
Citation: Wang, J.; Mei, H.; Li, K.;

Zhang, X.; Chen, X. Collaborative

Filtering Model of Graph Neural

Network Based on Random Walk.

Appl. Sci. 2023, 13, 1786. https://

doi.org/10.3390/app13031786

Received: 30 October 2022

Revised: 16 January 2023

Accepted: 17 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Collaborative Filtering Model of Graph Neural Network Based
on Random Walk
Jiahao Wang, Hongyan Mei *, Kai Li, Xing Zhang and Xin Chen

School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121000, China
* Correspondence: liaoning_mhy@126.com

Abstract: This paper proposes a novel graph neural network recommendation method to alleviate
the user cold-start problem caused by too few relevant items in personalized recommendation
collaborative filtering. A deep feedforward neural network is constructed to transform the bipartite
graph of user–item interactions into the spectral domain, using a random wandering method to
discover potential correlation information between users and items. Then, a finite-order polynomial
is used to optimize the convolution process and accelerate the convergence of the convolutional
network, so that deep connections between users and items in the spectral domain can be discovered
quickly. We conducted experiments on the classic dataset MovieLens-1M. The recall and precision
were improved, and the results show that the method can improve the accuracy of recommendation
results, tap the association information between users and items more effectively, and significantly
alleviate the user cold-start problem.

Keywords: recommender systems; graph neural networks; spectral domain graph convolution;
collaborative filtering

1. Introduction

How users’ int determine preferences are perceived and how much they engage with
items usually determines the effectiveness of a recommender system (RS). Collaborative
filtering is one of the most popular and well-known approaches in RS (CF) [1]. The model
and memory-dependent approach has achieved some success. However, some problems
still need to be solved: (1) In memory-based recommendations, the matrix sparsity problem
arises when there are few user–item interactions. The method’s performance decreases as
the number of users and items increases. Users are less likely to be recommended if they
have never interacted with an item. (2) In model-based recommendations, such as logistic
regression (LR) [2], not only is feature crossover and feature filtering not possible, but the
performance of the model representation could be better. Later, the researchers improved
the model. While performance improved to some extent, it made the data sparser, making
the model difficult to converge and increasing the feature weights and training cost. Later,
factor decomposers (FM) [3] also faced problems such as combinatorial explosion and
difficulty fusing higher-order features. The domain-aware factorization model (FFM) [4]
further increased the training cost of the model, complicating parallel training and in-
creasing training time. A recommendation method is proposed to solve these problems,
called the graph convolutional collaborative filtering recommendation algorithm based
on random wandering (RW-GCF). This method performs spectral convolution between
spectral domains. It optimizes the adjacency matrix by random walking to find the hidden
information connecting users and items in the graph. In addition, the new approach is to
reduce the complexity of the model by optimizing the convolutional kernel, constructing a
deep feedforward neural network, and using finite-order polynomials to adjust the size
of each spectral domain dynamically, to discover user and item relevance and achieve
mitigation of the user cold start problem in collaborative filtering. In addition, the random

Appl. Sci. 2023, 13, 1786. https://doi.org/10.3390/app13031786 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031786
https://doi.org/10.3390/app13031786
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13031786
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031786?type=check_update&version=2

Appl. Sci. 2023, 13, 1786 2 of 17

walk approach has also played an important role in other fields; for example, in the medical
field, Shen L et al. [5] combined the unbalanced double random walk approach, constructed
a virus–drug association (VDA) identification framework (VDA-rwlrls), and implemented
unbalanced double random walks on the viral network and drug network, respectively,
to find clues for the treatment of COVID-19, and made good progress. The authors of [6]
applied a two-dimensional random walk Monte Carlo to perform calculations to better
understand the spread of COVID-19, and the model designed can predict second and third-
wave infections with reasonable accuracy, which helps in planning mitigation strategies
during the current pandemic.

2. Related Work
2.1. Deep-Learning-Based Recommendation System

The first deep learning method used in recommendation systems is the restricted
Boltzmann machine (RBM) [7] approach, which uses users’ rating preferences for mod-
eling and outperforms traditional matrix decomposition techniques, providing a broad
application prospect for deep recommendation systems. For collaborative filtering tasks,
Zheng et al. [8] came up with the CF neural autoregressive distribution estimator (CF-
NADE) model, which can share parameters across ratings and scalability. The scalability of
CF-NADE was significantly improved. Subsequently, Wang Jun et al. [9] used generative
and discriminant models for fusion and iterative optimization of the two models, which
achieved good results and alleviated the item recommendation problem. The method
allows learning domain-specific [10] representations from the interaction matrix of source
and target users with the item, and it can effectively alleviate the data sparsity problem. The
literature [11] uses a multilayer perceptron (MLP) to model user–item interactions, which
further optimizes the problem of CF endogenous feedback and opens up new research
avenues for deep learning recommendation algorithms. In addition, convolutional neu-
ral networks (CNN) [12], recurrent neural networks (RNN) [13], and deep reinforcement
learning (DRL) [14] have been widely used in CF to make a breakthrough in alleviating the
cold start and data sparsity problems of CF. Additionally, the algorithm’s performance can
be improved.

2.2. Graph-Based Recommendation System

Another related research direction is using user–item graph structures for the recom-
mendation. The motivation for applying graph neural network methods to recommend
systems lies in two aspects: first, most of the data in RS have a graph structure, and sec-
ond, GNN techniques are potent in capturing connections between nodes and learning
representations of graph data; for example, they have made significant progress in learning
node representations [15], improving social network performance [16], and optimizing
node embeddings [17]. Due to GNN’s capacity to learn representations of potential factors
from graphs, researchers have proposed graph-based RS, such as semi-supervised learning
models for document recommendation, which can measure item similarity by combining
multiple graphs. Inspired by graph/node embedding technology, Berg et al. [18] proposed
an algorithm based on a graph convolution network, an automatic graph encoder; it uses
the structural information of graphs to identify potential users and items to alleviate the
matrix completion problem in deep learning. A graph-based regularization method is
added by Berg to the matrix decomposition model to learn the graph structure, resulting in
traditional graph-based regularization methods. Since then, many graph neural network-
based recommendation systems have been proposed, and these methods have also made
considerable progress in alleviating CF-related problems.

Despite the advantages of traditional CF methods, there are still many shortcomings
in dealing with the cold-start problem: firstly, the results are not accurate enough when
finding the nearest neighbors for the target users in the cold-start environment, or there
are cases when the nearest neighbors cannot be found; secondly, the complexity of the
algorithm increases due to the large number of calculations involved, and this problem

Appl. Sci. 2023, 13, 1786 3 of 17

also increases the time required to train the model. In contrast, the algorithm proposed in
this paper can further improve the performance of the recommendation system by taking
into account the potential association information between users and items. This method
can be directly learned from the bipartite graph constructed by users and items, with no
need to add edge-related information. It can quickly discover implicit information about
users and items.

The paper’s main contribution can be summarized as follows: (1) Helps users discover
more related items. (2) Using finite order polynomials to optimize the convolution process
to help users discover items quickly and reduce the computational complexity. (3) The
user–item spatial domain information is transformed into a new spectral domain space for
the recommendation algorithm.

3. Model Framework

In this section, the user–item adjacency matrix is first optimized, relying on the higher-
order connectivity of the graph. A random walk method reveals the deep relationships
between users and items. Subsequently, the graph Fourier transform is performed on
the bipartite graph. The vertices of the bipartite graph (users and items) are dynamically
filtered using a new spectral convolution filter to measure the magnitude of each frequency
component. Finally, a finite-order polynomial is used to overcome the drawbacks of
the convolution operation. The final recommended method, RW-GCF, is introduced by
a convolution operation consisting of multiple inter-stacked spectral map convolution
layers, which transform the user–item interaction from the spatial domain to the spectral
domain—see Figure 1.

Figure 1. This is a user–project interaction diagram: (a) user–project space interaction diagram;
(b) user–project spectrum domain interaction diagram.

3.1. Dichotomous Diagram

In graph theory, a bipartite user–item graph G(U,I,E) is defined as having N vertices
and E edges, where U and I are two disjoint sets of vertices of users and items. Each edge
e ∈ E follows the form e = (u, i), where u ∈ U, i ∈ I, represents the interaction of user u
with item i in the training set.

Appl. Sci. 2023, 13, 1786 4 of 17

3.2. Implicit Feedback Matrix

The implicit feedback matrix R defines |U| × |I| as follows:

R =

r11 r12 · · · r1j · · · r1n
r21 r22 · · · r2j · · · r2n
...

...
. . .

...
...

...
ri1 ri2 · · · rij · · · rin
...

...
...

...
. . .

...
rm1 rm2 · · · rmj · · · rmn

(1)

The value is 1 if u and i interact, and 0 if no interaction is recorded.

3.3. Adjacency Matrix

For a bipartite graph G, its corresponding adjacency matrix W can be defined as:

W =

[
0

RT
R
0

]
(2)

3.4. Random Walk Method

In its most basic form, graph theory studies data structured as a graph. Three funda-
mental components make up a graph: the nodes, the edges, and the weights of the edges.
A graph is a mathematical model that depicts a link between entities. Processing signals
defined on an undirected connected weighted graph G = V, E, W, where V is a finite number
of vertices. V = v1, v2, v3... E denotes the collection of edges. E = e1, e2, and e3 are the edges
of the graph, and the edges are abstract representations of the relationship between the
vertices. The vertices of the graph might be any actual or abstract individuals.

Given a set of vertices V, there are three common ways to construct a graph: the first is
to construct a k-nearest neighbor graph: and each vertex in the graph is connected to only
its k-nearest neighbors. The second is constructing a full graph: each node is connected to
all other nodes. The third is to construct a hypergraph: the essential feature of a hypergraph
is its hyperedges, which can connect more than two vertices (including two). Given a set
of vertices V, there are three common ways to construct a graph: the first is to construct
a k-nearest neighbor graph—each vertex in the graph is connected to only its k nearest
neighbors. The second is to construct a full graph: each node in the graph is connected to
all other nodes. The third is to construct a hypergraph: the basic feature of a hypergraph is
its hyperedges, which can connect more than two vertices (including two).

Based on these three main factors, researchers have designed various methods to
calculate the correlation between vertices in graphs [19]. This study is implemented
by the random walk method [20] in graph embedding. Suppose that to personalize a
recommendation to user u, a random traversal of the user’s item bipartite graph starts at
node U, which corresponds to user u. When the user walks past a node, the first decision is
whether to continue or stop walking. The decision is made with probability α. The next
step is to determine which direction the user should go. If the user decides to continue,
a node is selected from the nodes pointed to by the current node according to a uniform
distribution. After several random walks, the probability that a particular item will be
visited converges to the value determined by α. Assume that an item is likely to be visited,
in which case it will be given a greater weight in the final list, so the weight of the item in

Appl. Sci. 2023, 13, 1786 5 of 17

the final recommendation list is its probability of being visited. The following equation can
be generated by expressing the previous description in the form of an equation, as follows:

GEPR(v) =

α ∑

v′∈in(v)

PR(v′)
|out(v′)| (v 6= vu)

(1− α) + α ∑
v′∈in(v)

PR(v′)
|out(v′)| (v = vu)

(3)

In the formula, PR(i) denotes the access probability of item i, out(i) denotes the out-degree
of item node i. αdetermines the probability of further visits. In collaborative filtering, the
above relationship between users and items is mainly represented as a two-dimensional
matrix (user–item matrix).

3.5. Laplace Operator Matrix

In the normal form of the symmetric matrix, the Laplacian matrix is denoted by
L = I − D−

1
2 AD−

1
2 , where L is the matrix with specification N × N, D is a degree matrix

with a size of N × N, and Dn×n = ∑j An,j. The problem of implicit feedback recommenda-
tions is the focus of this study. In the absence of an explicit rating record, the focus is only
on whether the user has viewed, liked, or clicked on an item. The set of all items liked by
the user is denoted by I+i , and the set of all other objects is denoted by I−i .

3.6. Relevant Problem Definition

Provided a user set U and an item set I, the purpose is to recommend a sorted list of
items of interest to I−i for each user who likes/clicks/views the item set I+ ⊆ I.

3.7. Graph Fourier Transform

For a graph G = {V, E}, where V, E is the set of vertices and edges, each signal vector
of the graph is x ∈ R|V|×1, where xj denotes the value of the jth signal on the graph

The formula for the standard Fourier transform function is f , and the complex expo-
nential expansion is shown in Equation (4):

f (t) = f−1[F(w)] =
∫

RF(t)e2πiwtdt (4)

e2πiwt forms a standard orthogonal basis.
In order to perform the Fourier transform of the signal x ∈ R|V|×1 on the graph, it is

necessary to find a set of orthogonal bases, represented by a linear combination of this set
of orthogonal bases, so the graph Fourier transform uses the eigenvectors of the Laplace
eigenmatrix U = (

→
u1,
→
u2, . . . ,

→
un) as the basis functions of the graph Fourier transform.

Using the Laplace eigenvectors as basis functions, since the Laplace eigenvector
U = (

→
u1,
→
u2, . . . ,

→
un) is an n-dimensional linearly independent vector, the basis of a space is

composed of n linearly independent vectors in an n-dimensional space, and the eigenvectors
of the Laplace matrix are also a set of orthogonal basis, as shown in Equation (5), the signal
on the graph can be expressed as:

x =
∧
x(λ1)

→
u1 +

∧
x(λ2)

→
u2 + · · ·+

∧
x(λn)

→
un (5)

The Fourier transform of a graph is defined as the expansion of the eigenvector of the
observed graph signal according to the Laplace operator L of the graph, and the eigenvector

Appl. Sci. 2023, 13, 1786 6 of 17

can be used as a basis for the spectral domain. Then, the signal (x ∈ R|V|×1) of the graph G
is shown in Equation (6) and the Fourier transform of the graph is defined as:

x̂(l) =
N−1

∑
j=0

x(j)µl(j)

∧
x(l1)
∧
x(l2)

...
∧
x(ln)

 =

u1(1) u1(2) · · · u1(4)
u2(1) u2(2) · · · u2(4)

...
...

. . .
...

un(1) un(2) · · · un(n)

x(1)
x(2)

...
x(n)

 (6)

The inverse transformation of the graph Fourier is shown in Equation (7):

x(j) =
N−1

∑
j=0

x(l)µl(j)

x(1)
x(2)

...
x(n)

 =

u1(1) u1(2) · · · u1(4)
u2(1) u2(2) · · · u2(4)

...
...

. . .
...

un(1) un(2) · · · un(n)

∧
x(l1)
∧
x(l2)

...
∧
x(ln)

 (7)

where x̂(l) denotes the jth value of l, x(j) and µl(j) as above, respectively; µl denotes the
lth vector of L; x̂ denotes the graph signal that has been converted to spectral domain. For
simplicity, the equations in (6) and (7) can be converted to x̂ = UTx and x = Ux̂, where
U = (

→
u1,
→
u2, . . . ,

→
un) is the eigenvector of L.

For the bipartite graph G, two graph signal vectors exist: xu ∈ R|U|×1 and xi ∈ R|I|×1,
associated with user vertices and project vertices, respectively. The transform between the
spatial and spectral domains and the inverse transformation from the spectral domain to
the spatial domain are shown in Equation (8):[

x̂u

x̂i

]
= UT

[
xu

xi

]
and

[
xu

xi

]
= UT

[
x̂u

x̂i

]
(8)

3.8. Spectral Convolution Process

Extensive information about the graph structure exists in the spectral domain, where
the Fourier basis formed by the Laplacian eigenvectors can project the graph signal into
the orthogonal space, where different frequency domains can reveal different types of
connectivity information between users and items. The ability to dynamically adjust the
size of each frequency domain is essential for recommendation systems. Drawing on the
idea of the convolution theorem to explore the potential relevance of the transformation of
the null domain into the spectral domain, the convolution theorem equation is shown in
Equation (9):

f1(t) ∗ f2(t) = f−1[F1(w) · F2(w)] (9)

where f is the input signal, f2(t) is the convolution kernel, the input signal corresponding
to the graph convolution is x, and the convolution kernel is gθ ; then, the graph convolution
process is shown in Equation (10):

gθ ∗ x = f−1(f (x) ∗ f (g)) = U(UTx ∗UT g) (10)

where UTx can be considered as the input map signal, UT g is the corresponding convolution
kernel, and ∗ is the harand product. In this paper, a new convolution filter is designed to
facilitate the extraction of more accurate features. That is, θ ∈ RN can be considered as
gθ(∧) = diag([θ0λ0,θ1λ1, . . . , θN−1λN−1]) when the spatial domain is transformed into the
spectral domain, as shown in Equation (11):

gθ ∗ x =

[
xu

new
xi

new

]
= Ugθ(∧)

[
x̂u

x̂i

]
= Ugθ(∧)UT

[
xu

xi

]
(11)

Appl. Sci. 2023, 13, 1786 7 of 17

where xu
new and xi

new is the new signal learned by the dichotomous graph G filter gθ(∧),
∧ = {λ0, λ1, . . . , λN−1} denotes the eigenvalues of the Laplacian matrix in the graph L.

In Equation (11), the convolution filter gθ(∧) is placed on the spectrogram signal
[

x̂u

x̂i

]
,

and each value θ is responsible for enhancing or reducing the component corresponding
to each frequency. The eigenvector matrix in the equation is U,and the inverse Fourier
transform is performed using (11).

3.9. Local Filter Polynomial Parameterization

This filter has two limitations. First, the learning complexity is O(n), which affects the
speed of data loading and the length of model training when the number of nodes is too
large, and second, each user and item needs a vector to model the depth and complexity
of the connection between the user and the item, and the process appears to be more
complicated. This first limitation can be overcome by using a polynomial filter, as shown in
Equation (12):

gθ(∧) ≈
K

∑
K=0

θK∧k (12)

3.10. Chebyshev Simplification

Thanks to the recursive idea of Chebyshev, only the first-order Chebyshev polyno-
mial is considered, and the k-order polynomial can be taken to be of order 1, then each
convolution kernel has only one parameter, as shown in Equation (13):

gθ(∧) =
1

∑
k=0

θk(∧̃) (13)

When the order k is 1, the complexity of the filter is reduced. However, in order
to make the model more effective, this study tries to extend the order to 2, as shown in
Equation (14):

gθ(∧) =
2

∑
k=0

θk(∧̃) ≈ ∧+ θ1 ∧+θ2∧2 (14)

In this way, the learning complexity of the filter becomes O(P), where P is a hyper-
parameter independent of the digital vertices. In particular, to avoid overfitting, this study
restricts the order of the polynomial P to 2. This is shown in Equation (15):[

xu
new

xi
new

]
=
(

θ′0UU> + θ′1UΛU> + θ′2UΛ2U
)[xu

xi

]
(15)

In addition, the optimization facilitates further reduction in the number of parameters
by making θ ′ = θ′0 = θ′1 = θ2

′. where θ′ is a scalar. As shown in Equation (16):[
xu

new
xi

new

]
= θ′

(
UU> + UΛU> + UΛ2U>

)[xu

xi

]
(16)

3.11. Learnable Parameter Optimization

For the second limitation, the user and project inputs xu ∈ R|u|×1 and xi ∈ R|I|×1

are transformed into C dimensional map signals, xu ∈ R|u|×c and xi ∈ R|I|×c, and to
facilitate the computation and reduce the complexity of the loop, the convolution filters
are boosted and transformed into a convolution filter matrix C with input channels F and
filters Θ ∈ RC×F, making the final spectral convolution operation as shown in (17):[

xu
new

xi
new

]
= gθ ∗ x = σ(UU> + UΛU> + UΛ2U>

[
xu

xi

]
Θ) (17)

Appl. Sci. 2023, 13, 1786 8 of 17

where xu ∈ R|u|×c and xi ∈ R|I|×c represent the convolution results learned from the
spectral domain of the user and the project using the filter Θ, respectively; σ also represents
the logistic regression function, and the feedforward flow is shown in Figure 2.

Figure 2. RW-GCF convolutional signal processing flow chart.

3.12. Multi-Layer Stacking

Given a user vector xu and a project vector xi, the new graph signals (xu
new and xi

new) are
the result of learning the convolution from the spectral domain by means of the parameter
matrix Θ ∈ RC×F in Equation (19). First, randomly initialize the user vector xu

0 and the
item vector xi

0, using xu
0 and xi

0 as input, the K layer RW-SCF can be expressed as (18):

HXu
K

Xi
K
= f (xu

new, xi
new, U,∧, ΘK−1) (18)

where ΘK−1 ∈ RF×F is the filter parameter matrix of the K layer; xu
K and xi

K denote the
convolutional filtering results of the K layer.

In order to utilize all the attributes within the hidden layers in RW-GCF, this study
further relates them to the ultimate potential factors of users and items as shown in (19):

Φu = [Xu
0 , Xu

1 , . . . , Xu
k] (19)

where Φu ∈ R|u|×(C+KF) and Φi ∈ R|i|×(C+KF).
A loss function called BPR [21] is used to evaluate the implicit recommendation of

the model. It is an unbiased loss function that takes into account the various factors that
influence the rating process. It creates a triple (r, j, j′),, where j denotes the items that user r
liked, clicked, or viewed, and j′ denotes the items that user r did not like, click, or view. The
loss function of RW-GCF is illustrated by maximizing the preference difference between j
and j′ given the user matrix Iu and the item matrix Ii(r, j, j′).

L = argmin(Φu, Φi) ∑
(r,j,j′)

− ln σ(pos− neg) + λreg(||ru||22 + ||ji||22 + ||ji ′ ||22) (20)

where pos and neg denote the potential factors of users and items, λreg denotes the coeffi-
cients of the regularization term, and the training data are shown in (21):

Γ =
{(

r, j, j′
)∣∣r ∈ U ∧ j ∈ I+i ∧ j′ ∈ I−i

}
(21)

3.13. Optimization Functions and Prediction Results

In this paper, we use a first-order gradient optimization algorithm for stochastic self-
scalar functions based on low-order moment adaptation—Adam [22]. The Adam method
is relatively easy to implement and is very efficient due to its low memory requirements. It
considers the first- and second-order moment estimates of the gradient and then computes
the adaptive learning rate. The Adam method is also very effective in smoothing and online
setups. It combines the advantages of AdaGrad [23] and RMSProp [24], which are known

Appl. Sci. 2023, 13, 1786 9 of 17

to be very useful when dealing with large data sets and complex algorithms. The method is
also ideal for very noisy and sparse gradient problems. The hyper-parameters can also be
interpreted intuitively, and the implementation usually does not require parametrization.

3.14. Algorithm Design

Step 1 Input user term implicit matrix R, neighborhood matrix W, batch size B, number
of iterations E, and potential factor dimension C. The number of layers of convolution
kernel F, learning rate lr, regularization factor λreg,and number of iterations convergence k.

Step 2 Construct the implicit feedback matrix of users and items, and use the Gaussian
mixture function N(0.01, 0.02) to obtain the initial Xu, Xi values to ensure the stability of
the initial data distribution.

Step 3 Obtain the vector of size B in the dataset and loop through E iterations.
Step 4 The potential items preferred by users are mined by the random walk method

of graph embedding, and the probability values of the items are converged and stabilized
by setting appropriate parameters through several computational iterations. Then, use the
matrix decomposition method to optimize the user–item adjacency matrix.

Step 5 Optimize the convolution process by Equations (14) and (15), using Chebyshev’s
first-order truncation and setting the size of the field of feeling to k, then simplify the
convolution kernel by using a second-order finite-order polynomial for the convolution
operation so that each convolution kernel Θ has only one parameter of the learnable system,
and according to Equation (17), loop several times K to obtain Xu

K and Xi
K.

Step 6 embeds
[
Xi

0, Xi
1, . . . , Xi

k
]

and
[
Xu

0 , Xu
0 , . . . , Xu

k
]

into the potential hidden vector,
respectively.

Step 7 Optimize the gradient by the backpropagation algorithm.
Step 8 Update the gradient by Adam’s algorithm.
Step 9 outputs the model parameters at Xi

0,X
u
0 , Θ0, Θ1 . . . ΘK−1.

4. Experiments and Analysis of Results
4.1. Data Set

MovieLens-1M [25]: contains over 1,000,209 ratings from over 3900 movies. This
study converts the rating data into implicit data, where 0 and 1 only indicate whether the
user likes the item or not, and a dataset with a 3.0% density was selected and retained for
this study.

HetRec [26]: contains over 855,598 ratings from over 10,197 movies. Handling of data
is the same as MovieLens-1M, and a dataset with a 0.3% density was selected and retained
for this study.

4.2. Baselines

In order to verify the validity of RW-GCF, this study compared it with six representa-
tive models.

NCF [9]: A fusion of neural collaborative filtering, matrix decomposition, and multi-
layer perceptron (MLP) for learning from user–project interactions. MLP enables NCF to
model the nonlinearity between users and projects.

GCMC [18]: Graph convolution matrix complementary, which uses graph autoen-
coders to learn the underlying factors of the user and the project, i.e., the connectivity
information of the two parts of the interaction graph.

SpectralCF [21]: A collaborative filtering algorithm that performs convolution opera-
tions directly on the spectral domain to improve the user’s cold start problem.

NGCF [27]: a user–project interaction graph with three GNN layers designed to
refine the representation of users and projects using information from their nearest third-
order neighbors.

Light-GCN [28]: is a CF method based on GNN, able to choose GCN as aggregation
technique, constant function as activation, i.e., to remove nonlinear computation, and mean
as layer combination function.

Appl. Sci. 2023, 13, 1786 10 of 17

DGCF [29]: A deconfined GNN model that uses neighbor routing and embedding
propagation to deconfine the potential factors at the top edge of the graph.

4.3. Parameter Setting

The following Table 1 is selected for the optimal hyperparameters after many experiments.

Table 1. This is a table of parameter settings.

Hyper-Parameters Numerical Value

Average value (µ) 0.01
Variance (σ) 0.02

Number of convolution layers (K) 3
Figure signal size (C) 16

Number of filter layers (F) 16
Regularization term (λ) 0.001

Training Batch (B) 1024
Number of iterations (E) 230

Learning rate (l) 0.001
Dropout 0

Number of convergence iterations (Ci)
Convergence rate (α)

15
0.55

Number of iterations convergence (k) 15

4.4. Evaluation Methodology

The retrieval capability of the recommendation model should be extended to measure
the accuracy of the recommendation system. in this study, recall@M, and p@M(precision)
were used to evaluate the performance of the recommender system. The proportion of
relevant items retrieved from all items was calculated using recall@M; p@M(precision)
indicated the number of correctly recommended items among the top M items. Then, the
definition of Recall@M and precision@M for each user is shown in Equations (22) and (23):

Recall@M =
Number of items correctly predicted

Recommended list length
(22)

Precision@M =
Number of items correctly predicted
The length of the actual user click list

(23)

4.5. Experimental Tests

Tables 2 and 3 show the best records for recall@20 and precision@20 on the MovieLens-
1M and HetRec datasets.

Table 2. Model Comparison: MovieLens-1M.

Metrics
Entity

Recall Precision

recall@20 recall@40 recall@60 recall@80 recall@100 p@20 p@40 p@60 p@80 p@100

NGCF 0.1366 0.1912 0.2333 0.2665 0.2952 0.0418 0.0295 0.0241 0.0207 0.0185

Light-GCN 0.1321 0.2021 0.2217 0.2454 0.2779 0.0443 0.0312 0.0297 0.0231 0.0202

DGCF 0.1499 0.2076 0.2378 0.2712 0.3122 0.0457 0.0331 0.0281 0.0246 0.0199

GCMC 0.1559 0.1822 0.2447 0.2551 0.2702 0.0497 0.0374 0.0331 0.0297 0.0245

NCF 0.1702 0.1949 0.2422 0.2551 0.2828 0.0505 0.0399 0.0348 0.0326 0.0273

SpectralCF 0.2373 0.2614 0.2969 0.3402 0.3714 0.0701 0.0527 0.0501 0.0499 0.0374

RW-GCF 0.2378 0.2725 0.3027 0.3429 0.3817 0.0845 0.0629 0.0601 0.0546 0.0477

Appl. Sci. 2023, 13, 1786 11 of 17

Table 3. Model Comparison: HetRec.

Metrics
Entity

Recall Precision

recall@20 recall@40 recall@60 recall@80 recall@100 p@20 p@40 p@60 p@80 p@100

NGCF 0.1284 0.1874 0.2276 0.2601 0.2901 0.0401 0.0277 0.0216 0.0199 0.0167

Light-GCN 0.1279 0.1916 0.2199 0.2577 0.2703 0.0427 0.0301 0.0264 0.0207 0.0183

DGCF 0.1402 0.2037 0.2264 0.2685 0.3049 0.0432 0.0328 0.0256 0.0232 0.0177

GCMC 0.1459 0.1722 0.2347 0.2451 0.2602 0.0488 0.0367 0.0309 0.0254 0.0221

NCF 0.1599 0.1837 0.2301 0.2413 0.2717 0.0491 0.0382 0.0327 0.0301 0.0255

SpectralCF 0.1977 0.2216 0.2614 0.2761 0.3299 0.0683 0.0508 0.0491 0.0467 0.0423

RW-GCF 0.2021 0.2342 0.2787 0.2901 0.3402 0.0801 0.0611 0.0593 0.0508 0.0466

As can be seen from the figure, the algorithm RW-GCF proposed in this paper outper-
forms the other seven algorithms after validation on the dataset MovieLens-1M. Compared
with algorithms NCF, GCMC, NGCF, Light-GCN, and DGCF, all algorithms showed signif-
icant improvement in recall and a 2% improvement compared with SpectralCF, the most
cutting-edge recommendation algorithm in the field of spectroscopy. In terms of accuracy
improvement, the performance is still the best compared with NCF, GCMC, NGCF, Light-
GCN, and DGCF, so the RW-GCF algorithm has the best recommendation result in the cold
start environment. After analysis, the reason for this result is that the algorithm RW-GCF
can perform the convolution operation in the graph domain directly, which not only relies
on the unique properties of the graph to optimize the potential properties of the adjacency
matrix, thus revealing the neighborhood information of the graph, but also reveals the
connectivity information hidden in the graph domain. It can also reveal the hidden connec-
tivity information in the graphs, and realize the deep connection between users by using
the popular convolution method to perform the computation for fast discovery. Secondly,
to demonstrate the generality of the algorithm, this study also conducted experimental
validation on the HetRec dataset and found that the performance of the proposed method
is still the best.

5. Discussion
5.1. Parameter Discussion

In this section, the effects of the parameters involved in the studied algorithm are
discussed. Since the algorithm achieves good results on both datasets, a more detailed
comparative study of the hyper-parameters is carried out on the MovieLens-1M dataset.
In the proposed method, the number of convolutional layers, the dimensionality of the
graph signal, and the number of filters all play an important role in the performance of the
recommendation algorithm; therefore, an experimental approach is used in this study to
verify the values of the relevant parameters K, C, and F. Regarding the data distribution
of the test and training sets, this study follows the randomization principle to ensure the
probability balance. In this study, 80% of the items were selected as the training set, and
the remaining items were used as the test set. In addition, the validation set derived from
the training set of each data set was used to locate the optimal hyper-parameters.

5.1.1. Optimal Number of Convolution Layers

In this study, the effect of the K values of the convolutional layers on the recommended
performance is first discussed. Figure 3 shows the recall@20 and precision@20 of the pro-
posed method at different K values. The results in Figure 3 show that the performance
of the algorithm is relatively low when the number of convolutional layers is small. As
the number of convolutional layers increases, the performance of the proposed algorithm
gradually improves but reaches a peak and then starts to decrease. It indicates that as the
number of convolutional layers increases, the perceptual field of the spectral convolutional
network becomes gradually larger, but a continuous increase will risk gradient disappear-

Appl. Sci. 2023, 13, 1786 12 of 17

ance and gradient explosion, and it is experimentally verified that the evaluation index will
reach a peak when the value of K is 3, which is the best result, as shown in Figure 3 below.

Figure 3. Effects of hyper-parameter K in terms of Recall@20 and Precision@20 in the dataset of
MovieLens-1M: (a) effects of hyper-parameter K in terms of Recall@20; (b) effects of hyper-parameter
K in terms of Precision @20.

5.1.2. Optimal Number of Filters

Secondly, the number of filters F is discussed; in this lab, the number of filters is firstly
adjusted. This is because each vertex of a user or item is represented by a scalar feature.
However, each user and item needs a vector to model the depth and complexity of the
connection between the user and the item. A reasonable choice of the value of F also plays
an important role in constructing a suitable graph signal and thus also plays a driving role
in improving the model performance. This study found that there is a significant difference
in the effect on the efficiency of the algorithm when the number of filters is between 12and
20; the number of filters has a crucial role in constructing the convolutional layers of the
graph convolutional neural network. The initial value of the filter is 12, and 2 is added each
time. The algorithm can achieve the best effect when F is 16, recall@20 is 0.2387, and p@20
is 0.0885, as shown in Figure 4 below.

Figure 4. This is a filter parameter tuning diagram: (a) effects of hyper-parameter F in terms of
Recall@20; (b) effects of hyper-parameter F in terms of Precision@20.

Appl. Sci. 2023, 13, 1786 13 of 17

5.1.3. Initializing Gaussian Distribution

When initializing the parameters, a Gaussian distribution is used for the assignment
because, in the training process, the parameters may not always conform to the Gaussian
distribution, and a series of normalization methods will occur in an attempt to pull the
parameters in training back to the Gaussian distribution to some extent. The reasonable
selection of the mean and variance of the Gaussian distribution can accelerate the conver-
gence of the network and enable the model to quickly calculate a stable value. For the
selection of mean and variance, this study has been verified and found that a mean value
of 0.01 and a variance of 0.01 can make the evaluation efficiency of this model reach the
best value; the selection of the mean and variance records are shown in Table 4.

Table 4. Gaussian matrix optimal hyper-parameters.

µ = 0.07
σ = 0.015

µ = 0.09
σ = 0.018

µ = 0.01
σ = 0.02

µ = 0.02
σ = 0.04

µ = 0.04
σ = 0.06

recall@20 0.0209 0.2102 0.2378 0.2214 0.2199

precision@20 0.0701 0.0766 0.0845 0.0801 0.0794

5.1.4. Optimal Number of Iterations

This study found that if a recommendation is given to the user, then a random roam
is made from the node corresponding to the user in the form of a bipartite graph. If
the decision is made to continue the roaming, then a node from the node to which the
current node points is randomly selected as the next node to be roamed according to a
uniform distribution. In this way, after several random walks, the probability of each
item node being visited converges to a single number. The weight of an item in the final
recommendation list is the probability of that item node being visited. This study finds
that the number of iterations gradually begins to stabilize at 12, and when 15 is reached
as a stable value in order to obtain the most complete list of item recommendations, the
probability of each item being visited reaches convergence, and the probability of visit
remains stable, at which point the number of iterations is the best parameter to make the
model evaluation efficiency optimal; this study carries out the following statistics on the
relevant records, as shown in Figure 5 below.

Figure 5. Random walk convergence value.

Appl. Sci. 2023, 13, 1786 14 of 17

5.1.5. Best Batch Size

In this study, the number of data to be thrown into the model for training is a value
between 1 and the total number of training samples; it is not good if the batch size is
too large or too small. If the value is too large, assuming Batch_Size=100000, throwing
100,000 pieces of data into the model at one time will probably cause memory overflow
and prevent normal training. If the Batch_Size is too small compared to the normal data
set, the training data will be very difficult to converge, which will lead to underfitting. By
increasing the Batch_Size, the relative processing speed will be faster, and the memory
required will be increased in order to achieve better training results.

We generally need to increase the number of training sessions for all samples while
increasing the batch size to achieve the best results. Increasing batch size generally increases
the number of training sessions for all samples, which also leads to an increase in time
consumption, so we need to find a suitable batch size value to achieve the best balance
between overall model efficiency and memory capacity. In this study, the best value for
the model evaluation efficiency is selected when the batch size is 1024 through several
validations, and the model efficiency can reach a peak when the batch size is equal to 1024,
which is the best parameter that can be selected for the batch size. The relevant records are
shown in Figure 6.

Figure 6. Effects of hyper-parameter batch in terms of Recall@20 and Precision@20 in the dataset of
MovieLens-1M: (a) effects of hyper-parameter K in terms of Recall@20; (b) effects of hyper-parameter
batch in terms of Precision @20.

5.1.6. Optimal Epoch Selection

Epoch, as an important hyper-parameter, determines the number of times the learning
algorithm works on the entire training data set. In the process of model training, the
complete process of running the model to complete a forward and backward propagation
of all the data is called an epoch, and in the process of gradient descent model training,
the neural network gradually goes from the unfitted state to the optimally fitted state, and
after reaching the optimal state, it enters the overfitting state. If the epoch is 1, it means that
each sample in the training dataset has a chance to update the internal model parameters,
which will lead to low overall efficiency because of the long loading time of the samples; as
such, the epoch should be increased appropriately, but this does not mean the larger, the
better. According to the domain-related experience and experimental validation, the final
epoch of 230 is chosen as the best value, which results in the best evaluation efficiency of
the model. The relevant records are shown in Figure 7.

Appl. Sci. 2023, 13, 1786 15 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 19

(a) (b)

Figure 6. Effects of hyper-parameter batch in terms of Recall@20 and Precision@20 in the dataset of

MovieLens-1M: (a) effects of hyper-parameter K in terms of Recall@20; (b) effects of hyper-

parameter batch in terms of Precision @20.

5.1.6. Optimal Epoch Selection

Epoch, as an important hyper-parameter, determines the number of times the

learning algorithm works on the entire training data set. In the process of model training,

the complete process of running the model to complete a forward and backward

propagation of all the data is called an epoch, and in the process of gradient descent model

training, the neural network gradually goes from the unfitted state to the optimally fitted

state, and after reaching the optimal state, it enters the overfitting state. If the epoch is 1,

it means that each sample in the training dataset has a chance to update the internal model

parameters, which will lead to low overall efficiency because of the long loading time of

the samples; as such, the epoch should be increased appropriately, but this does not mean

the larger, the better. According to the domain-related experience and experimental

validation, the final epoch of 230 is chosen as the best value, which results in the best

evaluation efficiency of the model. The relevant records are shown in Figure 7.

(a) (b)

Figure 7. Effects of hyper-parameter epoch in terms of Recall@20 and Precision@20 in the dataset of

MovieLens-1M: (a) effects of hyper-parameter epoch in terms of Recall@20; (b) effects of hyper-

parameter epoch in terms of Precision @20.

Figure 7. Effects of hyper-parameter epoch in terms of Recall@20 and Precision@20 in the dataset
of MovieLens-1M: (a) effects of hyper-parameter epoch in terms of Recall@20; (b) effects of hyper-
parameter epoch in terms of Precision @20.

6. Conclusions

The existence of implicit connectivity information in the spectral domain is important
for establishing connections between users and items in recommender systems. In this
study, a graph convolutional collaborative filtering recommendation algorithm based on
a random walk and matrix decomposition is proposed to optimize the adjacency matrix
by random walk, exploit the higher order connectivity of the graph, explore the user
association items, achieve to alleviate the matrix sparsity problem, and then construct
a neural network by finite order polynomials, which can reduce the computation and
optimize the model performance, and allow the method to learn the potential factors of
users and items directly from the spectral domain. The experimental results show that
this method outperforms other advanced algorithms. The performance of the model can
be further improved in the future by changing the spectral convolution method, such as
spectral graph attention network (GAT), graph wavelet neural network (GWNN), and
simple spectral graph convolution (S2GC), or adding heterogeneous information and item
content of the graph structure.

Author Contributions: Conceptualization, H.M. and J.W.; methodology, H.M.; software, J.W. and
K.L.; validation, J.W. and K.L.; formal analysis, X.Z. and X.C.; investigation, H.M.; resources, H.M.;
data curation, H.M.; writing—original draft preparation, H.M.; writing—review and editing, H.M.;
visualization, J.W.; supervision, H.M.; project administration, H.M.; funding acquisition, H.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Innovation Project of Postgraduate Education Re-
form of Liaoning University of Technology (YJG2021020), Liaoning Natural Science Foundation
Mentoring Program Project (2019-ZD-0700), Liaoning Education Department Scientific Research
Project (JZL202015404, LJKZ0625) and Liaoning Higher Education Innovation Talent Support Project
(LR2019034).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 1786 16 of 17

References
1. Huang, L.W.; Jiang, B.T.; Lu, S.; Liu, Y.; Li, D.Y. A review of deep learning-based recommender systems. J. Comput. Sci. 2018,

41, 1619–1647.
2. Tansitpong, P. Identifying key drivers in airline recommendations using logistic regression from web scraping. In Proceedings of

the 2020 the 3rd International Conference on Computers in Management and Business, Tokyo, Japan, 31 January–2 February 2020;
pp. 112–116.

3. Chen, C.; Zhang, M.; Ma, W.; Liu, Y.; Ma, S. Efficient non-sampling factorization machines for optimal context-aware recommen-
dation. In Proceedings of the Web Conference 2020, Taiwan, China, 20–24 April 2020; pp. 2400–2410.

4. Elbadrawy, A.; Karypis, G. Domain-aware grade prediction and top-n course recommendation. In Proceedings of the 10th ACM
Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 183–190.

5. Shen, L.; Liu, F.; Huang, L.; Liu, G.; Zhou, L.; Peng, L. VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework
combining an unbalanced bi-random walk and Laplacian regularized least squares. Comput. Biol. Med. 2022, 140, 105119.
[CrossRef] [PubMed]

6. Mahapatra, D.P.; Triambak, S. Towards predicting COVID-19 infection waves: A random-walk Monte Carlo simulation approach.
Chaos Solit. Fractals 2022, 156, 111785. [CrossRef] [PubMed]

7. Salakhutdinov, R.; Mnih, A.; Hinton, G. Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th
International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 791–798.

8. Zheng, Y.; Tang, B.; Ding, W.; Zhou, H. A neural autoregressive approach to collaborative filtering. In Proceedings of the
International Conference on Machine Learning, New York, NY, USA, 1 June 2016; pp. 764–773.

9. Wang, J.; Yu, L.; Zhang, W.; Gong, Y.; Zhang, D. Irgan: A minimax game for unifying generative and discriminative information
retrieval models. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 515–524.

10. Liu, H.; Guo, L.; Li, P.; Zhao, P.; Wu, X. Collaborative filtering with a deep adversarial and attention network for cross-domain
recommendation. Inf. Sci. 2021, 565, 370–389. [CrossRef]

11. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

12. Sheikh Fathollahi, M.; Razzazi, F. Music similarity measurement and recommendation system using convolutional neural
networks. Int. J. Multimed. Inf. Retr. 2021, 10, 43–53. [CrossRef]

13. Guo, Q.; Yu, Z.; Wu, Y.; Liang, D.; Qin, H.; Yan, J. Dynamic recursive neural network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5147–5156.

14. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process.
Mag. 2017, 34, 26–38. [CrossRef]

15. Zhang, J.; Shi, X.; Zhao, S.; King, I. Star-gcn: Stacked and reconstructed graph convolutional networks for recommender systems.
arXiv 2019, arXiv:1905.13129.

16. Wu, L.; Sun, P.; Fu, Y.; Hong, R.; Wang, X.; Wang, M. A neural influence diffusion model for social recommendation. In
Proceedings of the 42th International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris,
France, 21–25 July 2019; pp. 235–244.

17. Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.S. Kgat: Knowledge graph attention network for recommendation. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 950–958.

18. Berg, R.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. arXiv 2017, arXiv:1706.02263.
19. Fouss, F.; Pirotte, A.; Renders, J.M.; Saerens, M. Random-walk computation of similarities between nodes of a graph with

application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 2007, 19, 355–369. [CrossRef]
20. Haveliwala, T.H. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng.

2003, 15, 784–796. [CrossRef]
21. Zheng, L.; Lu, C.T.; Jiang, F.; Zhang, J.; Yu, P.S. Spectral collaborative filtering. In Proceedings of the 12th ACM Conference on

Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 311–319.
22. Jais IK, M.; Ismail, A.R.; Nisa, S.Q. Adam optimization algorithm for wide and deep neural network. Knowl. Eng. Data Sci. 2019,

2, 41–46. [CrossRef]
23. Mukkamala, M.C.; Hein, M. Variants of rmsprop and adagrad with logarithmic regret bounds. In Proceedings of the International

Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 2545–2553.
24. Kurbiel, T.; Khaleghian, S. Training of deep neural networks based on distance measures using RMSProp. arXiv 2017,

arXiv:01911.2017.
25. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. (TIIS) 2015, 5, 1–19.

[CrossRef]
26. Brusilovsky, P.; Cantador, I.; Koren, Y.; Kuflik, T.; Weimer, M. Workshop on information heterogeneity and fusion in recom-

mender systems (HetRec 2010). In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain,
26–30 September 2010; pp. 375–376.

http://doi.org/10.1016/j.compbiomed.2021.105119
http://www.ncbi.nlm.nih.gov/pubmed/34902608
http://doi.org/10.1016/j.chaos.2021.111785
http://www.ncbi.nlm.nih.gov/pubmed/35035125
http://doi.org/10.1016/j.ins.2021.02.009
http://doi.org/10.1007/s13735-021-00206-5
http://doi.org/10.1109/MSP.2017.2743240
http://doi.org/10.1109/TKDE.2007.46
http://doi.org/10.1109/TKDE.2003.1208999
http://doi.org/10.17977/um018v2i12019p41-46
http://doi.org/10.1145/2827872

Appl. Sci. 2023, 13, 1786 17 of 17

27. Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.S. Neural graph collaborative filtering. In Proceedings of the 42th International
ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 165–174.

28. He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43th International ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, China, 25–30 July 2020; pp. 639–648.

29. Wang, X.; Jin, H.; Zhang, A.; He, X.; Xu, T.; Chua, T.S. Disentangled graph collaborative filtering. In Proceedings of the
43th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China,
25–30 July 2020; pp. 1001–1010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Deep-Learning-Based Recommendation System
	Graph-Based Recommendation System

	Model Framework
	Dichotomous Diagram
	Implicit Feedback Matrix
	Adjacency Matrix
	Random Walk Method
	Laplace Operator Matrix
	Relevant Problem Definition
	Graph Fourier Transform
	Spectral Convolution Process
	Local Filter Polynomial Parameterization
	Chebyshev Simplification
	Learnable Parameter Optimization
	Multi-Layer Stacking
	Optimization Functions and Prediction Results
	Algorithm Design

	Experiments and Analysis of Results
	Data Set
	Baselines
	Parameter Setting
	Evaluation Methodology
	Experimental Tests

	Discussion
	Parameter Discussion
	Optimal Number of Convolution Layers
	Optimal Number of Filters
	Initializing Gaussian Distribution
	Optimal Number of Iterations
	Best Batch Size
	Optimal Epoch Selection

	Conclusions
	References

