practice.

The URP-Learn and URP-Predict methods described in algorithms 7.9 and 7.10 were

implemented, and tested for their strong and weak generalization performance. We report

the results in tables 7.5 and 7.6.

Table 7.5: URP: EachMovie Results
K = 5 K = 10 K = 20 K = 30

Weak 0.4621± 0.0016 0.4442± 0.0013 0.4422± 0.0018 0.4422± 0.0008
Strong 0.4755± 0.0013 0.4579± 0.0006 0.4559± 0.0010 0.4557± 0.0012

Table 7.6: URP: MovieLens Results
K = 4 K = 6 K = 8 K = 10

Weak 0.4386± 0.0044 0.4341± 0.0023 0.4402± 0.0035 0.4403± 0.0019
Strong 0.4476± 0.0016 0.4444± 0.0032 0.4480± 0.0020 0.4535± 0.0020

7.5 The Attitude Model

The URP model has consistent generative semantics at both the user level and the profile

level. However, the question of whether the generative semantics of URP correspond

well to intuition has not been addressed. Recall that in the URP model the latent space

representation of a user is a distribution P (Z|θu) over user types. A rating for item

y is generated by sampling a particular attitude z, and then sampling a rating from

P (Ry|Zy = z). Thus the user is represented as a distribution over user attitudes, but



Chapter 7. Probabilistic Rating Models 83

a different stochastically selected attitude is used to generate the rating value for each

item.

The URP model is descended from the dyadic aspect model, and the stochastic se-

lection of user attitudes corresponds directly to the stochastic selection of topics in the

document case. In the dyadic model a document is represented as a distribution over top-

ics P (Z|θ). A word is generated by stochastically selecting a topic z, and then selecting

a word according to the distribution P (W |Z = z). In this case the empirical distribution

of words generated for a particular document will reflect the distribution over topics for

that document. In the URP model, the distribution over user attitudes will be reflected

in the rating profile as a whole, but not in the choice of rating value for any particular

item. This is disappointing because intuitively we expect that different user attitudes

interact to determine a rating for each item.

The network structure of the attitude model can be seen in figure 7.8. Instead of a

distribution over attitude values or user types, the attitude model has a set of marginally

independent attitude nodes labeled Ak with a factorial prior distribution parameterized

by η as seen in equation 7.39. The latent space description of a user is a vector of attitude

expression levels au = (a1, ..., ak). Note that this vector does not represent a distribution

so the attitudes Ak can take on different expression levels ak independently of each other.

P (A = au|η) =
K
∏

k=1

P (Ak = au
k|η) (7.39)

Each attitude Ak has associated with it a set of real valued preference parameters ρvyk.

These can be thought of as parameters of a distribution over rating values for each item;

however, they are not the parameters of an actual multinomial distribution over ratings.

We can obtain the parameters of corresponding multinomial distribution over ratings

using the softmax function obtaining P (Ry = v|k) = exp(ρvyk)/
∑

v′ ρv′yk. This choice of

parameterization was made because it avoids the use of constrained optimization that is

needed to fit multinomial parameters directly. Given a particular expression level ak for

attitude Ak, the distribution over ratings for a particular item y is defined according to
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Figure 7.8: The attitude model.

equation 7.40. Given an attitude vector au, the probability of rating value v for item y

is a product of attitude expression levels and preference parameters as seen in equation

7.41. Given an attitude vector au, the probability of a rating profile ru with unobserved

ratings is shown in equation 7.42. We define su
y =

∑V
v=1 δ(ru

y , v) to simplify the notation.

Lastly, the joint probability of observing a user profile ru and an attitude vector au is

given in equation 7.43

P (Ry = v|Ak = au
k , ρ) =

exp(au
kρvyk)

∑V
v′=1 exp(au

kρv′ik)
(7.40)

P (Ry = v|A = au, ρ) =

∏K
k=1 P (Ry = v|Ak = au

k)
∑V

v′=1

∏K
k=1 P (Ry = v′|Ak = au

k)

=
exp(

∑K
k=1 au

kρvyk)
∑V

v′=1 exp(
∑K

k=1 au
kρv′ik)

(7.41)

P (R = ru|Au, ρ) =
M
∏

y=1

∏V
v=1 exp(

∑K
k=1 au

kρvyk)
δ(ru

y ,v)

∑V
v′=1 exp(

∑K
k=1 au

kρv′ik)
su
y

(7.42)

P (R = ru, Au|η, ρ) =
K
∏

k=1

P (Ak = au
k|η)

M
∏

y=1

∏V
v=1 exp(

∑K
k=1 au

kρvyk)
δ(ru

y ,v)

∑V
v′=1 exp(

∑K
k=1 au

kρv′ik)
su
y

(7.43)

This is a novel approach for collaborative filtering, and is quite distinct from the

mixture models we have described to this point. As we have mentioned, the URP and

aspect models employ stochastic selection of user attitudes to generate ratings, while

the attitude model allows every user attitude to influence every rating. In the stochas-

tic selection case we would expect preference patterns to be learned competitively, and
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that each user attitude would attempt to explain the ratings for all items. On the other

hand, we would expect the preference patterns in the attitude model to be learned co-

operatively. A particular user attitude k can have no opinion about a certain item y by

learning a set of ρvyk that are approximately uniform over the range of v. This may allow

different attitudes to specialize to a subset of the items, leading to a more efficient use

of parameters.

7.5.1 Variational Approximation and Free Energy

As with the URP model, exact inference is intractable due to a sum over all attitude ex-

pression vectors of length k. We assume a factorial q-distribution for the hidden attitude

nodes as shown in equation 7.44. In the case of attitudes with binary expression levels,

q(Ak = 1|µu
k) = µu

k and q(Ak = 0|µu
k) = 1−µu

k . In the case of more general integer-valued

attitudes, a Poisson distribution with mean µu
k would be appropriate for q(Ak = a|µu

k).

q(A = au|R = ru, µ) =
K
∏

k=1

q(Ak = au
k|µk) (7.44)

We derive the free energy of the attitude model F [µ, η, ρ] = Eq[log P (r, a|η, ρ)] +

H[q(a|r, µ)] without assuming particular forms for the distributions P (Ak|ηk) and q(Ak|µk).

Later this will allow us to easily derive learning algorithms for an attitude model with

binary expression levels, as well as an attitude model with integer valued expression

levels.

Expanding the first term of the free energy and then taking the expectation with

respect to the q-distribution yields equation 7.45.

log P (r, a|η, ρ) =
N
∑

u=1

(log P (ru|au, ρ) + log P (au|θ))

=
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

k=1

au
kρvyk −

N
∑

u=1

M
∑

y=1

su
y log

(

V
∑

v=1

exp(
K
∑

k=1

au
kρvyk)

)

+
∑

u=1

K
∑

k=1

log P (Ak = au
k|ηk)
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Eq[log P (r, a|η, ρ)] =
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

k=1

Eq[a
u
kρvyk]

−
N
∑

u=1

M
∑

y=1

su
yEq

[

log

(

V
∑

v=1

exp(
K
∑

k=1

au
kρvyk)

)]

+
N
∑

u=1

K
∑

k=1

Eq[log P (Au
k = au

k|ηk)] (7.45)

To complete the derivation of the free energy we expand the entropy term obtaining

equation 7.46.

log q(a|η) =
K
∑

k=1

log q(Ak = au
k|µ

u
k)

Eq[log q(Au|Ru, θ)] =
K
∑

k=1

Eq[log q(Au
k = ak|µ

u
k)] (7.46)

Combining these quantities we obtain the general form of the attitude model free energy

function as seen in equation 7.47.

F [µ, η, ρ] =
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

k=1

Eq[a
u
kρvyk]−

N
∑

u=1

M
∑

y=1

su
yEq

[

log

(

V
∑

v=1

exp(
K
∑

k=1

au
kρvyk)

)]

+
N
∑

u=1

K
∑

k=1

Eq[log P (Au
k = au

k|ηk)]−
N
∑

u=1

K
∑

k=1

Eq[log q(Au
k = au

k|µ
u
k)] (7.47)

We obtain lower bound on the free energy F̃ [µ, η, ρ] ≤ F [µ, η, ρ] which is easier to work

with by applying Jensen’s inequality to the second term in 7.47. A further simplification

is obtained by noting that the Ak are marginally independent and thus the expected

value of their product is equal to the product of their expected values.

F̃ [µ, η, ρ] =
N
∑

u=1

M
∑

y=1

V
∑

v=1

δ(ru
y , v)

K
∑

k=1

µu
kρvyk −

N
∑

u=1

M
∑

y=1

su
y log

V
∑

v=1

K
∏

k=1

Eq[exp(Au
kρvyk)]

+
N
∑

u=1

K
∑

k=1

Eq[log P (Au
k = au

k|ηk)]−
N
∑

u=1

K
∑

k=1

Eq[log q(Au
k = au

k|µ
u
k)] (7.48)

7.5.2 Learning

We begin the development of a learning algorithm for the attitude model by finding

the derivatives of the bound on the free energy F̃ [µ, η, ρ] with respect to the model
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parameters ρvyk and ηk, as well as the variational parameters µu
k . We will later use the

general derivatives found here to develop model fitting procedures for both binary and

integer attitude models. We define intermediate variables γu
vyk and αu

vy to simplify the

derivative equations:

γu
vyk = Eq[exp(au

kρvyk)] αu
vy =

K
∏

k=1

γu
vyk

∂F̃ [µ, η, ρ]

∂µu
k

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)ρvyk −

∂

∂µu
k

(Eq[log q(au
k|µ

u
k)] + Eq[log P (au

k|ηk)])

−
M
∑

y=1

su
y

∑V
v=1

∂
∂µu

k

(Eq[exp(au
kρvyk)])

∏K
i6=k Eq[exp(au

yρvyi)]
∑V

v=1

∏K
i Eq[exp(au

kρvyi)]

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)ρvyk −

∂

∂µu
k

(Eq[log q(au
k|µ

u
k)]− Eq[log P (au

k|θ)])

−
M
∑

y=1

su
y(

V
∑

v′=1

∂γu
v′yk

∂µu
k

αvy

γu
vyk

)/(
V
∑

v′=1

αv′y) (7.49)

∂F̃ [µ, η, ρ]

∂ρvyk

=
N
∑

u=1

δ(ru
y , v)µu

k −
N
∑

u=1

su
y

∂
∂ρvyk

(Eq[exp(au
kρvyk)])

∏K
i 6=k Eq[exp(au

i ρvyi)]
∑V

v′=1

∏K
i Eq[exp(au

i ρv′yi)]

=
N
∑

u=1

δ(ru
y , v)µu

k −
N
∑

u=1

su
k

∂γu
vyk

∂ρvyk

γvyk

αu
vy

∑V
v′=1 αu

vy

(7.50)

∂F̃ [µ, η, ρ]

∂ηk

=
N
∑

u=1

∂

∂ηl

Eq[log P (au
k|ηk)] (7.51)

Learning now reduces to the problem of performing gradient ascent to maximize the

free energy of the model F̃ [µ, η, ρ]. As we will see in subsequent sections, some care

must be taken in maximizing the free energy because some of the variational and model

parameters are constrained under different distributions. Learning will thus require the

use of an iterative, constrained optimization procedure.

7.5.3 Rating Prediction

Prediction with the attitude model is much more computationally intensive than in the

other models studies to this point, including the URP model. In this subsection we
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define the general prediction equation for the attitude model, and explain how it can be

approximated. In later subsections we show how the prediction equation specializes to

the binary and integer attitude models. The probability that a given item y will have

rating v given a user profile ru is shown in equation 7.52

P (Ry = v|R = ru) =
∑

a

P (Ry = v|A = a)P (A = a|R = ru)

≈
∑

a

exp(
∑K

k=1 akρvyk)
∑V

v′=1 exp(
∑K

k=1 akρvyk)
q(A = a|R = ru)

=
∑

a

exp(
∑K

k=1 akρvyk)
∑V

v′=1 exp(
∑K

k=1 akρv′yk)

K
∏

k=1

P (Ak = ak|µ
u
k) (7.52)

It is important to note two facts about the expression given above. First, we have

appealed to the variational approximation P (A = a|R = ru) ≈ q(A = a|µ). This means

that to compute P (Ry = v|R = ru), we must first perform variational inference to obtain

estimates of the variational parameters µu
k . However, this only needs to be done once in

order to make predictions for all unknown items. Second, the sum over a is a sum over all

possible attitude vectors of length K. In the binary case the number of attitude vectors

is exponential in the number of attitudes, K. In the integer case the number of possible

attitude vectors is infinite. To preserve computational tractability in either case requires

that the true value of P (Ry = v|R = ru) be approximated by sampling a relatively small

number of attitudes vectors a.

7.5.4 Binary Attitude Model

In this subsection we derive a model fitting procedure assuming binary attitude expres-

sion. In this case the prior distribution on the Ak is Bernoulli. We have P (Ak = 1) = ηk

and P (Ak = 0) = 1 − ηk. We defines the q-distribution to be Bernoulli as well. The

q-distribution has the form q(Ak = 1|µu
k) = µu

k and q(Au
k = 0|µu

k) = 1− µu
k . The interme-

diate variables γu
vyk and αu

vy as well as their derivatives are shown below.

γu
vyk = Eq[exp(au

kρvyk)] = µu
k exp(ρvyk) + 1− µu

k



Chapter 7. Probabilistic Rating Models 89

αu
vy =

K
∏

k=1

γu
vik =

K
∏

k=1

µu
k exp(ρvyk) + 1− µu

k

∂γu
vyk

∂µk

= exp(ρvyk)− 1

∂γu
vyk

∂ρvyk

= µu
k exp(ρvyk)

To derive a variational learning algorithm for the binary attitude model we must find

the gradient of F̃ [µ, η, ρ] with respect to the model parameters ρvyk and ηk, as well as

the variational parameters µu
k . This is easily accomplished by substituting the values of

the intermediate variables and their derivatives into equations 7.49 to 7.51.

∂F̃B[µ, η, ρ]

∂µu
k

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)ρvyk + log(ηk)− log(1− ηk)− log(µu

k) + log(1− µu
k)

−
M
∑

y=1

su
y(

V
∑

v′=1

αvy

(exp(ρvyk)− 1)

µu
k(exp(ρvyk)− 1) + 1

/(
V
∑

v=1

αvy) (7.53)

∂F̃B[µ, η, ρ]

∂ρvyk

=
N
∑

u=1

δ(ru
y , v)µu

k −
N
∑

u=1

su
k

µu
k exp(ρvyk)

µu
k(exp(ρvyk)− 1) + 1

αu
vy

∑V
v′=1 αu

vy

(7.54)

∂F̃ [µ, η, ρ]

∂ηk

= ηk −
1

N

N
∑

u=1

µu
k (7.55)

As we noted previously analytical updates for ρvyk, and µu
k can not be found due

to coupling of parameters in their respective gradient equations. We must thus resort

to iterative optimization techniques for learning. In the binary attitude model the ρvyk

parameters are unconstrained, but µu
k parameters represent Bernoulli probabilities and

are constrained to lie within the interval [0, 1].

A number of optimization methods exist for iteratively solving box constrained opti-

mization problems. However, since the number of users in a collaborative filtering data

set ranges from tens of thousands to hundreds of thousands and the number of attitude

variables may be on the order of hundreds, clearly any method relying on second deriva-

tives will be computationally intractable. Two methods that rely only on first order

derivatives are the log-barrier method, and the projected gradient method [4, p. 76].
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Input: η, ρ, r, I
Output: µ

Initialize µ. ξ ← 1. Compute s.
for t = 1 to I do

for k = 1 to K do

dk ←
∑M

y=1

∑V
v=1 δ(ry, v)ρvyk + log(ηk)− log(1− ηk)− log(µk)

+ log(1− µk)−
∑M

y=1 sy(
∑V

v′=1 αvy
(exp(ρvyk)−1)

µk(exp(ρvyk)−1)+1
/(
∑V

v=1 αvy)

while (F̃B
u [P(µ− ξd), η, ρ] > F̃B

u [µ, η, ρ]) do

ξ ← κξ
end while

µ← P(µ− ξd)
end for

end for

Algorithm 7.11: AttBin-VarInf

The log-barrier method is well known to exhibit extremely slow convergence in most

cases. The projected gradient method is a modification of regular gradient descent. The

method has an extremely simply form for problems where each variable xi is constrained

to lie in the interval [lbi, ubi]. In this case The projected gradient method replaces the

standard gradient descent step xt+1 = xt − ξt∇f(xt) with the projected gradient step

xt+1 = P(xt − ξ∇f(xt)) where P(x) is the projection function. For box constrained

problems P(x)i = median(lbi, xi, ubi) [4, p. 92]. To ensure convergence the step size αt

must be chosen by an inexact line search procedure which satisfies sufficient decrease and

curvature conditions. A backtracking line search is particularly easy to implement.

We obtain a variational inference procedure by iteratively maximizing F̃B[µ, η, ρ]

with respect to µ using the projected gradient method. It is important to note that

while the µu parameters are coupled for each user, they are not coupled across users. It

is thus natural to define a per user objective function F̃B
u [µu, η, ρ] such that F̃B[µ, η, ρ] =

∑N
u=1 F̃B

u [µu, η, ρ]. We summarize the resulting variational inference procedure in algo-

rithm 7.11. κ is a parameter that controls the speed of backtracking in the line search.

Its value must satisfy 0 < κ < 1
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Input: {ru}, K
Output: η, ρ

Initialize η, ρ. ξ ← 1. Compute s.
while (F̃B[µ, η, ρ] Not Converged) do

for u = 1 to N do

µu ← AttBin-VarInf(η, ρ, r, H(u))
end for

for v = 1 to V , y = 1 to M , k = 1 to K do

dvyk ←
∑N

u=1 δ(ru
y , v)µu

k −
∑N

u=1 su
k

µu
k

exp(ρvyk)

µu
k
(exp(ρvyk)−1)+1

αu
vy

∑V

v′=1
αu

vy

end for

while (F̃B[µ, η, ρ− ξd] > F̃B[µ, η, ρ]) do

ξ ← κξ
end while

ρ← ρ− ξd
for k = 1 to K do

ηk ←
1
N

∑N
u=1 µu

k

end for

end while

Algorithm 7.12: AttBin-Learn

An iterative procedure for learning the parameters ρvyk and ηk of the binary attitude

model can now be defined. The ρvyk parameters are unconstrained, so standard gradient

descent with line search can be used. The ηk parameters have an analytic update. We

give the model fitting procedure in algorithm 7.12. Lastly, we give the prediction equa-

tions for the binary attitude model. Recall that in the binary case the q-distribution is

given by q(Ak = ak|µ
u
k) = akµ

u
k + (1− ak)(1− µu

k). To make predictions for any user we

must first apply the variational inference algorithm to compute the values of the varia-

tional parameters. As mentioned previously, computing the distribution P (Ry|R = ru)

is intractable even when the variational approximation is used. This is because the com-

putation involves a sum over all binary vectors of length K. To overcome this problem,

we compute an approximation to the true prediction distribution by sampling attitude

vectors according to their probability under the q-distribution. Luckily, the attitudes are

marginally independent so sampling an attitude vector reduces to independently sampling
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Input: ra, η, ρ
Output: r̂a

µ← AttBin-VarInf(η, ρ, ra, H(a))
for s = 1 to S do

Sample as from Bernoulli(µ)
end for

for y = 1 to M do

for v = 1 to V do

pv ←
∑S

s=1

exp(
∑K

k=1
as

k
ρvyk)

∑V

v′=1
exp(

∑K

k=1
as

k
ρvyk)

∏K
k=1(a

s
kµk + (1− as

k)(1− µk))

end for

p← p
∑V

v=1
pv

r̂a
y ← median(p)

end for

Algorithm 7.13: AttBin-Predict

each component. We give a complete prediction method in algorithm 7.13.

P (Ry = v|R = ru) ≈
∑

a

exp(
∑K

k=1 akρvyk)
∑V

v′=1 exp(
∑K

k=1 akρvyk)

K
∏

k=1

(akµ
u
k + (1− ak)(1− µu

k))

≈
P s(Ry = v|R = ru)

∑V
v′=1 P s(Ry = v′|R = ru)

P s(Ry = v|R = ru) =
S
∑

s=1

exp(
∑K

k=1 as
kρvyk)

∑V
v′=1 exp(

∑K
k=1 as

kρvyk)

K
∏

k=1

(as
kµ

u
k + (1− as

k)(1− µu
k))

7.5.5 Integer Attitude Model

In this section we derive a model fitting procedure assuming integer attitude expression.

In this case we assume a Poisson prior distribution on the Ak such that P (Au
k = a|η) =

exp(−ηk)η
a
k/a!, as well as a Poisson q-distribution q(Au

k = a|µ) = exp(−µk)µ
a
k/a!. The

intermediate variables γu
vyk and αu

vy as well as their derivatives are shown below.

γu
vyk = exp[µu

k(exp(ρvyk)− 1)]

αu
vy =

K
∏

k=1

exp[µu
k(exp(ρvyk)− 1)]

∂γu
vyk

∂µk

= γu
vyk(exp(ρvyk)− 1)

∂γu
vyk

∂ρvyk

= γu
vykµ

u
k exp(ρvyk)
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To derive a variational model fitting algorithm for the integer attitude model we need

the gradient of the total free energy with respect to the model parameters ρvyk and ηk,

as well as the variational parameters µu
k . Again we simply substitute the values of the

intermediate variables and their derivatives into equations 7.49 to 7.51.

∂F̃ [µ, η, ρ]

∂µu
k

=
M
∑

y=1

V
∑

v=1

δ(ru
y , v)ρvyk + log(ηk)− log(µu

k)−
M
∑

y=1

su
y

∑V
v=1[exp(ρvyk)− 1]αu

vk
∑V

v=1 αu
vk

(7.56)

∂F̃ [µ, η, ρ]

∂ρvyk

=
N
∑

u=1

δ(ru
y , v)µu

k −
N
∑

u=1

su
y

µu
k exp(ρvyk)α

u
vy

∑′
v αu

v′y

(7.57)

∂F̃ [µ, η, ρ]

∂ηk

= ηk −
1

N

N
∑

u=1

µu
k (7.58)

As in the binary case, analytical updates for ρvyk, and µu
k can not be found due

to coupling of parameters in their respective gradient equations. We again resort to

iterative optimization techniques for model fitting. In the integer attitude model the µu
l

parameters represent the mean of a poisson distribution over integer attitude expression

levels, and are thus constrained to lie in the interval [0,∞). This type of optimization

problem is also considered to be box constrained, and the projected gradient method

described in previous sub-section can be applied without modification. In the Poisson

case lbu
k is set to 0 for all k and u, while ubu

k is set to ∞. The ρvyk parameters remain

unconstrained and ηk parameters have the same analytical update as in the binary case.

We give the variational inference method for the integer attitude model in algorithm 7.14,

followed by a model fitting procedure in algorithm 7.15.

Lastly, we give the prediction equations for the integer attitude model. Recall that

in the integer case the q-distribution is given by q(Ak = ak|µ
u
k) = exp(−µu

k)(µ
u
k)

ak/ak!.

To make predictions for any user we must first apply the variational inference algorithm

to compute the values of the variational parameters. In the integer case the calculation

of the prediction distribution P (Ry|R = ru) is clearly intractable because it involves a

sum over all integer valued vectors of length K. However, we can still approximate the
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Input: η, ρ, r, I
Output: µ

Initialize µ. ξ ← 1. Compute s.
for t = 1 to I do

for k = 1 to K do

dk ←
∑M

y=1

∑V
v=1 δ(ry, v)ρvyk + log(ηk)− log(µk)

−
∑M

y=1 sy

∑V

v=1
[exp(ρvyk)−1]αvk
∑V

v=1
αvk

while (F̃ I
u [P(µ− ξd), η, ρ] > F̃ I

u [µ, η, ρ]) do

ξ ← κξ
end while

µ← P(µ− ξd)
end for

end for

Algorithm 7.14: AttInt-VarInf

prediction distribution. In the integer case the attitudes are marginally independent so

sampling an attitude vector reduces to independently sampling each component as in the

binary case. Sampling the components is slightly more complicated than in the binary

case because the q-distribution is Poisson and not Bernoulli.

P (Ry = v|R = ru) ≈
∑

A

exp(
∑K

k=1 akρvyk)
∑V

v′=1 exp(
∑K

k=1 akρvyk)

K
∏

k=1

exp(−µu
k)(µ

u
k)

ak/ak!

≈
P s(Ry = v|R = ru)

∑V
v′=1 P s(Ry = v′|R = ru)

P s(Ry = v|R = ru) =
S
∑

s=1

exp(
∑K

k=1 as
kρvyk)

∑V
v′=1 exp(

∑K
k=1 as

kρvyk)

K
∏

k=1

exp(−µu
k)(µ

u
k)

as
k/as

k!

7.5.6 Complexity

The computational and space complexity of the binary and integer attitude models are

asymptotically equivalent. The complexity of computing the per-user free energy func-

tion is O(MKV ). The backtracking phase of the variational inference method thus has

computational complexity O(I1MKV ) where I1 is a bound on the number of backtrack-

ing iterations needed to ensure a decrease in the free energy function. By preserving the
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Input: {ru}, K
Output: η, ρ

Initialize η, ρ. ξ ← 1. Compute s.
while (F̃ I [µ, η, ρ] Not Converged) do

for u = 1 to N do

µu ← AttInt-VarInf(η, ρ, r, H(u))
end for

for v = 1 to V , y = 1 to M , k = 1 to K do

dvyk ←
∑N

u=1 δ(ru
y , v)µu

k −
∑N

u=1 su
y

µu
k

exp(ρvyk)αu
vy

∑′

v
αu

v′y

end for

while (F̃ I [µ, η, ρ− ξd] > F̃ I [µ, η, ρ]) do

ξ ← κξ
end while

ρ← ρ− ξd
for k = 1 to K do

ηk ←
1
N

∑N
u=1 µu

k

end for

end while

Algorithm 7.15: AttInt-Learn

value of ξ for each user between calls to variational inference method, I1 is observed to

drop to 1 on average as the learning method progresses. The cost of computing the gra-

dient with respect to µu is O(MV K). The total complexity of the variational inference

method is thus O(I2I1MV K) where I2 is a bound on the number of iterations needed

for the objective function to converge. In the implementation a hard limit of five steps

was imposed to control computation time.

The learning method is also an iterative optimization algorithm. In each step the

variational inference algorithm is run for each user to update the µ values at a total cost of

O(I2I1NMV K). The gradient with respect to ρ is also computed at a cost of O(NMV K).

If a full line search is used to update ρ as we suggest, the backtracking procedure requires

O(I3NMV K), where I3 is a bound on the number of backtracking iterations. The value of

I3 was also observed to go to 1 on average as the number of optimization steps increased.

The cost of updating η is negligible at O(NK). The total computational complexity of
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Input: ra, ρ, η
Output: r̂a

µ← AttInt-VarInf(η, ρ, ra, H(u))
for s = 1 to S do

Sample as from Poisson(µ)
end for

for y = 1 to M do

for v = 1 to V do

pv ←
∑S

s=1

exp(
∑K

k=1
as

k
ρvyk)

∑V

v′=1
exp(

∑K

k=1
as

k
ρvyk)

∏K
k=1 exp(−µk)(µk)

as
k/as

k!

end for

p← p
∑V

v=1
pv

r̂a
y ← median p

end for

Algorithm 7.16: AttInt-Predict

the learning algorithm is thus O(I4I2I1NMV K + I4I3NMV K), where I4 is a bound on

the number of iterations of the learning algorithm needed to obtain convergence of the

total free energy function. Again, a hard limit of 50 iterations was imposed to control

computation time. The space complexity of the learned representation is similar to the

other probabilistic models we have investigated requiring MV K + K parameters.

The prediction method first call the variational inference procedure to compute µa

for the active user at a cost of O(I2I1MV K). Next, the rating distributions for each

item are computed using S samples at a cost of SMV K. This gives a total prediction

complexity of O(I2I1MV K + SMV K).

7.5.7 Results

The AttBin-Learn and AttBin-Predict methods described in algorithms 7.12 and 7.13

were implemented, and tested for both their strong and weak generalization performance.

EachMovie was tested using 5, 10, and 20 attitudes. MovieLens was also tested using 5,

10, and 20 attitudes. The results are presented in tables 7.7, and 7.8.

Like with the URP model, the attitude model is very sensitive to the initial values
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for the variational parameters µ and the model parameters ρ. Random initialization

of these parameters lead to fairly poor results in preliminary testing. An initialization

scheme was adopted where the attitude model was fit to a random subset of the training

users for several iterations. At the end of the initialization phase the learned ρ values

were retained, the µ values were reinitialized randomly for all training users, and the full

training phase was started.

Prediction performance is also highly sensitive to the step size parameters used in the

line search procedures for optimizing µ. The line search procedures ensure that the free

energy decreases monotonically to convergence regardless of the settings of the learning

parameters, but some solutions are clearly of higher quality than others. Setting the

initial step size too high in the variational inference procedure will cause the µ vectors

for many users to immediately jump very close to the extreme values 0 and 1. This tends

to lead to parameters with poor predictive ability. A fair amount of experimentation is

needed to obtain reasonable initial step sizes for each data set.

Due to the complexity of the attitude model learning procedure, the complete Each-

Movie training data sets EMWeak1, EMWeak2, and EMWeak3 were not used for exper-

imentation. Instead, a random sample of 5000 users was drawn from each of these data

sets, and the model was trained on each random sample. Of course, the final prediction

error on the weak data sets was calculated using all training users.

Table 7.7: AttBin-Predict: EachMovie Results
K = 5 K = 10 K = 20

Weak 0.4803± 0.0023 0.4664± 0.0030 0.4520± 0.0016
Strong 0.4785± 0.0024 0.4601± 0.0043 0.4550± 0.0023

Table 7.8: AttBin-Predict: MovieLens Results
K = 5 K = 10 K = 20

Weak 0.4384± 0.0060 0.4320± 0.0055 0.4338± 0.0034
Strong 0.4400± 0.0086 0.4375± 0.0028 0.4400± 0.0082



Chapter 8

Comparison of Methods

In this chapter we present a comparison of ratings prediction methods. We have im-

plemented a total of nine methods including a classical Pearson correlation K nearest

neighbor regression method (PKNN), a naive Bayes classification method (NBClass), a

K-Medians clustering method (K-Medians), the wighted singular value decomposition

method (wSVD), a simple multinomial model (Multi), a mixture of multinomials model

(MixMulti), the vector aspect model (Aspect), the user rating profile model (URP), and

the binary attitude model (Attitude).

For each model we give the computational complexity of the learning and prediction

algorithms, as well as the space complexity of the representation learned by each method.

We also report the mean weak and strong generalization error rates achieved by each

method on each data set. For methods with a complexity parameter K, we report the

lowest mean error rate achieved by the settings of K we have tested.

8.1 Complexity

From a strict complexity-based point of view, the most attractive feature of rating pre-

diction method are a non-iterative prediction algorithm, prediction complexity that is

independent of the number of users, reasonable learning complexity, and a compact

98
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Table 8.1: Computational Complexity Of Learning and Prediction Methods

Method Learning Prediction

PKNN O(1) O(NM + N log N + KM)
NBClass O(NM 2V 2 + M2 log M) O(MV K)
K-Medians O(INMK) O(MK)
wSVD O(INM 2 + IM3) O(IKM)
Multi O(NMV ) O(1)
MixMulti O(INMV K) O(MV K)
Aspect O(INMV K) O(MV K)
URP O(I1I2NMV K) O(I1MV K)
Attitude O(I4I2I1NMV K + I4I3NMV K) O(I2I1MV K + SMV K)

N : #users M : #items V : #rating values I: #iterations S: #samples K: complexity

learned representation.

The computational complexity of each learning and rating prediction method is given

in table 8.1. The learning method with the lowest computational complexity is the neigh-

borhood method PKNN-Learn. As an instance based method, PKNN-Learn simply stores

all training profiles in the learning step. However, the complexity of the PKNN-Predict

method is O(NM +N log N +KM), making it the only method with prediction complex-

ity that scales with the number of users N . On the other hand, the multinomial model

learning method Multi-Learn scales linearly with the number of users, but the prediction

method Multi-Predict has a computation time of O(1). These two methods illustrate a

fundamental tradeoff in computational complexity between the learning algorithm and

the prediction algorithm. From a systems standpoint it is much more desirable to trade-

off higher learning time for lower prediction time. Learning can be done offline, while

prediction must be done online, and often in real time for Internet-based recommendation

services. The remainder of the methods we have studied fall somewhere in between these

two. All learning methods other than PKNN-Learn scale linearly with respect to the

number of users N , while all prediction methods other than Multi-Predict scale linearly

with the number of items M .

The methods which perform clustering, dimensionality reduction, and learn proba-
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bilistic latent variable model all require iterative learning procedures. The computa-

tional complexity of these methods all depend on the number of iterations needed for

an objective function to converge. The K-medians clustering method Kmedians-Learn

reliably converged from random initializations in approximately 20 iterations at a cost

of O(NMK) per iteration. The MixMulti-Learn and Aspect-Learn algorithms also con-

verged very reliably from random initializations in approximately 30 iterations both at a

cost of O(NMV K) per iteration.

Running the URP-Learn algorithm with a randomly initialized set of parameters

resulted in extremely unreliable convergence regardless of the number of steps used.

However, when initialized with learned parameters from a multinomial mixture model,

URP-Learn would reliably converge in approximately 10 iterations. URP-Learn is a

doubly iterative algorithm since the variational inference method for the model is itself

iterative. While theory dictates that the variational inference algorithm should also be

run to convergence, limits proportional to the number of observed ratings in each user

profile were imposed.

The two learning methods that exhibited the greatest number of iterations to yield

reasonable results were the wSVD-Learn method, and the Attitude-Learn method. In

the case of the wSVD-Learn method, convergence is known to be slow in the zero/one

weight case. This condition is further aggravated by the extreme sparsity of the rating

data. A limit of 100 iterations was imposed to control the total computation time of the

experiments; however, the method was still making slow but steady progress at the end

of these iterations in all cases. Better results may be obtained using a greater number

of iterations, but this simply is not practical due to the O(NM 2 + M3) computational

complexity of each iteration.

The attitude model is triply iterative, which makes it one of the slowest learning

methods. A limit of 50 iterations was imposed on the learning method. A limit of

5 iterations was imposed on the variational inference method for each user. The line
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Table 8.2: Space Complexity of Learned Representation
Method Space Complexity of Learned Representation

PKNN NM
NBClass MV 2K + MV
K-Medians MK
wSVD MK + K
Multi MV
MixMulti MV K + K
Aspect MV K + NK
URP MV K + K
Attitude MV K + K

N : #users M : #items V : #rating values K: complexity

search procedures were permitted to backtrack until the step size fell below 10−5. The

method yields excellent performance within these computational limits, but allowing

more iterations would likely result in improved performance. We note that a major factor

affecting the quality of the solution is the choice of initial step length and backtracking

parameters for the line search procedures employed by the method. Small values for both

quantities will yield good solutions, but increase time to convergence and the number of

backtracking steps. A large initial step length decreases time to convergence, but results

in a poor model.

The majority of the prediction methods have fixed computational complexity, ex-

cept for wSVD-Predict, URP-Predict, and AttBin-Predict. The per-iteration cost of the

wSVD method is O(KM), which is fairly low. However, a relatively large number of iter-

ations is needed, and a limit of 100 iterations was imposed. The per-iteration cost of the

URP-Predict method is also quite low at O(MV K). A number of iterations proportional

to the number of observed ratings was used in practice. The AttBin-Predict algorithm

contains both a doubly iterative variational inference step and a sampling step, which

make it the slowest prediction method. Even with the largest number of possible binary

attitude configurations tested, 220, the prediction method yields excellent results based

on only 200 samples. This is due to the fact that for most users the mean µu
k of the

Bernoulli distribution for most attitudes k is close to either 0 or 1.
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In terms of space complexity of the learned representation, the multinomial model and

the K-Medians cluster prototypes are approximately tied for the most compact learned

representation. The two methods with the largest learned representation are the PKNN

method and the vector aspect model. The PKNN method takes space proportional to

NM , or more correctly, the total number of observed ratings in the training data. This is

not surprising since PKNN is an instance based learning method: learning simply consists

of storing the train data. On the other hand, the vector aspect model actually learns a

representation of the data that grows linearly with the number of user in the training

set. This is an artifact of a probabilistic model with a generative process containing

incomplete semantics. This particular problem, along with several others, is solved by

the URP model which learns a representation of size MV K + K.

Only two of the nine methods we have studied satisfy all the complexity-based criteria

we have outlined. K-Medians clustering method has a simple, non-iterative prediction

method of complexity O(MK), learning complexity of O(NMK), and MK model pa-

rameters. The mixture of multinomials method involves calculations with distribution

over ratings, so naturally the number of rating values enters into the complexity of the

method. The mixture of multinomials prediction method is noniterative due to the fact

that inference in the model is simple and exact. The prediction complexity is O(MV K).

The complexity of learning is O(NMV K), while the number of parameters in the model

is O(MV K).

8.2 Prediction Accuracy

In terms of prediction performance, the goal of any rating prediction method is to obtain

the lowest possible prediction error. We have introduced two separate experimental

protocols to evaluate prediction performance. The weak generalization protocol tests a

method’s ability to generalize to new items for the users it was trained on. The strong
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Table 8.3: EachMovie: Prediction Results
Method Weak Comp Weak NMAE Strong Comp Strong NMAE

PKNN 1 0.4886± 0.0014 1 0.4933± 0.0006
NBClass 20 0.5258± 0.0022 100 0.5295± 0.0047
K-Medians 20 0.4631± 0.0015 20 0.4688± 0.0012
wSVD 20 0.4562± 0.0032 20 0.4672± 0.0012
Multi 1 0.5383± 0.0022 1 0.5446± 0.0029
MixMulti 30 0.4557± 0.0012 30 0.4573± 0.0007
Aspect 30 0.4573± 0.0007 N/A N/A
URP 30 0.4422± 0.0008 30 0.4557± 0.0008
Attitude 20 0.4520± 0.0016 20 0.4550± 0.0023

Table 8.4: MovieLens: Prediction Results
Method Weak Comp Weak NMAE Strong Comp Strong NMAE

PKNN 1 0.4539± 0.0010 1 0.4621± 0.0022
NBClass 1 0.4803± 0.0027 10 0.4831± 0.0052
K-Medians 5 0.4495± 0.0027 20 0.4556± 0.0013
wSVD 10 0.4886± 0.0065 8 0.4710± 0.0042
Multi 1 0.4694± 0.0020 1 0.4746± 0.0035
MixMulti 4 0.4444± 0.0007 6 0.4383± 0.0048
Aspect 10 0.4339± 0.0023 N/A N/A
URP 6 0.4341± 0.0023 6 0.4444± 0.0032
Attitude 10 0.4320± 0.0055 10 0.4375± 0.0028

generalization protocol tests the ability of a method to generalize to completely novel

user profiles.

While the weak generalization protocol has typically been used to evaluate rating pre-

diction methods, the strong generalization results give a better indication of a method’s

online performance. In an online context it is not practical to re-learn a model whenever a

new rating is received, or a new rating profile is created. Instead a model is applied that,

having been trained at some time in the past, was trained without complete knowledge

of the current set of user profiles. This situation arises often in Internet recommendation

services, making strong generalization performance most relevant for that application

area.

For methods with a model size parameter K, we have conducted experiments testing a

range of values of K. For each method and each setting of the model size parameter, each
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experimental procedure was carried out using three partitions of the available data for

each data set. We report the lowest normalized mean absolute error rate attained by each

method along with the corresponding standard error value (NMAE), and the number of

components at which the lowest error rate was obtained (Comp). We present results for

the weak and strong generalization performance of each method on the EachMovie data

set in table 8.2. We present results for the weak and strong generalization performance of

each method on the MovieLens data set in table 8.3. In addition, we present bar charts

of weak and strong generalization error in figures 8.1 to 8.4. We have ranked the methods

along the horizontal axis from highest to lowest mean NMAE.

The performance of a range Pearson correlation neighborhood methods has long been

established. Our version, the PKNN method, consistently obtains better error rates than

the multinomial model, but is consistently worse than the specialized probabilistic models

and the K-medians method. All of the model-based methods learn representations of the

data that are more compact than the instance-based PKNN method, and have prediction

complexities not directly dependant on the number of users N .

The naive Bayes classification method is quite clearly a failure. In two cases it per-

forms only slightly better than the baseline multinomial model, and in two case it per-

forms slightly worse. This is an interesting result because if a given user has not rated any

of the feature items for a given class item, the naive Bayes model reverts to a multinomial

model for that item. Thus in the worst case we should expect the error of the multinomial

model to upper bound the error of the naive Bayes classification method. The fact that

this doesn’t hold indicates that some selected feature items or combinations of feature

items actually result in decreased performance. The performance of this method could

likely be improved by exploring an approach to feature selection that would incremen-

tally select feature items only if they resulted in an increase in prediction performance.

However, the added computational cost of such a learning method would probably not

be worth the resulting gain in performance.
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For a method based on hard clustering, the K-Medians method performs much better

than expected. It achieves error rates comparable with some of the specialized proba-

bilistic models using a very reasonable number of components. It also outperforms the

PKNN method by a significant amount, while having far lower prediction complexity.

While not a top performer, taking the reliability and speed of convergence into account

along with its excellent prediction complexity, the K-Medians method is among the top

“light-weight” prediction methods we have studied. It is actually quite astonishing that

early work on collaborative filtering failed to popularize the use of standard clustering

methods for rating prediction given the performance of these methods.

The performance of the wSVD algorithm is quite interesting. On the EachMovie data

set, which has a smaller number of items than the MovieLens data set by roughly half, the

wSVD method obtains error rates very close to the specialized probabilistic models. It is

among the top four methods with respect to both weak generalization error and strong

generalization error. On the smaller MovieLens data set wSVD ranks among the bottom

three methods. It is the only method which exhibits such a decrease in performance

across the two data sets. This would seem to indicate a drop in prediction performance

of the wSVD-Learn algorithm as the number of items increases. However, it may also

be the case that wSVD actually over fits on the training data due to the lower number

of user profiles. The training error rates were observed to be much lower than the test

error rates at the end of the wSVD learning procedure, which would tend to support the

second view. Further testing could not be carried out due again to the complexity of the

method.

The mixture of multinomials method performs better than expected. It ties the

Attitude model for best strong generalization performance on the MovieLens data set,

and is top three on both EachMovie tasks. The mixture of multinomials model also serves

as a very useful method for initializing the URP model, as we have noted previously. The

availability of simple, exact inference coupled with good performance makes this model
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very well suited for use in an online context.

The vector aspect model achieves very good accuracy on the EachMovie data set

and ties with URP and the Attitude model for the best weak generalization performance

on the MovieLens data set. The structure and parameterization of the vector aspect

model imply that inference can not be performed in a principled manner for new user

profiles. However, the interpretation of the vector aspect model fitting procedure in terms

of an approximate, restricted fitting procedure for the URP model in fact justifies the

use of the heuristic “folding in” procedure for inference with new users [29]. However,

this new perspective also makes it clear that the variational approximation method we

have proposed for fitting the URP model is more accurate than the mixed MAP/ML

approximation. Thus, in terms of prediction accuracy, URP completely superseeds the

vector aspect model.

The URP model obtains the lowest weak generalization error on the EachMovie data

set, and ties the attitude and multinomial mixture models for lowest strong generalization

error on the EachMovie data set. URP also places in the top three on both MovieLens

tasks. Overall, the URP model is a close second to the attitude model in terms of

prediction performance. However, it attains this performance level at a lower cost in

terms of both learning and prediction complexity.

Lastly, the binary attitude model achieves mean error rates lower than all the other

models in this study in three out of four experiments. This is an appealing result because

the attitude model was designed to have generative semantics that are more realistic than

the stochastic selection semantics of the multinomial mixture, aspect, and URP models.

In the attitude model, all latent attitudes interact to determine the rating for each user.

The more sophisticated generative semantics result in more complex model fitting and

prediction procedures, but the result is a model that obtains the best overall performance

of any of the models we have studied.
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Figure 8.1: Comparison of EachMovie weak generalization performance.

Multi NBClass PKNN K−Medians wSVD MixMulti URP Attitude

0.4

0.45

0.5

0.55

0.6
EachMovie: Best Strong Generalization Results

N
M

A
E

0.00 

Figure 8.2: Comparison of EachMovie strong generalization performance.
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Figure 8.3: Comparison of MovieLens weak generalization performance.
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Figure 8.4: Comparison of MovieLens strong generalization performance.



Chapter 9

Conclusions

We begin by summaryzing the work contained in this thesis, outlining the main develop-

ments, and indicating the primary results. Next we adopt a broader perspective, analyze

what we have accomplished, and indicate interesting directions for future research. Fi-

nally, we consider the feasibility of scaling some of the methods we have proposed for use

with large electronic document collections such as the Web.

9.1 Summary

In the preceding chapters we have presented a comprehensive study of rating-based, pure,

non-sequential collaborative filtering. We have given detailed descriptions and deriva-

tions for a variety of methods, shown their relationship to standard machine learning

algorithms, analyzed their computational and space requirements.

We show that the original GroupLens method is a modification of the well known K

nearest neighbor classifier. We introduce a new application of the standard naive Bayes

classifier to the task of rating prediction. We discuss several rating prediction methods

based on user clustering and introduce a new method based on the standard K-medians

clustering algorithm. We review dimensionality reduction techniques including singular

value decomposition, weighted singular value decomposition, principal components anal-
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ysis, probabilistic principal components analysis, and factor analysis. We introduce a

new rating prediction technique for weighted singular value decomposition. In the area

of probabilistic models we review the multinomial model, the mixture of multinomials

mode, the aspect model, and the URP model. We also introduce the attitude model

family, a new family of product models for collaborative filtering

We implement and analyze learning and prediction methods for a neighborhood

method, the naive Bayes classification method, the K-medians clustering method, weighted

singular value decomposition, the multinomial model, the mixture of multinomials model,

the aspect model, the URP model, and the binary attitude model. We introduce the no-

tion of strong generalization as the ability of a learning method to correctly predict

ratings for novel user profiles, profiles other than those used for training. This is an

important form of generalization for rating prediction, which is especially relevant when

considering the online performance of a prediction method. We introduce an experimen-

tal protocol for assessing strong generalization to complement the existing protocols for

assessing weak generalization.

The primary result of this study has been the identification of several new and promis-

ing rating prediction methods. The K medians clustering method was found to exhibit

excellent rating prediction ability given its relative simplicity. It is an excellent candi-

date for use in an interactive recommendation service. The attitude model family was

designed to have intuitive and appealing generative semantics for rating based collabo-

rative filtering. While the binary attitude model exhibits the most complex learning and

prediction methods, we have found that it achieves the best overall prediction accuracy

of any of the methods we have studied.
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9.2 Future Work

In this section we consider possible directions for future work. We discuss the work

left to be done with existing models, and consider removing some of the assumptions

underlying the development of these models. We discuss extending some of the models

we have studied to new formulations of collaborative filtering. Lastly, we indicate other

application areas where our current techniques and their extensions may be useful.

9.2.1 Existing Models

We have performed a fairly comprehensive evaluation of a wide range of models; however,

some work with existing models remains to be done. One of the main omissions in our

set of methods was probabilistic principal components analysis. Weighted singular value

decomposition was selected as a representative dimensionality reduction method due to

the fact that it had not been extensively tested for collaborative filtering. pPCA is an

intersting method in its own right. It has been tested by Canny on protocols and data

sets comparable to the EachMovie strong generalization experiment we have used, but

the error rate reported is equivalent to the error rate achieved by the multinomial model

in our tests. This is curiously poor given that simple clustering methods achieve superior

performance in our tests. Experimentation with the pPCA model could be performed to

determine if its performance improves on the particular data sets we use, or if it remains

the same as reported by Canny.

As we have noted previously, the weighted singular value decomposition method

turned out to be fairly enigmatic. It was the only method to exhibit a large change

in prediction performance across the EachMovie and MovieLens data sets. This result

calls for a separate study to more closely examine the effect of the size and sparsity of the

rating matrix on the performance of the method, and the number of iterations needed for

the method to converge. The discrepancy in performance could be a result of an insuffi-
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cient number of iterations in the MovieLens case, but none of the other methods studied

exhibited this problem. In fact, the general trend over all other models is that perfor-

mance on the MovieLens data set is slightly better than performance on the EachMovie

data set. An alternative explanation is that the wSVD method overfits on the training

data during model fitting. This is extremely hard to believe when the model consists of

as few as 10 item space basis vectors. On the other hand, the feasibility of such an in

depth study is somewhat questionable given the high computational complexity if the

wSVD learning method. In addition, any improvements that result from further insight

into this problem are highly unlikely to result in prediction performance that surpasses

the specialized probabilistic models.

The equivalence between the vector aspect model and the URP model is another

area we have not fully explored. The MAP/ML fitting procedure for URP represents

a significant savings in terms of learning and prediction complexity. If computing time

is not an issue, then the variational fitting procedure should always be used in place of

the MAP/ML procedure. However, an intersting situation arises when we consider using

the URP model in an online context such as an interactive recommender system. The

variational model fitting algorithm could be used with a fixed, uniform Dirichlet prior for

offline model fitting. For online prediction the MAP inference procedure could be used in

place of full variational inference. Such a prediction method would not be iterative, and

could be fast enough for interactive use. Experiments similar to the ones we have already

carried out could be applied to determine the degree to which the strong generalization

performance of this hybrid method degrades compared to the full variational prediction

methods.

Our strongly positive results for the binary attitude model call for further testing with

it and other members of the attitude model family. In the binary case we were forced

to impose hard limits on the number of iterations allowed for model fitting, variational

inference, and line search procedures. The only justification offered for the choice of
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these limits was that the resulting models exhibited excellent prediction performance.

However, a more thorough study of the effect of data set size, data set sparsity, step

size, and backtracking on convergence is clearly needed. A better understanding of how

all these variables interact will likely lead to model fitting procedures that attain better

prediction accuracy than we have reported.

Based on the success of the binary attitude model, an investigation of the integer

attitude model is also required. The integer attitude model has more flexible generative

semantics and latent user representation than the binary version. This means it has

the capacity to outperform the binary version. However, we expect it to suffer from

similar learning issues as the binary version including a sensitivity to initial step sizes

and backtracking parameters.

9.2.2 The Missing at Random Assumption

One of the most important simplifying assumptions made in this study was that missing

ratings were missing at random. This is an assumption which has been made either

implicitly or explicitly in all existing research on rating prediction methods. However,

we also noted that in the case of rating-based collaborative filtering there is reason to

believe that this assumption does not hold. In the standard interaction model with a

recommender system, a user may initially be required to rate a subset of a randomly

selected set of items. After these initial ratings are collected, the user is free to rate

any items they choose. In the case of information items such as movies or books, it

is reasonable to hypothesizes that a user will only see a movie or read a book if they

anticipate liking it or finding it useful, and that a user can only rate items they have

seen or read. This means that the lower a users estimate of their rating for a particular

item, the less likely they are to supply a rating for that item. This is exactly the type of

scenario where the missing at random assumption fails to hold.

If our hypothesis about this missing data mechanism is correct, one consequence
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would be a skewing of the observable rating distribution toward high rating values. This

skewing is observed in both the EachMovie and MovieLens data sets. Theory dictates

that if the missing at random assumption does not hold, then any maximum likelihood

estimates derived from the observed data without taking the missing data mechanism

into account will be biased. Since learning in all the models we have described is based

on finding maximum likelihood parameters, not taking the missing data mechanism into

account may be resultsing in biased parameter estimates.

An interesting test of whether the proposed missing data mechanism does affect learn-

ing and prediction would be to generate a dense data set from a learned model such as

URP or the attitude model, and then create two training sets from it. One in which rat-

ings are removed uniformly randomly, and a second where ratings are removed inversely

proportional to their values. The same learning method could be trained on each of these

training data sets, and the resulting models could be tested on the same test set to see

if prediction performance is affected by the pattern of missing data.

If a significant effect is observed, this opens the possibility of developing a novel set of

models for rating prediction based on incorporating prior knowledge of the missing data

mechanism directly into the generative model. An obvious first step in this direction

would be to extend the multinomial mixture model to include a missing data mecha-

nism, and evaluate its empirical performance on real data sets compared to the standard

multinomial mixture model. It is our belief that such models will result in increased

prediction accuracy.

9.2.3 Extensions to Additional Formulations

As we discussed in chapter 2, rating-based, pure, non-sequential collaborative filtering

is one out of a large number of possible formulations. Even within this small class of

problems we have focused on the case where ratings are ordinal valued and neglected the

continuous case. Some of the methods we have studied including the PKNN method, the
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K-medians method, and the wSVD method can be applied to either continuous or ordinal

rating data, but all the specialized probabilistic models represent ratings using categorical

random variables. This means they can not be applied to the case where rating values

are continuous. One simple extension of the present work would be to change the lower

levels of all probabilistic models to Gaussian distributed continuous random variables

and then re-derrive all the model fitting and prediction equations. Hofmann has recently

carried out this exercise with the triadic aspect model [30].

A close second to our chosen formulation in terms of research activity is the co-

occurrence, pure, non-sequential formulation. We briefly discussed this formulation in

conjunction with LDA and the dyadic aspect model, but it is also quit significant. URP

already has a co-occurrence analog in LDA, but the attitude model family could easily be

extended (or, more accurately, retracted) to this type of preference information as well.

Several other more complex and more interesting formulations are beginning to re-

ceive attention from the research community. Of particular interest are sequential formu-

lations, which remove the assumption that preferences are static. Recently Girolami and

Kabán have introduced a method for learning dynamic user profiles based on simplicial

mixtures of first order Markov chains in a pure, sequential, co-occurrence formulation of

collaborative filtering. In theory their model could be extended to dynamic user rating

profiles as well, although data for testing such a model is not currently available.

The principled integration of preference information with additional content based

features in a single generative model is also an interesting direction for future research.

The addition of content-based item features may help alleviate the cold start and new user

problems, which are common to all recommender systems. The cold start problem arises

when a system is initialized with little preference information. The new user problem

occurs in an operational system when a new user has little preference information.
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9.2.4 Generalizations to Additional Applications

We have just considered additional formulations of collaborative filtering and how our

existing methods could be extended to yield algorithms in some of these formulations.

An alternative is to consider generalizations of the rating prediction problem itself. In a

pure, non-sequential, rating-based formulation of collaborative filtering, predicting miss-

ing ratings for all users can be thought of more generally as an imputation problem. Such

problems occur fairly frequently. One particularly interesting example comes from the

analysis of gene expression data. Some simple machine learning techniques have been

applied for imputing missing data values in microarrays. Continuous valued versions of

any of the probabilistic models we have studied could be applied to this problem. Once

candidate is a Gaussian version of the binary or integer attitude model, both of which

have fairly sophisticated generative semantics. In an application area like computational

biology, the complexity of the prediction methods is not as critical as in the collaborative

filtering case. In addition, the data is many times less sparse. There is reason to believe

that our methods will yield good results in this area.

9.3 The Last Word

We began this thesis by introducing the problem of information overload. We indicated

that the major sources of information overload were web pages and Usenet news articles

available through the Internet, as well as books, movies and music. We motivated content

based information filtering, and collaborative filtering as two independent methods for

dealing with information overload.

As a result of the limited data sets currently available, our work has been constrained

to the area of movie rating prediction. A fair critique of the present work is that few

people tend to feel overwhelmed by the volume of movies being produced. Indeed, the

items and users in the data sets we have used only number is in the thousands. While
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these movie rating data sets are considered fairly substantial by normal machine learning

standards, they pale in comparison with the billions of web pages routinely processed by

state-of-the-art content based filtering systems.

Clearly scaling up the size of a collaborative filtering system to rival content based

filtering systems such as Google requires some thought. Google indexes on the order of

109 web pages. At peak times it serves thousands of queries per second. An equivalent

collaborative filtering system might be expected to serve 106 users each with an average of

103 ratings. For deployment on the Internet we would also want to maintain a document

collection of 109 web pages and serve 103 recommendations per second.

Suppose that we were given computational resources equivalent to those currently

used by Google: 104 CPU’s running at 500MHz each capable of performing 108 additions

and subtractions per second [1]. The method with the most reasonable computational

complexity that we have studied is the K-medians method, which has a learning com-

plexity of O(INMK), and a prediction complexity of O(MK). If implemented using

data structures that take sparsity into account, the learning time can be decreased to

O(IKT ), and the prediction time can be reduced to O(KT u) where T is the total num-

ber of observed ratings and T u is the total number of observed ratings for user u. A

reasonable number of clusters for this problem might be K = 104. Note that for rec-

ommendations, the prototype vectors could be sorted off line after they are learned at a

savings of O(M log M) per recommendation. The complexity of generating each set of

recommendations is thus O(KT u).

Under these assumptions we find that processing each recommendation request would

take only O(107) additions and subtractions. With a cluster capable of 1012 additions

and subtractions per second we could serve over 104 queries per second. This is quite

remarkable. The number of operations needed for each iteration of the K-medians learn-

ing algorithm under our assumptions is O(1013). Interestingly, the K-medians learning

algorithm can be completely parallelized meaning each iteration of the learning method
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would take as little as 10 seconds! Even if 103 iterations were needed to learn the cluster

prototypes, learning would only take a few hours.

These simple order of magnitude computations neglect the time needed to move data

around in the system, which is likely to dominate the time needed for computation.

However, in a specialized architecture where each of the 104 cluster nodes keeps one

prototype vector in active memory at a space complexity of about 1GB, we would only

need to move the relatively small user profiles in and out of memory. Even if our naive

calculations are off by two orders of magnitude it would still be possible to serve 103

queries per second and perform over three learning iterations every hour. Learning could

be performed in approximately ten days.

The point of this exposition has been to show that some of the collaborative filtering

methods we have described, such as K-medians, could scale up to the level of state-

of-the-art content-based filtering systems like Google. The only factor obstructing the

application of collaborative filtering techniques to large electronic document collections

like the Web is the commitment of computational resources. We leave this as an exercise

for the interested reader.
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