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ABSTRACT
We present a Matrix Factorization (MF) based approach for
the Netflix Prize competition. Currently MF based algo-
rithms are popular and have proved successful for collab-
orative filtering tasks. For the Netflix Prize competition,
we adopt three different types of MF algorithms: regular-
ized MF, maximum margin MF and non-negative MF. Fur-
thermore, for each MF algorithm, instead of selecting the
optimal parameters, we combine the results obtained with
several parameters. With this method, we achieve a perfor-
mance that is more than 6% better than the Netflix’s own
system.

Categories and Subject Descriptors
I.2.6 [Machine Learning]: Engineering applications

General Terms
Experimentation, Algorithms

Keywords
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1. INTRODUCTION
Collaborative Filtering (CF) aims at predicting users’ in-

terests in some given items based on their preferences so far,
and the rating information of many other users.

CF can be regarded as a matrix completion task: given
a matrix Y = [yij ] ∈ R

m×n, whose rows represent users,
columns represent items, and non-zero elements represent
known ratings, the goal is to predict the ratings for any
given user-item pairs. In the matrix Y, each element yij

(1 ≤ i ≤ m, 1 ≤ j ≤ n) belongs to {0, 1, . . . , r}, where r
is a given integer indicating the total level of ratings. Here
yij = 0 means that no rating is provided by user i for item j,
while yij = s, 1 ≤ s ≤ r, is the rating given by user i for item
j, with larger values corresponding to more preferences.
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CF techniques can be applied to recommendation systems,
which suggest items of interests to users based on their pref-
erences. To build such a system, some information of the
users and items can be helpful, such as ages, genders, na-
tionalities of users and some characteristics of items such as
prices. However, it is usually time consuming or even diffi-
cult to get such information. For example, when a user buys
a book from a online book store, he may not be willing to
reveal his personal information. Therefore CF approaches,
predicting user preference only based on their ratings, can
be a practical and useful solution. The fundamental assump-
tion is that if two users rate many items similarly, they share
similar tastes and hence will probably rate other items sim-
ilarly.

Many approaches have been proposed for CF problems,
such as memory based methods [2, 15] and model based
algorithms [10, 13]. Memory based methods for CF predict
new ratings by weighted averages of ratings of similar users
or items, while model based algorithms use the rating data
to learn a model of users and items for prediction.

Some CF algorithms only generate discrete rating values
in {1, . . . , r}, while others output real valued ratings. For
performance evaluation, the Mean Absolute Error (MAE)
and the Rooted Mean Squared Error (RMSE) are two widely
used scores [9], which are defined as the following:

MAE(Ŷ,Y) =
1

|T |

∑

ij∈T

|ŷij − yij | (1)

RMSE(Ŷ,Y) =

√

1

|T |

∑

ij∈T

(ŷij − yij)2 (2)

where Ŷ and Y are the computed rating matrix and the
true rating matrix respectively, while T is the set of user-
item pairs for which we want to predict the ratings.

The choice between the above two criteria depends on the
particular application. Currently in practice, MAE is com-
mon for CF algorithms with discrete ratings, while RMSE
is popular for CF approaches that generate real valued out-
puts.

The Netflix Prize competition is an important event re-
lated to CF technologies. It is started and supported by
Netflix, a company providing online movie rental services.
Netflix has developed its own recommendation system called
Cinematch. In October 2006, this company released a large
movie rating dataset containing about 100 million ratings
from over 480 thousand randomly selected customers on
nearly 18 thousand movie items. The goal of the compe-
tition is to develop systems that can beat the accuracy of



Cinematch by a certain amount. In Netflix Prize competi-
tion, RMSE is adopted for performance evaluation and the
algorithms in the competition are allowed to output real val-
ued ratings. More details of this competition can be seen in
[1].

We have participated in this event. The name of our team
is HAT, which means“Have a Try”. In this paper, we present
our approach for the Netflix Prize competition. The remain-
ing of the paper is organized as follows: In section 2 we de-
scribe three Matrix Factorization (MF) techniques that we
have adopted for this competition: Regularized Matrix Fac-

torization (RMF), Maximum Margin Matrix Factorization

(MMMF) and Non-negative Matrix Factorization (NMF). In
section 3, we present our ensemble approach that combines
the results of the above mentioned three MF approaches.
Experimental results are provided in section 4. And we con-
clude the paper in the last section.

2. CF VIA MATRIX FACTORIZATION
Low dimensional linear factor model [10, 16] is one of the

most popular model based CF approaches. It assumes that
only a small number of factors can influence the preferences,
and that a user’s preference on an item is determined by how
each factor applies to the user and the item. This can be
formulated as a MF problem. Namely, in a k-factor model,
given the rating matrix Y ∈ R

m×n, we want to find two
matrices U ∈ R

m×k and V ∈ R
k×n such that

Y ≈ UV (3)

where k is a parameter.
The MF based CF approach basically fits a linear model

to the rating matrix Y. In this approach, user i (1 ≤ i ≤ m)
is represented by ui ∈ R

k, the i-th column of matrix U>,
while item j (1 ≤ j ≤ n) is modeled by vj ∈ R

k, the j-
th column of matrix V. For example, in a movie rating
system, each element of vj can be a feature of movie j, such
as whether it is an action movie, or whether the musics in
the movie are pleasant, etc. And the corresponding elements
in ui indicate whether user i likes these features in a movie.
Thus the final rating score to movie j given by user i is the
linear combination of these factors, namely,

yij =
k

∑

l=1

uilvjl = u
>
i vj

Up to now, We have focused on the MF based approaches for
the Netflix Prize competition. In particular, we have tried
three MF methods in our approach, which are described in
the following three subsections respectively.

2.1 RMF
To find matrices U and V in (3), we can solve the following

optimization problem:

min
U∈Rm×k,V∈Rn×k

λ

2
(‖U‖2

F
+ ‖V‖2

F
) +

∑

ij∈S

(yij −u
>
i vj)

2 (4)

where λ > 0 is a regularization parameter, and

S = {ij | yij > 0} (5)

while ‖·‖
F

is the Frobenius 2-norm. Namely, ‖U‖2
F

=
∑

pq
u2

pq.

Using RMF for CF is to fit a linear factor model (3) to
the observed rating matrix Y, such that for the known rat-
ing values yij (1 ≤ i ≤ m, 1 ≤ j ≤ n), the corresponding

elements in UV, i.e. u>
i vj , are close to yij . The regulariza-

tion term λ
2
(‖U‖2

F
+ ‖V‖2

F
) is to restrict the domains of U

and V in order to prevent over fitting, so that the resulting
model has a good generalization performance. Namely, for
any unknown rating yst (1 ≤ s ≤ m, 1 ≤ t ≤ n), u>

s vt is a
good estimations of yst.

Let L(U,V) denote the objective function in (4). To min-
imize it, we can use gradient decent algorithm. To this end,
we need to compute the gradients:

∂L

∂uil

= λuil − 2
∑

j|ij∈S

(yij − u
>
i vj)vjl (6)

∂L

∂vjl

= λvjl − 2
∑

i|ij∈S

(yij − u
>
i vj)uil (7)

Thus to solve problem (4), we can randomly initialize U

and V, and update these two matrices iteratively. Let U(t)

and V(t) denote U and V in the t-iteration, then

u
(t+1)
il = u

(t)
il − τ

∂L

∂u
(t)
il

(8)

v
(t+1)
jl = v

(t)
jl − τ

∂L

∂v
(t)
jl

(9)

Another possible way for minimizing (4) is to use an EM-
like algorithm, where we update U and V alternatively.
Namely, we first fix V and compute the optimal U, then fix
U and compute the optimal V. This procedure is repeated
until convergence. In this case, computing the optimal U

(or V) just requires solving an unconstrained quadratic op-
timization problem since V (or U) is fixed, which can be
done easily.

2.2 MMMF
MMMF is proposed for CF in [14, 4]. The output of

MMMF is a discrete matrix whose elements only take val-
ues from {1, . . . , r}. This is different from the MF methods
described in the last and next subsections.

In MMMF, in addition to the factor matrices U and V,
r− 1 thresholds θia (1 ≤ a ≤ r− 1) are also learned for each
user i. For user i and item j, the value of u>

i vj is compared
against r − 1 thresholds θia, 1 ≤ a ≤ r − 1, to generate
discrete rating values in {1, . . . , r}.

In MMMF, we need to minimize the following objective
function with respect to U, V and θ, where θ is the matrix
of all thresholds θia, 1 ≤ i ≤ m, 1 ≤ a ≤ r − 1

J(U,V, θ) =
λ

2
(‖U‖2

F
+‖V‖2

F
)+

r−1
∑

a=1

∑

ij∈S

h(T a
ij [θia−u

>
i vj ])

(10)
where S has the same meaning as in (5) and

T a
ij =

{

+1 if a ≥ yij

−1 if a < yij
(11)

In (10), h(·) is a smoothed hinge loss function:

h(z) =







1
2
− z if z < 0

0 if z > 1
1
2
(1− z)2 otherwise

(12)

From the cost function (10), we can see that in contrast
to RMF, MMMF does not require u>

i vj to be close to yij .
Instead, as in the maximum margin approach used in the



Support Vector Machine (SVM) [17], it just expects that
compared with θia, u>

i vj should be as small as possible for
a ≥ yij , and as large as possible for a < yij , without caring
too much about the specific value of u>

i vj .
Figure 2.2 shows the hinge loss function that is adopted

in SVM and the smoothed hinge loss function (12). Both of
them can be used for function h(·), and they penalize each
threshold violation without any penalty for being strongly
on the correct side. However, as suggested in [14, 4], with the
smoothed hinge loss, we can use gradient based algorithms
to minimize the objective function, which is faster and easier
than optimizing the non-smoothed one.

The derivative of the function h(·) is calculated as

h′(z) =







−1 if z < 0
0 if z > 1
z − 1 otherwise

(13)
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Figure 1: Hinge loss and smoothed hinge loss

And the gradients of the variables to be optimized can be
calculated as:

∂J

∂θia

=
∑

j|ij∈S

T a
ijh

′(T r
ij [θia − u

>
i vj ])

∂J

∂uil

= λuil −

r−1
∑

a=1

∑

j|ij∈S

T a
ijh

′(T a
ij [θia − u

>
i vj ])vjl

∂J

∂vjl

= λvjl −

r−1
∑

a=1

∑

i|ij∈S

T a
ijh

′(T a
ij [θia − u

>
i vj ])uil

In [14, 4], the conjugate gradient algorithm is adopted for
MMMF, which can generally lead to better results than the
simple gradient descent method. However, the gradient de-
scent is much easier to implement than the conjugate gra-
dient, so similarly as in subsection 2.1, here we also use the
gradient descent approach for simplicity.

2.3 NMF
In subsections 2.1 and 2.2, we did not put any constraints

on the elements of factor matrices U and V. So these two
matrices can contain both positive and negative elements.

In this subsection, we restrict the elements of U and V to
be non-negative. This is reasonable from the factor analysis
point of view. For example, suppose that in a movie rating
system, ui1 represents whether user i likes action movies, a

large ui1 means user i likes action movies very much, while
a small ui1 means the opposite. Correspondingly, for vector
vj , suppose that the larger the value of vj1, the more likely
that movie j is an action movie. Then it can be seen that
ui1× vj1 contributes to the rating of user i for movie j with
respect to the factor of “action movie”. Now let us consider
an example, where ui1 = 10 and vj1 = −10. This results in a
strong negative score −100. This means user i does not like
this movie at all with respect to the “action movie” factor.
However, in this case we can not really make such a strong
conclusion, because user i may still like movie j although
it is not an action movie. In contrast, if the elements of U

and V are non-negative, then the above example becomes
ui1 = 10 and vj1 = 0, leading to ui1 × vj1 = 0, indicating
that we can not say anything about the interest of user i in
movie j only based on the “action movie” factor.

Inspired by the above, we have tried NMF algorithms in
the Netflix Prize competition. NMF techniques have been
proposed for learning part-based object representations [11,
6], document clustering [19], face recognition [18], and also
for CF [20].

In NMF, we need to find the two non-negative matrices
U and V that satisfy (3). To this end we need to minimize
some cost functions that measure the difference between Y

and UV. Following the approach in [12], we adopt the fol-
lowing measure:

D(A||B) =
∑

ij

(aij log
aij

bij

− aij + bij) (14)

which quantifies the difference between any two equal sized
non-negative matrices A = [aij ] and B = [bij ]. This mea-
sure is lower bounded by zero, and vanishes if and only if
A = B. Instead of “distance”, it is usually called “diver-
gence” of A from B since it is not symmetric in A and B.
Furthermore, it reduces to the Kullback-Leibler divergence,
or relative entropy when

∑

ij
aij =

∑

ij
bij = 1, [12].

Thus, in order to perform NMF for CF, we need to min-
imize D(Y||UV) with respect to U and V, subject to the
constraints uil, vjl ≥ 0, where 1 ≤ i ≤ m, 1 ≤ l ≤ k,
1 ≤ j ≤ n. To this end, we can apply the multiplicative
update rules suggested in [12]:

uil ← uil

∑

j
vjlyij/(u>

i vj)
∑

a
val

(15)

vjl ← vjl

∑

i
uilyij/(u>

i vj)
∑

a
ual

(16)

To conclude this section, we point out that all the above
mentioned three MF problems are not convex, therefore we
probably obtain a local minimum of the cost function at the
end of optimization. To mitigate this problem, a popular
and reasonable choice is to run the algorithm several times
with different initializations, and then pick up the one with
the minimal cost function value. However, as will be de-
scribed in the next section, we use the ensemble of different
results rather than only take a particular single one.

3. MF ENSEMBLES
In the last section, we described RMF, MMMF and NMF

approaches for CF. In order to get a concrete result, we
still need to answer the following questions: Which of these
three MF approaches should be applied? For each of them,
what is the proper value of k, i.e. the number of factors?



For RMF and MMMF, how to determine the regularization
parameter λ (cf. (4) and (10))?

One of the popular answer to the above questions is to
use a validation set. Namely, a part of known ratings in the
matrix Y is replaced with 0, then different MF approaches
with different parameters are applied on the remaining rat-
ings. The results are evaluated on the removed ratings and
the one corresponding to the best performance is selected.

However, in the Netflix Prize competition, we have ap-
plied an ensemble approach, which learns and retains mul-
tiple models and combines their outputs for prediction. En-
semble approaches have already been used for classification,
where different classifiers are combined together to reduce
the generalization error [3]. For example, boosting algorithm
[7], an ensemble method that learns a series of “weak” clas-
sifiers, each one focusing on correcting the errors made by
the previous ones, has been widely used.

In [4], ensemble methods are applied to CF problems by
combining the results generated by the MMMF algorithms
with different initializations, and good results are obtained.
In this paper, we use a simple ensemble scheme for CF. All
of the three MF approaches mentioned before are applied.
For each of them, different parameters are used. And the
average of the resulting multiple predictions is computed as
the final prediction result.

One reason why ensemble methods can work is that they
can reduce the variance of learning algorithms [8, 5]. In a
learning problem, usually several different models can give
similar accuracy on the training data. If we choose one of
these models to compute the output, there is a risk that
the chosen model will not perform well on the unseen test
data. In this case, a simple vote or average of these equally-
good models can reduce the risk. More detailed analysis of
ensemble learning methods can be found in [5].

4. EXPERIMENTAL RESULTS
Experimental results are summarized in Figure 4. It presents

the RMSE values of the 16 submissions on the quiz dataset
provided by Netflix.1
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Figure 2: RMSE of our 16 submissions on the quiz

dataset.

In each submission, the result is the combination of previ-

1We have totally submitted 18 results. Two of them are not
correct due to the errors in our program. Therefore we do
not show the results of these two submissions.

ous results and the current one, which is obtained with new
algorithms or new parameters. The RMSE curve is parti-
tioned into three segments. The first segment contains the
results obtained by RMF, the second one corresponds to the
results from MMMF, combined with RMF, while the last
segment consists of the results obtained by NMF, combined
with RMF and MMMF.

For all these submissions, the number of factors k (cf. (3))
ranges from 10 to 100, the regularization parameter λ (cf.
(4) and (10)) changes from 0.01 to 1, while the learning rate
τ (cf. (8)–(9)) equals 0.01 or 0.02.

Note that actually our latest submission represents a com-
bination of more than 50 different results, because each of
the 16 submissions itself is also the average of several results
obtained with one particular MF algorithm using different
parameters. And before we started to run a new MF al-
gorithm, based on the Probe dataset provided by Netflix,
we had observed that combining more parameters with the
same MF method could hardly improve the result any more.

It can be seen from Figure 4 that by combining the re-
sults of different parameters and different MF approaches,
the RMSE can be improved. And our latest submission
improves the performance of Cinematch by more than 6%.
This illustrates the effectiveness of the ensemble approache.

5. CONCLUSIONS
We have described a Matrix Factorization (MF) based ap-

proach that we have applied to the Netflix Prize competition.
Three different MF techniques are adopted: regularized MF,
maximum margin MF and non-negative MF. To improve
the performance, we combine the results of these MF meth-
ods with different parameters. Experimental results are pro-
vided to validate the effectiveness of our approach.
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