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Abstract

Recommender systems are an important part of the information and
e-commerce ecosystem. They represent a powerful method for enabling
users to filter through large information and product spaces. Nearly
two decades of research on collaborative filtering have led to a varied
set of algorithms and a rich collection of tools for evaluating their per-
formance. Research in the field is moving in the direction of a richer
understanding of how recommender technology may be embedded in
specific domains. The differing personalities exhibited by different rec-
ommender algorithms show that recommendation is not a one-size-
fits-all problem. Specific tasks, information needs, and item domains
represent unique problems for recommenders, and design and evalu-
ation of recommenders needs to be done based on the user tasks to
be supported. Effective deployments must begin with careful analysis
of prospective users and their goals. Based on this analysis, system
designers have a host of options for the choice of algorithm and for its
embedding in the surrounding user experience. This paper discusses
a wide variety of the choices available and their implications, aiming to
provide both practicioners and researchers with an introduction to the
important issues underlying recommenders and current best practices
for addressing these issues.
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1

Introduction

Every day, we are inundated with choices and options. What to wear?
What movie to rent? What stock to buy? What blog post to read? The
sizes of these decision domains are frequently massive: Netflix has over
17,000 movies in its selection [15], and Amazon.com has over 410,000
titles in its Kindle store alone [7]. Supporting discovery in informa-
tion spaces of this magnitude is a significant challenge. Even simple
decisions — what movie should I see this weekend? — can be difficult
without prior direct knowledge of the candidates.

Historically, people have relied on recommendations and mentions
from their peers or the advice of experts to support decisions and dis-
cover new material. They discuss the week’s blockbuster over the water
cooler, they read reviews in the newspaper’s entertainment section, or
they ask a librarian to suggest a book. They may trust their local the-
ater manager or news stand to narrow down their choices, or turn on
the TV and watch whatever happens to be playing.

These methods of recommending new things have their limits, par-
ticularly for information discovery. There may be an independent film
or book that a person would enjoy, but no one in their circle of
acquaintances has heard of it yet. There may be a new indie band
in another city whose music will likely never cross the local critic’s

1
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2 Introduction

radar. Computer-based systems provide the opportunity to expand the
set of people from whom users can obtain recommendations. They also
enable us to mine users’ history and stated preferences for patterns that
neither they nor their acquaintances identify, potentially providing a
more finely-tuned selection experience.

There has been a good deal of research over the last 20 years on
how to automatically recommend things to people and a wide variety
of methods have been proposed [1, 140]. Recently, the Recommender
Systems Handbook [122] was published, providing in-depth discussions
of a variety of recommender methods and topics. This survey, however,
is focused primarily on collaborative filtering, a class of methods that
recommend items to users based on the preferences other users have
expressed for those items.

In addition to academic interest, recommendation systems are
seeing significant interest from industry. Amazon.com has been using
collaborative filtering for a decade to recommend products to their
customers, and Netflix valued improvements to the recommender tech-
nology underlying their movie rental service at $1M via the widely-
publicized Netflix Prize [15].

There is also a growing interest in problems surrounding
recommendation. Algorithms for understanding and predicting user
preferences do not exist in a vacuum — they are merely one piece of
a broader user experience. A recommender system must interact with
the user, both to learn the user’s preferences and provide recommenda-
tions; these concerns pose challenges for user interface and interaction
design. Systems must have accurate data from which to compute their
recommendations and preferences, leading to work on how to collect
reliable data and reduce the noise in user preference data sets. Users
also have many different goals and needs when they approach systems,
from basic needs for information to more complex desires for privacy
with regards to their preferences.

In his keynote address at the 2009 ACM Conference on Recom-
mender Systems, Martin [90] argued that the algorithms themselves
are only a small part of the problem of providing recommendations
to users. We have a number of algorithms that work fairly well, and
while there is room to refine them, there is much work to be done on
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1.1 History of Recommender Systems 3

user experience, data collection, and other problems which make up
the whole of the recommender experience.

1.1 History of Recommender Systems

The capacity of computers to provide recommendations was recognized
fairly early in the history of computing. Grundy [123], a computer-
based librarian, was an early step towards automatic recommender
systems. It was fairly primitive, grouping users into “stereotypes” based
on a short interview and using hard-coded information about various
sterotypes’ book preferences to generate recommendations, but it rep-
resents an important early entry in the recommender systems space.

In the early 1990s, collaborative filtering began to arise as a solution
for dealing with overload in online information spaces. Tapestry [49] was
a manual collaborative filtering system: it allowed the user to query for
items in an information domain, such as corporate e-mail, based on
other users’ opinions or actions (“give me all the messages forwarded
by John”). It required effort on the part of its users, but allowed them
to harness the reactions of previous readers of a piece of correspondence
to determine its relevance to them.

Automated collaborative filtering systems soon followed, automat-
ically locating relevant opinions and aggregating them to provide rec-
ommendations. GroupLens [119] used this technique to identify Usenet
articles which are likely to be interesting to a particular user. Users
only needed to provide ratings or perform other observable actions; the
system combined these with the ratings or actions of other users to
provide personalized results. With these systems, users do not obtain
any direct knowledge of other users’ opinions, nor do they need to
know what other users or items are in the system in order to receive
recommendations.

During this time, recommender systems and collaborative filter-
ing became an topic of increasing interest among human–computer
interaction, machine learning, and information retrieval researchers.
This interest produced a number of recommender systems for various
domains, such as Ringo [137] for music, the BellCore Video Recom-
mender [62] for movies, and Jester [50] for jokes. Outside of computer
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4 Introduction

science, the marketing literature has analyzed recommendation for its
ability to increase sales and improve customer experience [10, 151].

In the late 1990s, commercial deployments of recommender technol-
ogy began to emerge. Perhaps the most widely-known application of
recommender system technologies is Amazon.com. Based on purchase
history, browsing history, and the item a user is currently viewing, they
recommend items for the user to consider purchasing.

Since Amazon’s adoption, recommender technology, often based on
collaborative filtering, has been integrated into many e-commerce and
online systems. A significant motivation for doing this is to increase
sales volume — customers may purchase an item if it is suggested to
them but might not seek it out otherwise. Several companies, such as
NetPerceptions and Strands, have been built around providing recom-
mendation technology and services to online retailers.

The toolbox of recommender techniques has also grown beyond
collaborative filtering to include content-based approaches based on
information retrieval, bayesian inference, and case-based reasoning
methods [132, 139]. These methods consider the actual content or
attributes of the items to be recommended instead of or in addition
to user rating patterns. Hybrid recommender systems [24] have also
emerged as various recommender strategies have matured, combining
multiple algorithms into composite systems that ideally build on the
strengths of their component algorithms. Collaborative filtering, how-
ever, has remained an effective approach, both alone and hybridized
with content-based approaches.

Research on recommender algorithms garnered significant attention
in 2006 when Netflix launched the Netflix Prize to improve the state of
movie recommendation. The objective of this competition was to build
a recommender algorithm that could beat their internal CineMatch
algorithm in offline tests by 10%. It sparked a flurry of activity, both
in academia and amongst hobbyists. The $1 M prize demonstrates the
value that vendors place on accurate recommendations.

1.2 Core Concepts, Vocabulary, and Notation

Collaborative filtering techniques depend on several concepts to
describe the problem domain and the particular requirements placed
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1.2 Core Concepts, Vocabulary, and Notation 5

on the system. Many of these concepts are also shared by other recom-
mendation methods.

The information domain for a collaborative filtering system consists
of users which have expressed preferences for various items. A prefer-
ence expressed by a user for an item is called a rating and is frequently
represented as a (User, Item, Rating) triple. These ratings can take
many forms, depending on the system in question. Some systems use
real- or integer-valued rating scales such as 0–5 stars, while others use
binary or ternary (like/dislike) scales.1 Unary ratings, such as “has pur-
chased”, are particularly common in e-commerce deployments as they
express well the user’s purchasing history absent ratings data. When
discussing unary ratings, we will use “purchased” to mean that an item
is in the user’s history, even for non-commerce settings such as web page
views.

The set of all rating triples forms a sparse matrix referred to as
the ratings matrix. (User, Item) pairs where the user has not expressed
a preference for (rated) the item are unknown values in this matrix.
Figure 1.1 shows an example ratings matrix for three users and four
movies in a movie recommender system; cells marked ‘?’ indicate
unknown values (the user has not rated that movie).

In describing use and evaluation of recommender systems, including
collaborative filtering systems, we typically focus on two tasks. The
first is the predict task: given a user and an item, what is the user’s
likely preference for the item? If the ratings matrix is viewed as a
sampling of values from a complete user–item preference matrix, than
the predict task for a recommender is equivalent to the matrix missing-
values problem.

Alice in
Batman Begins Wonderland Dumb and Dumber Equilibrium

User A 4 ? 3 5

User B ? 5 4 ?

User C 5 4 2 ?

Fig. 1.1 Sample ratings matrix (on a 5-star scale).

1 The scale is ternary if “seen but no expressed preference” is considered distinct from
“unseen”.
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6 Introduction

The second task is the recommend task: given a user, produce the
best ranked list of n items for the user’s need. An n-item recommen-
dation list is not guaranteed to contain the n items with the highest
predicted preferences, as predicted preference may not be the only cri-
teria used to produce the recommendation list.

In this survey, we use a consistent mathematical notation for
referencing various elements of the recommender system model. The
universe consists of a set U of users and a set I of items. Iu is the set
of items rated or purchased by user u, and Ui is the set of users who
have rated or purchased i. The rating matrix is denoted by R, with ru,i
being the rating user u provided for item i, ru being the vector of all
ratings provided by user u, and ri being the vector of all ratings pro-
vided for item i (the distinction will be apparent from context). r̄u and
r̄i are the average of a user u or an item i’s ratings, respectively. A
user u’s preference for an item i, of which the rating is assumed to be
a reflection, is πu,i (elements of the user-item preference matrix Π). It
is assumed that ru,i ≈ πu,i; specifically, R is expected to be a sparse
sample of Π with the possible addition of noise. The recommender’s
prediction of πu,i is denoted by pu,i.

1.3 Overview

This survey aims to provide a broad overview of the current state of
collaborative filtering research. In the next two sections, we discuss
the core algorithms for collaborative filtering and traditional means of
measuring their performance against user rating data sets. We will then
move on to discuss building reliable, accurate data sets; understanding
recommender systems in the broader context of user information needs
and task support; and the interaction between users and recommender
systems.
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