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ABSTRACT

Collaborative filtering (CF) is valuable in e-commerce, and
for direct recommendations for music, movies, news etc. But
today’s systems have several disadvantages, including pri-
vacy risks. As we move toward ubiquitous computing, there
is a great potential for individuals to share all kinds of in-
formation about places and things to do, see and buy, but
the privacy risks are severe. In this paper we describe a new
method for collaborative filtering which protects the privacy
of individual data. The method is based on a probabilistic
factor analysis model. Privacy protection is provided by a
peer-to-peer protocol which is described elsewhere, but out-
lined in this paper. The factor analysis approach handles
missing data without requiring default values for them. We
give several experiments that suggest that this is most accu-
rate method for CF to date. The new algorithm has other
advantages in speed and storage over previous algorithms.
Finally, we suggest applications of the approach to other
kinds of statistical analyses of survey or questionaire data.

Categories and Subject Descriptors

H.5.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering; G.3 [Probab-
ility and Statistics]: Correlation and regression analysis;
D.2.8 [Management of Computing and Information
Systems]: Security and Protection

General Terms

Algorithms,Experimentation,Security, Human Factors
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Collaborative filtering, recommender systems, personaliza-
tion, privacy, CSCW, surveys, sparse, missing data
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1. INTRODUCTION

Collaborative filtering has important applications in e-
commerce, in recreation (music, video, movie recommenda-
tions), and in information filtering in the office. Personal-
ized purchase recommendations on a web site significantly
increase the likelihood over a customer making a purchase,
compared to unpersonalized suggestions. In future ubig-
uitous computing settings, users will routinely be able to
record their own locations (via GPS on personal computing
devices and phones), and their purchases (through digital
wallets or through their credit card records). Through col-
laborative filtering, users could get recommendations about
many of their everyday activities, including restaurants, bars,
movies, and interesting sights to see and things to do in a
neighborhood or city. But such applications are infeasible
without strong protection of individual data privacy.

Most online vendors collect purchase records for their cus-
tomers, and make reasonable efforts to keep the raw data pri-
vate. However, there appear to be no studies of how easily
recommender sites can be “mined” for customer preference
information. With some simple techniques, we have found
that several published schemes (especially correlation-based
schemes) are extremely vulnerable. Furthermore, customer
data is a valuable asset and it is routinely sold when com-
panies have suffered bankruptcy. At this time this practice
is supported by case law. In fact companies are required
to disclose to customers that purchase records will likely be
sold if the company suffers a bankruptcy.

A second problem with today’s server-based systems is
that they encourage monopolies. There are correlations be-
tween customer purchase choices across product domains.
So companies that can acquire preference data for many
users in one product domain have a considerable advantage
when entering another. Even within one market, an estab-
lished firm will have an advantage over a newer competitor,
because the latter will have a smaller corpus of customer
data to draw from, leading to less successful recommenda-
tions. From the customer’s perspective, their purchase his-
tory is fragmented across many vendors reducing the quality
of recommendations to them.

Finally, as collaborative filtering techniques become more
widespread, they constitute an important part of the process
of diffusion of innovations through society |18|. Diffusion
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recommendations come from others like the inquirer, and
heterophilous diffusion, where the inquirer explicitly seeks
recommendations from individuals not like them (typically
from experts or earlier adopters). Today’s collaborative fil-



tering systems support homophilous diffusion, but offer no
plausible version of heterophily. One goal of our work is
to support recommendations from designated communities
including professionals, enthusiasts, members of particular
interest groups etc. We wanted to design a system that
would allow non-members of communities to gain recom-
mendations from them, just as in natural heterophilous dif-
fusion. This pushes two of our design criteria: (i) the proto-
col should protect the privacy of individuals in the commu-
nity while allowing individuals both inside and outside the
community to gain recommendations from it; (ii) a peer-to-
peer design is very desirable to make it is as easy as possible
for communities to construct electronic CF groups, even for
communities with limited resources (e.g. ability to afford,
configure and run a server).

Our work here builds on the recent paper [3] that intro-
duced collaborative filtering with privacy. That paper de-
scribes a protocol for encrypting data and aggregating it and
publishing the result. The aggregate can be downloaded by
users who can use it to derive recommendations from their
own preference data. The first contribution of the present
paper is to introduce the privacy-preserving CF scheme to
the SIGIR community and give a simplified description of
the protocol. The second contribution is a new collabo-
rative filtering scheme which preserves privacy and which
appears to be the most accurate CF scheme developed so
far. The third contribution is a set of experiments using the
new method, characterizing its accuracy, speed and storage
requirements.

This approach is applicable to traditional collaborative fil-
tering applications, but also opens the door to many novel
applications of CF in ubiquitous and everyday settings. Pri-
vacy protection should allow CF to be applied to log data
that is too extensive or too sensitive to be sent to a server.
In the next section, we describe the probabilistic model of
user preferences, and how this model is used to generate
new recommendations. Then we briefly explain how the
model can be computed from encrypted data. Finally, we
describe some experiments with the factor analysis model on
CF datasets, including a common benchmark dataset. Our
experiments support the claim that this is the most accurate
collaborative filtering method to date, and that it has other
advantages in speed and storage requirements.

2. PROBABILISTIC MODEL

In the most general setting, we want to construct prob-
abilistic models of user behavior/preferences from observa-
tions of it. In this paper, we want to extrapolate user ratings
from these observations for collaborative filtering. We chose
a low-dimension linear model of user preferences after con-
sideration of the most successful previous CF algorithms.
The following design issues are important:

1. Among the most accurate CF methods to date are
neighbor methods using Pearson correlation [2], [12],
Singular Value Decomposition [19] and “Personality
Diagnosis” [16]. SVD has an explicit linear model.
Pearson correlation is known to be equivalent to linear
fit. PD is harder to characterize, but if it is indeed
“personality” diagnosis, it is known that linear mod-
els are good models for human personality traits [13].
Given that our goal is to extrapolate user ratings from
a model, these precendents argue in favor of a linear

model of user ratings.

2. CF data is extremely sparse. The EachMovie dataset
described later, which contains only 3% of the pos-
sible ratings, is considered a “dense” dataset. Other
datasets may have 0.1% or even 0.01% of the possible
ratings. A good CF method should deal with miss-
ing data in a principled way (not by filling in missing
values with defaults).

3. Signal and noise variances are comparable in typical
CF applications (this is an empirical observation we
have made during the experiments in section . So
an explicit probabilistic model should be used, but not
e.g. the simple least-squares fitting of SVD which ef-
fectively assumes that signal variance is infinite.

For these reasons we chose a linear factor analysis model.
Factor analysis (8] is a probabilistic formulation of linear
fit, which generalizes SVD and linear regression. In what
follows, we will use upper case symbols (X, Y') to represent
random variables, and lower case symbols (x, y) to represent
sets of observations of those variables for all users. Let Y =
(Y1,...,Ys) be a random variable representing an abstract
user’s preferences for n items. Then Y; is their preference for
item i. An observation (lower case) y would be a particular
set of ratings by all users, so e.g. y;; would be user j’s rating
of movie number i, say y;; = 5 on a scale of 0 to 10. Thus
y is an n X m matrix whose rows are indexed by item, and
whose columns are indexed by user.

Let X = (X1,...,X%) be a random variable representing
an abstract user’s k canonical preferences, which is a kind
of user profile. For instance, X; could be an individual’s
affinity for blockbuster movies. Other X;’s would affinities
for other movie types. We do not need to know the meanings
of the dimensions at any stage of the algorithm, and the
model is automatically generated. The linear model for user
preferences looks like this:

Y =AX+N (1)

where A is a n X k matrix. N = (Ny,...,Ny,) is a ran-
dom variable representing “noise” in user choices. The lin-
ear model we are looking for comprises A and the variances
VAR(N;) of the noise variables. X is automatically scaled
so that it has unit variance, and therefore we dont need to
find VAR(X). For simplicity, we assume all the VAR(V;)’s
are the same, VAR(V;) = 4. We also assume that X and N
have gaussian probability distributions. If we could observe
X and Y at the same time we would have a classical linear
regression problem. We can’t observe X, and instead we
have a factor analysis problem.

There are several algorithms available for factor analysis.
We chose to use an EM approach (Expectation Maximiza-
tion) [6] for two reasons: firstly because it has a particularly
simple recursive definition which can be combined with our
privacy method, and secondly because it can be adapted
to sparse data. When we solve the EM equations, we start
by computing an approximation to A using linear regression.
We do this because the regression equations are also compat-
ible with our privacy scheme, and each regression iteration
is faster than an EM iteration. The regression equations can
be found in [14].

To initialize A before the linear regression begins, we fill it
with random values from a gaussian distribution. Then we



scale each of its columns to have a magnitude which matches
the expected RMS noise for that CF domain (RMS noise is
V< N2 > where <> is expected value). The RMS noise for
typical collaborative filtering domains is about 20% of the
rating range. The variable 1) should be initialized to the
variance of the noise (the square of the RMS noise value).

2.1 EM Factor Analysis

We use an Expectation Maximization recurrence to solve
the factor analysis model. The recurrence we use is known
[8 [14] although the way we deal with sparseness (missing
values) is new. We believe that careful treatment of sparse-
ness is essential for good performance of CF algorithms,
given the (usually) very high fraction of missing data. Most
previous approaches have used defaults or inferred the miss-
ing values. This is simply incorrect from a statistical point of
view. The available user ratings induce a probability distri-
bution for each missing rating, which cannot be represented
by any single value. For a detailed discussion of these issues
we refer the reader to [9].

We start first with the dense situation, assuming that ev-
ery user has rated every item. Once again y is the n x m
matrix of ratings of n items by m users, and z is a kK X m ma-
trix which models the users’ coordinates in preference space.
The recurrence is

M = (WI+ATA)”
z = MATy
AP = T (zaT + mypM) T
P = (1/nm)trace(yy” — AP zyT)

where [ is the k x k identity matrix, and M is a k X k inter-
mediate matrix. The superscripted symbols A® and ¢®
denote values after the iteration, unsuperscripted symbols
are values before. This recurrence is based on a maximum
likelihood model, and because of that it can be adapted to
any sparse subset of the evidence y.

Our approach to dealing with sparseness is based on Ghara-
mani and Jordan’s paper [9]. The idea is to compute sym-
bolic expected values for all the missing quantities including
quantities such as variances derived from missing ratings,
and to substitute them in the formulas so they are com-
plete. Note that this is not equivalent to substituting only
the expectations of missing ratings [9]. One must effectively
work with the distributions of missing ratings, not just their
expectations. We will not give the derivation here, and it
turns out that substituting for quantities derived from miss-
ing ratings causes them to cancel later in the analysis. So the
missing items disappear from the equations and are never
needed. One can in fact derive the same set of equations by
treating missing values as if they were never there, by de-
riving MAP (Maximum A-posteriori Probability) estimates
for the linear model given only the known ratings.

2.1.1 Sparse Formula

First of all, we need to partition the formulas to data
computable by each user. Let y; be user j’s vector of n rat-
ings, and x; be user j’s estimated coordinates in preference
space. Because user j hasn’t rated every item, we need to
introduce an n X n “trimming” matrix D;. The matrix D;
is a diagonal matrix with 1 in positions (i,7) where 4 is an
item that user j has rated, and Dj is zero everywhere else.
The matrix D; allows us to restrict the formulas for user j

to the items they have rated. We use the notation M|; to
denote the restriction of a matrix M in this way. Note that
restriction does not change the dimensions of a matrix, and
M and M|; are both k x k matrices. Then we have

Al; = DjA
M|; = (@I+A"D;A)™" (2)
z; = M|;A[]y;

All of these calculations can be done by user j, assuming
they know A, which is public information. Notice that these
equations are independent of missing data in y;. This is
because A|] = A" Dj;, so when A[] is multiplied by y;, ele-
ments of y; in missing data positions are multiplied by zero.

The next expression comes from the maximization step of
EM g

D, AP (x]x] +yM|;) = Jy]l‘f

which is a tricky equation to solve when summed over all
users because AP, the matrix we would like to solve for,
is surrounded by non-constant factors. We will skip the
details, but we can rewite the above as:

D; @ (zja] +¥M|;)L(AP) =

where ® is the kronecker product, and L(A) for a matrix A is
the vector obtained by “stacking” columns of A one on top
of another. These operations are available in many linear
algebra packages (e.g. ® is “kron” in Matlab and L(A) is
A(:)). Once we have this form for the equations, we can add
them up for all users and solve for A®. The result is

L(Djy;z;)

m

L(A®) <Z —D; ® (za; +¢M|; )) Z%L(Dﬂﬂ?)

Jj=1 Jj=1
(3)
where n; is the number of items that user j actually rated.
The factors (1/n;) give appropriate weights to each user,
and without them users who had voted for many items would
overly influence the model.
Finally, we need to update ¢, which is slightly changed
from before to

1w 1
w(m ~m Z ni y] Djy; — tra.ce(A(mmgyj Dj))  (4)

Equations , and are the complete EM iteration
for sparse factor analysis, which we will call EM-FA. In order
to distribute the iteration among users, we decompose the
sparse formula in the following way. Each user j computes

Aj = 5D ® (wa) +yYM]|y)
B; = -Djyzj (5)
Cj = v Dy
We leave it to the reader to confirm that these expressions
are independent of any values in missing data positions of

y;. The user sends the results in encrypted form (see next
section) to a totaler(s). The totaler(s) computes

LAY) = (S 4) S L)
P = A T(C — trace(A¥B,)

where L(A) is the matrix A written as a vector with its
columns stacked one on top of another (A(:) in Matlab).

(6)



The totaler(s) decrypts the results and sends them to all the
clients. So the iterative procedure goes in rounds, with back-
and-forth communication between clients and totalers using
equations 7 and @ We call these the distributed
EM-FA equations.

As suggested in the last section, our procedure is to ini-
tialize A and v, run a few (say 10) iterations of linear regres-
sion (which also easily distributes among clients) to move A
nearer to the maximum likelihood value, and then to run
iterations of EM-FA until convergence is obtained. In prac-
tice, the EM-FA procedure converges so reliably that we
use a fixed number of iterations (15-25 typically) of EM-FA.
From then on, we continue to run iterations periodically,
which will keep the model fitted to the data as it changes.

2.2 Obtaining Recommendations

The result of the iteration above is a model A, of the
original dataset y. It can be used to predict a user’s ratings
from any subset of that user’s ratings. Let y; be user j’s
ratings. User j should download A, and then locally com-
pute x; using equation . From z;, user j should compute
Az; which is a vector of ratings for all items. The ratings
in this vector are the predictions for user j.

2.3 Removing Means

The factor analysis model assumes that the random vari-
able Y has mean zero. In practice this isn’t true. We can
make it approximately true by subtracting an estimator of
the mean for each user rating. If y is a training set, then
the means should be subtracted before the model A, is
built from y. Then when recommendations are computed,
we take the j'" user’s ratings y;, subtract the means for
all items and make the predictions for missing ratings us-
ing equation . The means should be added back to the
missing ratings before they are used. There are two basic
estimates for the mean of a given rating: the per-user mean,
or the per-item mean. Either of these can be used. For
datasets where the number of users is much larger than the
number of items (as for Eachmovie or Jester), the per-item
average will usually be more accurate. For other datasets,
either estimator may work well, and it is best to experiment
to see which is better. We implemented both methods.

3. PRESERVING PRIVACY

Having shown that we can reduce factor analysis to an it-
eration based on vector addition of per-user data A;, Bj
and Cj, we next sketch how to do vector addition with
privacy. Putting both procedures together gives us factor
analysis with privacy. The scheme we use for vector addi-
tion is the same as |3]. We will not repeat the derivation or
mathematics here. We will give a high-level sketch of the
method which we think should be useful for understanding
the method. Among other things, it uses a social notion of
trust that could well be the source of some interesting stud-
ies. We assume that a fraction « of users are honest. The
value a must be at least 0.5 and preferably > 0.8. The goals
of the protocol are that: The server should gain no infor-
mation about an individual user’s data y;, and both user’s
data and totaler’s calculations should be proved correct (no
cheating). Our protocol achieves those goals |3].

The method uses a property of several common encryption
schemes (RSA, Diffie-Hellman, ECC) called homomorphism.
If E(.) is an encryption function, and g is a multiplicative

group element, we can define a function H(m) = E(g™).
This function is a homomorphism, meaning that

H(ml)H(mg) = H(m1 —+ mz)

where multiplication is ring multiplication for RSA, or elem-
ent-wise for DH or ECC. By induction, multiplying such
encodings of several messages gives us the encoding of their
sum. So by encoding numbers m,; and then multiplying the
encodings, we can compute the encryption of a large sum
without ever seeing the data. This seems to get us halfway
there - we can add up encrypted items by just multiplying
them. But how to decrypt the total?

The decryption scheme is somewhat more involved. It
relies on key-sharing. The key needed to decrypt the total
is not owned by anyone. It does not exist on any single
machine. But it is “shared” among all the users. Like a
jigsaw puzzle, if enough users put their shares together, we
would see the whole key. There is some redundancy for
practical reasons - we would not want to require all the users
to contribute their shares in order to get back the key, or we
could probably never get it back. Because the item that has
been shared among the users is a decryption key, they can
use it to create a share of the decryption of the total. To
clarify this, everyone has a copy of the encrypted total E(T).
Each person can decrypt E(T") with their share of the key,
and the result turns out to be a share of the decryption of
T. By putting these shares together, the users can compute
T.

To summarize the outcome of the protocol: Each user
starts with their own preference data, and knowledge of who
their peers are in their community. By running the proto-
col, users exchange various encrypted messages. At the end
of the protocol, every user has an unencrypted copy of the
linear model A, ¢ of the community’s preferences. They can
then use this to extrapolate their own ratings using equa-
tions as described in section At no stage does unen-
cypted information about a user’s preferences leave their
own machine. Users outside the community can request a
copy of the model A, ¢ from any community member, and
derive recommendations for themselves as described in sec-
tion

There are some extra details to make sure that users and
totalers (who compute the totals) are not cheating. We use
a technique called zero-knowledge proofs (ZKPs) to require
each user to prove that their hidden vote is valid (within
the allowable range of ratings, so they cant excessively in-
fluence the total). And we use a sampling technique to check
totalers’ totals for accuracy. As well as making errors, to-
talers can compromise users’ privacy by deliberately leaving
out (or multiply adding) their data. The interested reader
is refered to [3]. The protocols are simple and efficient, and
although the numbers required are quite large (160 to 1024
bits) the bandwidth and computation demands are reason-
able.

This protocol is designed to be robust with a fraction (say
up to 0.2) of cheating totalers and users. It is also robust
against a reasonable number of clients being offline (this pa-
rameter can be adjusted but 50% would be typical). It is
a peer-to-peer application that doesnt require a server, al-
though it does leverage some non-trivial peer services which
are available now as prototypes (in systems like Groove or
Oceanstore [15]) and which may become part of network in-
frastructure in the future. We would like any group of users



to be able to create and maintain a collaborating affinity
group that shares data internally and allows other groups
to use it.

4. RELATED WORK

Two recent survey papers on collaborative filtering [2],
[12], compared a number of algorithms for accuracy on avail-
able test data. Generally speaking, they found that neigh-
bor weighting using Pearson correlation gave best accuracy
among the algorithms considered at that time. Slight modi-
fications to the Pearson method, like the significance weight-
ing scheme from [12], can improve its performance by one or
two percent. We implemented several of these extensions,
but significance weighting was the only extension that re-
liably improved accuracy. We used it in our comparison
experiments.

Since the surveys, there have been a few papers which
gave comparable or better results than Pearson correlation
on some datasets. The first uses SVD [19], which gives a
linear least-squares fit to a dataset. SVD was used in our
first paper 3] on CF with privacy. There are differences in
the method of generating recommendations from the SVD
however, and our scheme from [3] is based on a maximum
likelihood model, and was more accurate than the scheme
from [19] in experiments. The present work (sparse fac-
tor analysis) differs on both [3] and [19] by using the same
probabilistic formulation to generate recommendations from
a model, and to construct the model itself. It is always more
accurate than either of the SVD schemes. Another recent
paper uses a probabilistic method called “personality diag-
nosis” (PD) [16], and gives better accuracy than Pearson.
As we will see in the next section, PD is more accurate than
Pearson, but less accurate than sparse factor analysis on
available data.

Recently, several researchers have combined collaborative
and content-based recommenders. These algorithms use
both user ratings and also metadata about the rated items,
or possibly their content if that is appropriate. They are
particularly useful in groups with few users, for items that
have not been rated by many others, or in domains with
extremely sparse ratings. In [1], the authors present a hy-
brid recommender. In [11], the authors use content-based
agents to fill in missing ratings data. The paper [5] uses
separate collaborative and content-based (metadata) recom-
menders and then combines the results with a weighted aver-
age. Popescul et al. |[17] use a probabilistic aspect model to
combine collaborative ratings with text content for the cite-
seer database. There is a simple extension to our method
which supports meta-data which we have tried in a few ex-
periments. It is described in a forthcoming paper [4].

Collaborative Filtering with low-dimensional linear mod-
els was apparently used in DEC’s original Eachmovie recom-
mender site. It is described in US patent number 6,078,740.
Although the patent does not describe the algorithmic tech-
niques, the system included a least-squares recurrence that
worked directly on sparse data without added defaults [7].

5. EXPERIMENTS

To provide better comparability with earlier results, we
re-implemented Pearson correlation which had been used in
the two survey papers. We repeated published experiments
on a well-known dataset. Then we compared Peason and

our scheme on some new datasets to give a broader com-
parison. All the code for our algorithms, along with our
implementations of Pearson as well as the SVD algorithm
from [19], are available in MATLAB from the project web-
site www.cs.berkeley.edu/~jfc/ mender.

5.1 Evaluation Metric

Several evaluation metrics for collaborative filtering have
appeared in the literature. The most common is the MAE
or Mean Absolute Error between predicted and actual rat-
ings for a set of users. We used MAE exclusively in our
experiments for several reasons. First of all, it is the most
commonly used metric and allows us to compare our results
with the largest set of previous works. Secondly, it correlates
well with other metrics. In a recent paper by the Grouplens
group [19] they noted that statistical metrics such as MAE,
RMSE (Root Mean Squared Error) and Correlation “track
each other closely”. They also noted that MAE and the
decision metric ROC “provide the same ordering of differ-
ent experimental schemes”. Thirdly, the differences in MAE
between our scheme and others are quite large compared to
earlier comparison papers. It seems unlikely that this dis-
parity would be reversed under a different metric. Instead
we concentrated on testing on a diversity of datasets to see
how strong the disparity was across them.

5.2 Eachmovie Dataset

The EachMovie dataset was created by Compaq Equip-
ment Corporation from a recommender site for movies that
they ran. Eachmovie comprises ratings of 1628 movies by
72916 users. The ratings are on a scale of 0-5. The dataset
has a density of approximately 3%, meaning that 97% of pos-
sible ratings are missing. Eachmovie was one of the datasets
used in the recent survey by Breese |2|. Breese et al. tested
several methods on the Eachmovie dataset, and used two
different metrics, one of which was MAE. They found that
that best performing algorithm on the EachMovie dataset
under both metrics was a neighborhood scheme based on
Pearson correlation.

Breese’s experiments were done on a sample of 5000 users.
Since our method involves a training phase, we created two
disjoint sets yr,yp of 5000 users. We computed the model
A, on the first training set yr using k& = 14 and per-item
averaging. Then we tested the model on the set yp. We
also ran our Pearson implementation on the yp set, and ob-
tained MAE ratings that matched Breese’s within statistical
error. We compared the EM-FA predictions with Breese’s
“Allbut1” case, which used all but one of a user’s ratings to
make a prediction, and compared the prediction with the re-
maining value. We felt this was the most realistic prediction
case.

Because we tested against several datasets, we used a nor-
malized value of MAE, or NMAE, as suggested by Goldberg
|10]. The results appear in figure 1. The baseline predictor
was are respectively the per-item average (average of a row
of y). Per-item average is not personalized. Each movie’s
rating is the same for all users. These predictors provide
a useful reality check for more sophisticated schemes. Also,
many schemes, Breese’s and ours included, make predictions
relative to one of the baseline predictors. On the EachMovie
dataset with 5000 items, we used per-item averaging. We
tested per-user averaging on this dataset as well and it was
2% less accurate.
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Fig 1. Results of sparse factor analysis (k = 14), Pearson corre-
lation and Personality diagnosis against a baseline predictor for
the EachMovie dataset. Lower bars indicate better performance.
Lightly shaded regions show improvement over baseline.

Note that Pearson correlation, the most accurate reported
scheme on Eachmovie from Breese’s survey, achieves about
a 9% improvement in MAE over non-personalized recom-
mendations based on per-item average. Personality diag-
nosis achieves an 11% improvement over baseline. By con-
trast, sparse factor analysis achieves an 18% improvement
over baseline, and a 9% improvement over Pearson correla-
tion. It was a 10% improvement over simple SVD predic-
tion. The predictions from sparse factor analysis improve if
there is more training data. This will often be important be-
cause sparse FA is orders of magnitude faster than Pearson
correlation or PD on large datasets. Therefore sparse FA
can be often used on larger datasets than is practical with
those methods. We tried training with 50,000 users, and
the NMAE dropped a further 2.5% to 0.175. The standard
deviations in all estimates are less than 0.25 %.

5.3 Jester Dataset

NMAE
0.207
0.2

0.15

0.1

0.05

Per-user Per-item
average average

Pearson Sparse
correlation FA

Fig 2. Results of sparse factor analysis (k = 14) and Pearson
correlation on the Jester dataset. Lower bars indicate better per-
formance, and the lightly shaded regions are improvement over
baseline.

The Jester dataset comes from Ken Goldberg’s joke rec-
ommendation website, Jester . In Jester, users rate a
core set of jokes, and then receive recommendations about
others that they should like. The database has 100 jokes,

and records of 17988 users. Some users end up reading and
rating all the jokes, so Jester is much more dense than the
other datasets we considered. Roughly 50% of all possible
ratings are present. Jester has a rating scale from -10 to 10.
Ratings are implemented with a slider, so Jester’s scale is
continuous. Perhaps because of the density, and/or because
the continuous scale introduces less quantization error in
ratings, Jester exhibits lower NMAE values than the other
datasets we tested.

We split the data into training and test sets with approx-
imately 9000 users in each. We computed a factor analysis
model with & = 14 factors as before. The results are shown
in figure 2. Notice that this time, the per-user average is a
better baseline predictor than per-item average. This time
Pearson correlation is a 10% improvement over the better
of the two baseline predictors, while factor analysis is a 5%
improvement over Pearson. Given that this data is not very
sparse, we expected a lower improvement over Pearson. The
best reported NMAE from among the methods described in
was 0.187, which is somewhat higher than Pearson on
this dataset.

5.4 Clickthru Dataset

The last experiment used data from a large internet ser-
vice provider. This dataset has anonymized web clickthru
information from 15,000 users for 6 months. The basic
dataset was a log file listing user ID number, URL accessed
and the date and time. To limit the number of sites that
might be considered, we truncated the URLs to 20 charac-
ters after the domain name. We also eliminated sites that
had not been visited by at least 3 distinct users. The result
was 210832 web sites. Our factor analysis model is most
effective on datasets that have ratings of the items on some
scale. So instead of a binary matrix indicating whether a
user visited a site or not, we built an integer valued matrix
y, where y;; was the number of times that user j visited site
i. The number of visits of a user to a site is an implicit rat-
ing of that site by the user. The implicit rating was clipped
at 10, so the range of ratings for a site varied from 1 to 10
(0 represents no visit rather than a low rating). The dataset
has about 2.2 million non-null entries, and is the most sparse
dataset we used. It contains 0.07% of the possible ratings.
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Fig 3. Results of sparse factor analysis (k = 4) and Pearson
correlation on the web clickthru dataset. Lower bars indicate

better performance, lightly shaded region is gain over baseline.
Note that the Y-axis has been expanded.



The results are shown in figure 3. Both Pearson corre-
lation and factor analysis methods used per-user mean as
their baseline predictor, which is shown as a dotted line on
the figure. For this example, factor analysis gives more than
double the decrease in NMAE compared to Pearson. Note
that the implicit rating (by frequency of visit) does behave
like a rating, in the sense that there is a significant error
reduction by using the predictive model. Sparse FA is able
to give nearly a 10% improvement over baseline prediction
on this dataset, which is the same improvement as Pearson
over baseline on the two previous datasets, which were real
user ratings.

5.5 Performance: Speed

The code for EM and Pearson correlation was written
in Matlab. The complexity of one iteration of the sparse
FA Matlab algorithm is O(nmk?), so it scales linearly with
both n the number of items and m the number of users. If
sparse matrix representations are used, the running time is
O(nmpk? + mk®) where p is the fraction of possible ratings
available. For the Eachmovie dataset with 5000 users and
k = 14, the factor analysis training time was 11 minutes (20
iterations of the EM recurrence) on a PII-400 MHz machine
with 256MB ram. Training with 50,000 users took a little
under two hours. The time to predict all missing ratings for
a user is O(nk?) and is independent of the number of users.
Predictions for Eachmovie took 7 milliseconds (to generate
approximately 1600 ratings for one user). For comparison,
Breese reported a computing time to generate ratings for
one user using Pearson correlation of about 300ms on a PII-
266 MHz machine. Our Matlab implementation of Pearson
correlation had similar performance to Breese’s at 300ms
per rec. With the same effort at optimization, our Mat-
lab implementation of sparse factor analysis was about 50
times faster than our implementation of Pearson for gener-
ating ratings on a 5k dataset. It was 500 times faster on a
50k dataset. Of course, our method involves an additional
training phase, while Pearson does not. Including model
generation, the overall times to generate recommendations
for everyone are comparable for SFA and Pearson with 5k
users. But with 50k users, SFA is an order of magnitude
faster, including model generation.

For the Jester dataset with 100 items, 9000 users and
k = 14, time to construct the factor analysis model was
8 minutes. Generating all recommendations for one user
took 7 milliseconds on the same hardware as the previous
experiment. For the Clickthru dataset with 210832 items
and 15000 users, we computed a factor analysis model with
k = 4. The training time was 5 hours. Generating all rec-
ommendations for one user took 60 milliseconds.

5.6 Performance: Space

For the Eachmovie dataset with 5000 users and k=14, The
model A was a dense array with 23072 elements compared
with the original training array which had 234934 non-nulls.
In other words, the model was a 10-fold compression of the
original data. For Jester, which had a high density of avail-
able ratings, the model was a 300-fold compression.

The curve below shows how cross-validation NMAE varies
with model size k and number of users m. To the left of the
curve, it is clear that high k leads to large errors, implying
that the model is over-fitting. As the number of users (and
amount of non-null data) increases, the curves cross over,

and with 50000 users, the model error decreases with k.
However, it was difficult to detect a significant difference
between £ = 14 and k = 20, and we did not try larger
values of k.
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Fig 4. NMAE as a function of model dimension k and number of
users m, for the Eachmovie dataset.

We can abstract the information above to the following
heuristic to avoid over-fitting for typical collaborative filter-
ing data:

Maximum Model Size The model dimension k& should
be chosen so that the total size of the model A is at most
one tenth of the number of non-null elements in the original
data. This criterion is equivalent to

10X k<pxm

where m is the number of users as before, and p is the density
(fraction of non-nulls) in the dataset.

A second test for overfitting is provided by our Matlab
code mentioned earlier, which estimates ¢ at both model
creation and at prediction time. If these estimates differ
significantly (say by more than 20%), the data has been
overfit and k should be reduced.

The model size criterion implies that the factor analysis
model is a substantial compression of the original dataset.
Ten is the minimum compression ratio, twenty to thirty are
desirable, and larger numbers will still give very accurate
prediction. e.g. with 50000 users and k = 14, the model
still gives very good accuracy from figure 4. In this case,
the model is 100 times smaller than the original data.

6. DISCUSSION

Sparse factor analysis is an extremely promising approach
to collaborative filtering. We ran it on three datasets of vary-
ing sparseness, including a well-studied reference dataset.
In all cases, its accuracy improved significantly over other
methods. The improvements increased with the sparseness
of the dataset, as expected because sparse FA correctly han-
dles sparseness. For memory-based methods such as Pear-
son correlation or personality diagnosis (PD), sparse FA is
much faster per recommendation (50 times typical). It also
and provides typical compression of the dataset of 10-100
times over memory-based methods. It is closest in speed and
space requirements to singular value decomposition, but has
a large accuracy advantage (about 10% on EachMovie data)
over SVD. Sparse FA was implemented using a simple EM



recurrence, so that it adapts easily to user datasets that are
continually being updated. One or two iterations are enough
to update the model after an update to the user data. It is
the first CF algorithm to have an incremental implementa-
tion. Sparse FA supports computation on encrypted data,
thereby protecting user privacy. Finally, the method is fully
described by the recurrence equations , and and
is easy to implement. It infers the statistical quantities it
needs, and the only parameter to be set is the model dimen-
sion k, for which we gave some principles. The lack of other
adjustable parameters or heuristics makes its performance
easy to replicate. In our experience, its convergence is fast
and reliable.

6.1 Limitations

The main limitation of this model is its suitability for bi-
nary recommendation problems, such as purchase records.
For binary data such as “purchase/no purchase,” there is no
missing data, and the factor analysis model would not show
as great an advantage over other schemes. It would still be
applicable however, and should be more accurate than SVD
or Pearson methods because of its full probabilistic model.
How it compares with probabilistic models that assume bi-
nary data is another question.

We suggest that a better way to apply the model to e-
commerce applications would be to extract some tacit rating
info. For instance, if you own the site providing the com-
merce, you could record when a user views an item as well
as when they purchase it. If they view and do not purchase,
record a 0 for that item and user. If they do purchase, record
a 1. In that way, you still acquire a (typically very) sparse
matrix, and the factor analysis model would likely do much
better than other models.

6.2 Extensions

One natural extension of the model is to location-based
services. Using data recorded about user’s positions and
purchases using small mobile devices with GPS (phones or
PDAs), we can offer recommendations about places to see,
things to do etc. This application is described in a forth-
coming paper [|4]. The privacy protection that our method
provides is extremely important in this application, because
we expect users would be unwilling to expose their position
data to a service provider without strong privacy guarantees.

Factor analysis and SVD are common data analysis tech-
niques for surveys or performance studies. Our method can
be easily adapted to that setting. Users run a client on their
computer that gathers survey responses or logs user actions,
and then forwards them in encrypted form to a server. The
server can then compute a factor analysis which would hide
individual responses. Such a scheme may enhance user re-
sponse rate because users will be able to participate without
worrying about loss of privacy.
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