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Abstract— Grasp planning based on perceived sensor data of
an object can be performed in different ways, depending on the
chosen semantic interpretation of the sensed data. For example,
if the object can be recognized and a complete 3D model is
available, a different planning tool can be selected compared to
the situation in which only the raw sensed data, such as a single
point cloud, is available. Instead of choosing between these
options, we present a framework that combines them, aiming to
find consensus on how the object should be grasped by using the
information from each object representation according to their
confidence levels. We show that this method is robust to common
errors in perception, such as incorrect object recognition, while
also taking into account potential grasp execution errors due
to imperfect robot calibration. We illustrate this method on the
PR2 robot by grasping objects common in human environments.

I. INTRODUCTION AND RELATED WORK

Robots operating in human settings must often make

sense of an uncertain environment. In particular, grasping

and manipulation tasks can be affected by both perception

uncertainty (such as incomplete data due to occlusions or

incorrect object segmentation and recognition) and execution

errors (such as imperfect trajectory following during arm mo-

tion). Grasp planning algorithms aim to increase reliability in

unknown scenarios by producing grasps able to resist a wide

range of disturbances, for example, using well-established

quality metrics based on either the Grasp or Task Wrench

Space [10], [4]. However, this type of analysis does not

handle potential errors such as the ones mentioned above,

that affect the grasp planning and execution process itself.

The uncertainty inherent in unstructured environments

also means that different perception algorithms can provide

different interpretations of the same scene. For example,

object recognition algorithms often return a list of possi-

ble results, each associated with a numerical measure of

confidence, rather than a single result with 100% certainty.

Different grasp planning algorithms, using different data

representations, will have their own view of how an object

can be grasped.

By combining this data in a common framework, we

can take advantage of multiple sources of information, and

produce algorithms better suited for handling uncertainty.

In this paper, we use the results from multiple grasp plan-

ning approaches, running on different types of input data,

in a way that is agnostic to the inner workings of each

algorithm. In order to allow this exchange of information

between algorithms that are intrinsically different, we use

experimental data to map raw results from each algorithm to
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success probabilities, which allows us to combine different

components in a single framework. We also propose a

method of using pre-computed grasp information to replace

expensive run-time computations when estimating how likely

a grasp is to succeed, applicable to planners that can run off-

line on a database on known models.

In addition to the uncertainty associated with sensor data,

grasp execution is also affected by potential calibration errors

between the sensors and the end-effector. This type of error

can be mitigated, for example, through extensive calibration

or controller tuning, but rarely eliminated altogether. We

attempt to handle this case by extending our measure of

confidence in the success of each grasp to also take into

account the range of possible outcomes for the respective

execution commands.

There is a long history of work that deals with the

problem of planning robot motions and manipulation tasks

under uncertainty, starting with preimage backchaining [18].

More recently, Berenson et al. [2] used Task Space Regions

(TSRs) to generate manipulator trajectories that satisfy the

requirements of a task despite robot pose uncertainty. Hsiao

et al. [13] used a belief-based representation of object pose

to plan actions to robustly execute specific grasps of known

object shapes. Saxena et al. [23] used a probabilistic classifier

to generate grasps and to predict their probability of success

given features of an image and a point cloud of the object.

Glover et al. used a probabilistic representation of 2-D shape

to recognize and complete object outlines in an image for

grasping. Finally, Balasubramanian et al. [1] examined how

to improve the robustness of grasps using grasp measures

derived from human-guided grasp demonstrations.

A database-driven grasp planning approach, including

grasp evaluation across multiple objects of similar shapes,

was recently discussed by Goldfeder et al. [11]. De Granville

et. al. [8] also used mixtures of Gaussians over grasp posi-

tion and orientation to represent functionally different grasp

affordances, based on a database of human-demonstrated

grasps; Detry et al. [9] represented grasp densities using a

nonparametric kernel representation over grasp position and

orientation, refined through robot grasp experiments.

II. OBJECT REPRESENTATIONS AND COLLABORATIVE

GRASP PLANNERS

Consider the problem of a robot attempting to execute a

grasp based on a perceived sensor image of the target object.

In this study, we use a stereo camera equipped with a textured

light projector to provide point clouds of the environment,

although the framework that we will present is naturally

extendable to other types of sensors. We also assume here
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Fig. 1: Challenges in sensing for manipulation. (a) An object to be grasped, as well the recorded point cloud. (b)-(d)

Different object representations for grasping, and their corresponding planned grasps. These include a planner based only on

the point cluster (b), and two results of the recognition algorithm, one incorrect (c) and one correct (d). (e) All representations

superimposed, along with a set of grasps combining information from all of them.

that the segmentation problem is solved (i.e. the object is

separated from the background). As in previous work [12],

we use planar segmentation and Euclidian clustering to

separate the objects from a planar support surface, as well as

each other. Fig. 1(a) shows an example of the raw perceived

data of an object, as well as the segmentation result. Notice

that due to (self-) occlusions, noise, and other imperfections

of the point cloud, the original object (in this case a wine

glass) is barely recognizable to a human operator. This point

cloud is the starting point of the grasp planning algorithm.

A. Object Representations

One possible method for performing the grasp is to attempt

to recognize the object from a database of known models,

and simply use a pre-computed grasp for the recognized

model. This approach is discussed in [11]. In this study,

we use the implementation presented in [7], relying on the

model database described in [6]. This method, which we

refer to as database-driven planning, has the advantage of

reasoning about the complete object shape and choosing

grasps accordingly. In addition, planning can be performed

off-line on all models in the database, saving significant

computational cost at run-time. However, database-driven

planning only works on objects that can at least be reasonably

approximated by models in the database, and is critically

affected by the quality of the model recognition algorithm.

To illustrate the importance of correct object recognition,

Fig. 1(c)(d) shows part of the result of our algorithm applied

to the point cloud of Fig. 1(a). Note that the first result

(a tennis ball can) is incorrect, even though it matches the

observed part of the glass quite well. The correct model, and

other similar objects, can be found further down in the list

of recognition results. Intuitively, it seems that the results of

the recognition algorithm contain at least some useful data,

but a naive planning algorithm using only the first result (the

tennis ball can) has a significant chance of failure.

If object recognition can not be fully trusted, a natural

alternative is to select a grasp based strictly on the segmented

point cloud, without attempting to identify the object, as

shown in Fig. 1(b). Note that, in the rest of the paper, we

will refer to the segmented point cloud of an object as a

point cluster, or simply a cluster, in order to distinguish it

from complete point clouds of an entire scene. Examples

of cluster-based planning approaches can be found in [15]

and also in [12]; the latter implementation is also used in this

study. This approach has the advantage of being applicable in

a wide range of situations, as it only requires segmentation of

the target object (as described above). However, it is naturally

limited by only having a partial view of the object to work

with.

Generalizing from the two concrete cases presented above,

we notice that different grasp planners often use different

representations of the target object. For database-driven

grasping, any model returned by a recognition algorithm can

be considered a representation of the underlying sensor data;

for cluster-based planning, the representation is the point

cluster itself. Based on how well the given representation fits

the object, and also on the intrinsic planning algorithm, the

resulting grasps will be more or less likely to succeed when

executed on the real object. In our formulation, each object

representation is associated with a grasp planning algorithm

that uses that particular method of interpreting the data.

In this study, we rely on the two representations discussed

above for our implementations and results. We also note that



other object representations for grasping have been proposed

in the literature. One example is to represent the object data

using primitive shapes (such as boxes, spheres or cylinders)

as in [14], [22], and attempt to plan grasps based on the

primitives [19], [14] . Representations can also use different

sensors, as in [23] where grasping is based directly on a

monocular image of a scene. While these methods are not

(yet) used in our framework, some of them are natural

extensions and their inclusion is the subject of future work.

B. Multi-planner Framework

For a given sensor view of an object, we refer to our

set of possible representations as R, with an individual

representation denoted as r ∈ R. Furthermore, for any

representation we define a confidence function C(r|o), which

encodes how confident the representation r is in its ability to

predict whether grasps will succeed, based on the observed

data o (we will expand on this topic in later sections).

We refer to a grasp that can be executed by the robot

as g. In our study, we apply this formulation to a robot

equipped with a simple parallel gripper. In this case g ∈ R6,

simply encodes the pose (position and orientation) of the

gripper relative to the target object. As in the case of object

recognition, we define an estimate on the confidence that we

will succeed at grasping (denoted s), given a particular grasp

g and observed data o, as:

C(s|g, o) =
∑

r∈R

C(r|o)C(s|g, r) (1)

Although our confidence values are not intended to accu-

rately reflect real-life probabilities, they are values between

0 and 1 that behave in a similar manner to probabilistic

estimates. Thus, to clarify the exposition, we use proba-

bilistic notation, using for example C(s|g, r) to denote the

confidence in successful execution for grasp g given that

the object representation r accurately represents the true

geometry of the object (this quantity is independent of the

data o, given the representation r).

The intuition behind this formulation is that a grasp is

more likely to succeed in the real world if multiple object

representations that are trying to explain the sensor data

agree that the grasp would succeed if their representation

accurately represented the true object shape. Furthermore,

object representations that better fit the observed data should

have more influence in deciding which grasps should be

executed.

In order for a set of representations R to be used in this

framework, the following requirements have to be met:

• at least one object representation in R must be able to

propose a set of grasps to be tested, in order to form a

pool of grasps g to be tested according to (1);

• each object representation must be able to test a possible

grasp, i.e., for each representation r ∈ R, we must

have a way of computing C(s|g, r) for any given g.

In the next section we will also propose a method

for fast approximation of this term using off-line pre-

computation, applicable for database-driven planning.

The aim of this framework is to allow different object

representations (and the associated planning algorithms) to

reinforce each other, mitigating the risk of failure due to

incorrect scene interpretation, as illustrated in Fig. 1(e).

When using database-driven grasping (where we each possi-

ble recognition result is considered an independent represen-

tation), our framework encourages the selection of a grasp

that would work well on a family of objects. The goal is

to abstract away from the particular features of one object,

unless the recognition algorithm is extremely confident in its

result.

III. DATA-DRIVEN REGRESSION

In this section, we propose a method for evaluating a grasp

g on a given object representation r indirectly, based on

how well it matches other grasps that are available for r.

If we assume that gr ∈ Gr form a set of grasps for which

C(s|gr, r) is known, we would like to evaluate g based on

how well it matches the grasps in Gr.

Recall that, in our implementation, the definition g of a

grasp encodes the position and orientation of the gripper.

Intuitively, two grasps are similar if they define two gripper

poses that are close to each other in a Euclidian sense. We

use the function Ng,σb(gr) to denote the similarity between

two grasps, g and gr. We assume that the position and

orientation of the grasp are independent, and so N is the

product of a normal distribution applied to the Euclidean

distance between the position components of the grasps, and

a Dimroth-Watson distribution applied to the shortest rotation

angle between the angular components, as in [8], [9]. σb,

which we will refer to as the grasp bandwidth, is a tunable

parameter, defining the size of a region around itself that a

given grasp informs. In this study, the positional component

of the bandwidth has a standard deviation of 0.01 m, and the

orientation component has a Dimroth-Watson concentration

parameter corresponding to a standard deviation of 26◦.

Using this framework, we compute a Locally Weighted

Linear Regression L(g, r) over the confidence level of the

grasps in Gr as

L(g, r) =

∑

gr∈Gr
C(s|gr, r)N

g,σb(gr)
∑

gr∈Gr
Ng,σb(gr)

(2)

and use it to estimate the confidence level of a new grasp g:

C(s|g, r) = min

(

L(g, r),

C(s|g∗r , r)N
g,σb(g∗r )

)

(3)

where g∗r is the grasp in Gr that is most similar to the

evaluated grasp g.

The purpose of this evaluation is to combine the informa-

tion from multiple grasps in Gr in the same region of space,

while limiting the region of influence of each grasp to an area

defined by the bandwidth parameter σb. Other approaches

also exist for the problem of learning continuous grasp

quality functions from a discrete number of samples [17],

[21]. However, we assume that regions with no grasps encode

negative information; that is, a grasp in an empty region
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Fig. 2: Illustration of the data-driven regression function. The

black circles represent known grasps from Gr, while the

green bell curves show the value of a similarity function N
centered at each grasp. The regression function (thick blue

line) is informed by (the weighted average of) the closest

grasp(s).

is likely to fail, and thus as we move away from known

grasps, our confidence function drops off with distance. For

illustration, a 1D toy example is presented in Fig. 2.

This function can be thought of as defining a continuous

measure of grasp success over a region of space using a set

of discrete samples. It is important to note, however, that

this version closely approximates explicit grasp evaluation

only if the set Gr fully samples the space of good grasps for

r, with a density comparable to the value of the bandwidth

parameter. It is well-suited for cases where an extensive set

Gr can be computed off-line, as in the case of database-

driven grasping.

IV. IMPLEMENTATION

In this section, we describe the implementation of the

framework presented above using two object representations,

one of them relying on recognized object models and the

other using the object point cluster. The hardware used for

implementation is the PR2 personal robot. The features of the

PR2 most relevant for this study include two 7-DOF arms,

allowing multiple ways of achieving a desired grasp pose,

and a narrow-field-of-view stereo camera equipped with a

texture projector, providing dense point clouds of the robot’s

workspace (as illustrated in Fig. 1). Each arm is equipped

with a parallel jaw gripper, which is the end-effector used for

the implementation of the methods presented in this study.

A. Object Recognition

Object recognition is an extremely active field of research

in its own right; the question of which algorithm (or even

which type of sensor data) is currently best suited for

grasping applications is beyond the scope of this study. In

order to provide an implementation of our framework, we

used a simple matching algorithm to seed the database-driven

component. Once an object point cluster is segmented, an

iterative technique similar to ICP [3] attempts to match the

cluster against each 3D model in our database.
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Fig. 3: Conversion from raw object recognition scores to

the estimated confidence in the recognition result. Blue line

shows ground truth data while the black line shown the

analytical model used to approximate it.

The current matching algorithm only operates in 2 dimen-

sions, and thus can only recognize objects sitting upright on a

tabletop, either rotationally symmetrical or sitting in a known

orientation. Furthermore, it only evaluates how well the

points in a cluster match a given model, without reasoning

about negative (or the absence of) sensed data. As a result,

small point clusters will be considered excellent matches for

large database objects, even if they only explain a small part

of the mesh. We believe that such limitations underscore the

importance of robust grasp planning. One of the strengths of

the framework presented here is also its ability to integrate

data from multiple sources. As more general and more

reliable object recognition algorithms become available, they

should directly benefit this approach to grasp planning.

One aspect which requires further attention is the output

of a recognition algorithm, or its confidence level. In gen-

eral, different recognition algorithms use different internal

quality metrics; our approach returns the quality of the

match between the point cluster and a 3D model as the

average distance between the points in the cluster and their

closest counterpart on the mesh. In order to combine such

information from multiple algorithms, these raw results must

be translated into correct-detection probabilities.

To perform this translation for our detector, we employed a

data-driven method that has the advantage of being agnostic

to the inner workings of the recognition algorithm. We

collected raw recognition results on a set of 892 point clouds

from 44 objects. For a raw score falling in each of 25

discrete intervals, we computed the ratio of correct results

(object model correctly identified; we assume that the pose

is approximately correct if the model is correct for this

detector) vs. total recognition attempts. Fig. 3 shows this

data, superimposed with the analytical model derived from

it. This model is used in the rest of the paper to map raw

recognition scores to probabilities of correct detection.

B. Database-driven Planning

For computing and evaluating grasps on 3D meshes con-

tained in our database of models, we used the publicly



Fig. 4: Database-driven grasp planning: the object model, an

example grasp and the complete set of computed grasps.

available GraspIt! [20] simulator. To evaluate the quality of

a given grasp, and to plan new grasps for an object, we used

the energy metric and simulated annealing search described

in [5]. An example is shown in Fig. 4.

As previously noted, an object representation should ide-

ally both generate its own list of grasps and test grasps

generated using other representations. Testing a novel grasp

on a known 3D model can be performed explicitly inside

the simulator. However, this test, performed at run-time,

is computationally expensive (on the order of 100 ms per

grasp). The alternative is to use the regression method

presented in Sec. III, where the set of known grasps Gr

can be precomputed off-line. Fig. 4 also shows a complete

set of reference grasps pre-computed for a given object. The

precomputation time for generating grasps was 4 hours per

object, and resulted in an average of 539 grasps for each

model in the database.

As in the case of object recognition, in order to combine

multiple grasp planners under a single framework, we must

make the conversion from individual grasp quality metrics to

a value comparable among different grasp evaluators–in this

case, the probability of grasp success. Again, to provide an

analytical model for this conversion, we used a data-driven

approach, where 490 grasps generated using GraspIt! were

executed on the real robot, in order to compare the planner’s

quality metric against real-life execution results. Fig. 5 shows

the resulting data, as well the analytical model used to map

a raw score to a grasp success confidence value (C(s|g, r)).

C. Robustness to Execution Errors

To account for possible errors in grasp execution (due to

imperfect robot calibration or trajectory following), we have

extended the quality metric presented above for database-

driven planning to also consider a range of possible outcomes

for a commanded grasp. Specifically, the quality of a grasp

g is determined by evaluating the quality metric not only for

g, but also for a set of grasps gp ∈ Gp(g) that we refer to as

the perturbations of g, or grasps that are possible outcomes

when the command for executing g is sent to the robot.

In general, an estimate on the confidence in the success

of a grasp g can be computed, taking into account possible

execution errors, as

C(s|g, r) =
∑

gp∈Gp(g)

C(s|gp, r)P (gp|g) (4)
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Fig. 5: Conversion from GraspIt!’s grasp quality metric to

experimental grasp success percentages. Blue lines show

ground truth data; the black line shows the analytical model

used to approximate it. Blue error bars indicate 95% confi-

dence on the mean, computed using bootstrap sampling.

where P (gp|g), an error model encoding the probability of

actually executing grasp gp when g is intended (normalized

over our samples to sum to 1), depends on the calibration

of the robot. In this study, we built a simple error model

by independently sampling one perturbation each along the

positive and negative directions of the X , Y and Z axes

for the position component of a grasp g. Each of the 6

perturbations was assigned a weight P (gp|g) = 1/9, with

P (g|g) = 3/9 (correctly executing grasp g when g was

intended) completing the model. This model is equivalent to

performing an unscented transformation over (X,Y, Z) with

a center point weight W (0) = 1/3 and standard deviation

σ = 0.47cm [16].

D. Cluster-based Planning

The second object representation used in this paper relies

solely on the observed point cloud of an object. As a result,

it is applicable in a wide range of scenarios, as it does

not depend on other components such as a model database,

recognition algorithm, or primitive fitter.

For this object representation, we used the grasp evaluation

and planning algorithms presented in detail in [12]. This

planner uses a set of heuristics, such as hand alignment with

the cluster bounding box, size of the bounding box compared

to gripper aperture, and number of observed points that fit

inside the gripper, to assess the quality of grasp, and also to

populate a list of grasp candidates. As in the previous case,

grasps planned using other representations can be evaluated

by the cluster-based planner either explicitly or by using the

regression method of Sec. III.

E. Combining Object Representations

As the cluster-based representation is used in the same

framework as the object-recognition-based approach, the rel-

ative confidence levels used for both representations requires

further attention. We recall from Eq. 1 that the information

from each object representation r (and associated grasp



Fig. 6: The set of test objects used in this study.

planner) is weighted by the confidence function C(r|o) for

that representation, based on the observed data o.

In this study, we are combining the cluster representation,

which we will denote by rc, with n model detection results,

which we will denote by rid for i ∈ 1, ..n. Each recognition

result rid has an associated probability of correct model

detection (computed from the raw detection score as in

Sec. IV-A), which we will refer to as P (rid|o). An additional

normalization step is used to ensure that the absolute number

of recognition results does not affect the final result, and

only their relative confidence levels do. We use the following

methods for computing the associated confidence levels:

C(rc|o) = 1− maxk

(

P (rkd |o)
)

(5)

C(rid|o) =
P (rid|o)

∑

j=1..n P (rjd|o)
maxk

(

P (rkd |o)
)

(6)

The best recognition result, maxk
(

P (rkd |o)
)

, is thus used as

an overall measure for the relative weights of the cluster-

based and recognition-based representations. This formu-

lation allows us to combine grasp evaluations from both

types of representations in a continuous fashion, with object

representations ranging from extremely confident in their

representation of the actual object geometry (and thus in

their grasp predictions) to only informative and finally to

contributing no useful information. We note that, while we

have found this formulation to be well suited in practice for

this particular case, it is arbitrary in nature, and it might not

be directly compatible with other potential object detection

results or object representations. Such extensions are the

focus of current work.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We now have implementations available for all the compo-

nents of the framework of Eq. 1, with the additional option

of using the regression-based evaluator of Eq. 3. Our test

set, shown in Fig. 6, consisted of 25 objects common in

human environments, such as dinnerware and containers of

various shapes. The models of these objects were all part

of the database used for object detection. The database also

contained 45 additional models that, while not part of our

real-life test set, were included in the detection results and

used by the database-driven grasp planning component.

In order to analyze robustness to detection errors, we also

performed tests where each object was temporarily removed
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Fig. 7: Comparison of collaborative (green markers) and

naive (red markers) grasp planners.

from our model database, to simulate grasping non-database

objects while retaining knowledge of actual object pose and

shape for ground-truth evaluation. We refer to this condition

as novel-object testing. We note that for objects belonging

to a class well-represented in our set (such as cylinders), a

similar but non-identical object was often available.

In addition to real-life testing on the PR2 robot, we

tested the results of the planner in simulation, using GraspIt!

to evaluate the planned grasps. All the tests were run on

real-life point clouds of the objects acquired with the PR2

robot’s stereo cameras. For the simulated tests we used

recorded real-life sensor data as input, manually annotated

with ground truth information for object identity and pose.

For both object representations discussed in this study, we

had the option of using explicit computation of the grasp

confidence term, or the data-driven regression of Sec. III.

The following options were tested:

• for cluster-based planning, we used explicit grasp eval-

uation for the simulated results and regression-based

evaluation on the real robot.

• for database-driven planning, we used regression-based

evaluation based on the pre-computed set of grasps for

each object stored in our database.

The collaborative grasp planner requires an average of 3.2s

run-time per object on a standard desktop computer, with an

additional 2.3s when using explicit cluster-based evaluation.

A. Simulation-based Planner Evaluation

A typical test of the grasp planner on one of the objects

in our set used a recorded point cloud of the object sitting

alone on a table as input to the planner, then used the

simulation engine to test all the returned grasps. Each grasp

was evaluated in simulation on the ground-truth object model

and location, and its quality metric and ground-truth success

probability were evaluated as described in Sec. IV-B. The

ground-truth success probability was then compared against

the confidence estimated by the planner. It is important to

note that, while the planner could only see a single point

cloud of the object (similar to run-time conditions on the

robot), the final ground-truth testing of the planned grasps
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Fig. 8: Choosing a confidence threshold. For each value of

the planner-estimated confidence used as a threshold, the plot

shows percentage of resulting grasps that exceed a value t
for the ground-truth evaluated probability.

in simulation was performed against a complete object model

placed at the correct location in the world.

As a first benchmark, we compared the collaborative

planner against a version which assumes that the best result

from the recognition algorithm is correct, and simply returns

all the grasps pre-computed for that particular model whose

quality metrics indicate a probability of success greater than

90%. We refer to this version as the naive planner. Fig. 7

shows the result of this comparison by plotting, for all the

grasps returned by the two planners, the confidence level

estimated by the planner vs. the results of ground-truth

simulation testing, for both the novel-object case as well as

the case where the tested objects are in the database.

The first thing we note is that all the grasps returned by the

naive planner have very high estimated confidence. Indeed,

since the naive planner is 100% confident in the result of the

detection, and only returns grasps that have more than 90%
success on the detected model, it will be highly confident

in its results. However, due to errors in object detection,

a significant number of those grasps will fail ground-truth

testing. In contrast, the collaborative planner is more cautious

in its returned results, and succeeds in eliminating a large part

of the grasps that would ultimately fail.

It is important to note that the confidence level estimated

by the collaborative planner can at best be considered a

conservative estimate of the probability of success of a grasp,

a fact also reflected in the results shown in Fig. 7. In practice,

we have found that a common use case is where a user asks

the following question: if I want to choose a grasp with a high

probability of success, is there a threshold on the planner-

estimated confidence level that I can use? Fig. 8 shows how

choosing a threshold for the planner-estimated confidence

level (horizontal axis) can insure that a high percentage of the

resulting grasps (vertical axis) exceeds a desired probability

of success in execution, as evaluated in simulation testing

based on ground-truth object identity and pose.

Fig. 9 uses the same format for a more exhaustive com-

parison of the collaborative and naive planners, shown with
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Fig. 9: Comparison of different grasp planners based on per-

centage of returned grasps that exceed an evaluated success

probability of 0.8.

a cutoff threshold of 0.6. We performed the following tests:

• Database vs. novel-object detection. As expected, the

naive planner behaves significantly worse under the

novel-object condition. However, the collaborative plan-

ner is able to use information from the cluster planner

and similar, but non-identical objects in the database,

and so the drop in performance is minimal.

• In order to test the data-driven regression of Sec. III,

we also ran the collaborative planner using the explicit

GraspIt!-backed grasp evaluator throughout its opera-

tion. This test required significant computational effort,

with the planner spending approximately 10 minutes

per object. The results obtained when using data-driven

regression are quite similar (as desired), but require far

less run-time computation.

B. Grasp Results on the PR2 Robot

Real-life testing of the collaborative framework presented

here was carried out using the PR2 robot on 25 objects,

shown in Fig. 6. Each object was placed alone on a table

within reach of the PR2, and object detection based on the

stereo point cloud was done as in Section IV-A. The grasps

returned by the planner were subjected to additional testing

for situation-specific constraints (such as a feasible Inverse

Kinematics solution and a collision-free arm path for placing

the gripper in the desired grasp position). The grasps were

tested in decreasing order of estimated confidence; once a

grasp was deemed feasible, it was executed by the robot.

Success was defined as successfully grasping the object,

lifting it off the table and moving it to the side of the robot

without dropping it. The same object and pose test set were

used for both naive and collaborative planners.



As before, tests were performed with both database and

novel-object detection. For both cases, we compared the

performance of the collaborative planner against the naive

planner, with the results shown in Table I. We notice that

the collaborative planner has the most significant impact in

the case of novel-object testing (improving from 72% to 88%

success rate), while also showing a smaller improvement in

the case of database objects (from 84% to 88%).

VI. CONCLUSIONS AND FUTURE WORK

We have presented a collaborative approach to grasp

planning based on the observation that real-life sensed data

of an object is often incomplete and noisy, allowing for

multiple interpretations of a scene. The different ways to

interpret object data suggest different approaches to the

grasp planning problem. Our framework attempts to combine

these approaches and look for consensus among them, thus

choosing final solutions (grasps) that are robust to errors in

perception and sensor data processing.

In particular, the implementation that we have presented

uses information from multiple results from an object recog-

nition algorithm, attempting to find grasps that work on

several of them, weighted by their relative confidences. This

component is complemented by a grasp planner using an

altogether different object representation, consisting only of

the observed point cluster. The overall system can handle

situations ranging from completely unknown objects to con-

fidently recognized models in a consistent way.

For the case of database-driven grasp planning (or any ob-

ject representation where grasp evaluation is computationally

expensive, but can be performed off-line), we have also used

a data-driven regression method that evaluates the confidence

in the success of a grasp based on pre-computed data. Our

results show that this method can draw on data generated

off-line to enable fast on-line execution, without a noticeable

decrease in performance.

One of the main advantages of the framework we propose

is robustness to errors in the underlying object analysis. The

results shown here were obtained with a simple approach to

object recognition and using a limited database of models.

In future work, we would like to investigate the performance

levels that can be achieved using state-of-the-art recognition

algorithms, as well as an extensive model set.

It is interesting to consider the underlying reasons that

a grasp has a low estimated confidence level. While these

do not make an immediate difference (a bad grasp should

not be executed regardless of why it is bad), they can

help inform a higher-level behavioral planner. If the robot

is not confident in its ability to grasp an object because

of incomplete data, it can attempt to collect more sensor

data. If, however, the object itself affords no good grasps

with our current algorithms, then a different task should

be attempted. Making this distinction will require more in-

depth analysis of the interplay between detection confidence,

object representations, and grasp quality. Finally, the current

implementation is targeted for a simple robotic hand, which

adds no intrinsic degrees of freedom to the grasp planning

coll. planner naive planner

novel-object 22/25 18/25

database object 22/25 21/25

TABLE I: Number of objects successfully grasped and lifted

on the PR2 robot.

problem. More dexterous hands will require a better notion

of what it means for two grasps to be “similar”. Both of

these topics are the subject of future work.
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exploration. In RSS, 2010.
[14] K. Huebner, S. Ruthotto, and D. Kragic. Minimum volume bounding

box decomposition for shape approximation in robot grasping. In Intl.

Conf. on Robotics and Automation, Pasadena, USA, 2008.
[15] A. Jain and C.C. Kemp. EL-E: an assistive mobile manipulator that

autonomously fetches objects from flat surfaces. Autonom. Rob., 2010.
[16] S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear

estimation. Proceedings of the IEEE, 92(3):401 – 422, mar. 2004.
[17] I. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual

information. In Intl. Conf. on Robotics and Automation, 1996.
[18] T. Lozano-Perez, M.T. Mason, and R.H. Taylor. Automatic synthesis

of fine-motion strategies for robots. IJRR, 1984.
[19] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Automatic

grasp planning using shape primitives. In Intl. Conf. on Robotics and

Automation, pages 1824–1829, 2003.
[20] Andrew Miller and Peter K. Allen. GraspIt!: a versatile simulator for

robotic grasping. IEEE Rob. and Autom. Mag., 11(4), 2004.
[21] R. Pelossof, A. Miller, P. Allen, and T. Jebara. An SVM learning ap-

proach to robotic grasping. In Intl. Conf. on Robotics and Automation,
2004.

[22] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Close-range scene
segmentation and reconstruction of 3D point cloud maps for mobile
manipulation in human environments. In Intl. Conf. on Intelligent

Robots and Systems, St. Louis, USA, October 11-15 2009.
[23] A. Saxena, L. Wong, and A.Y. Ng. Learning grasp strategies with

partial shape information. In AAAI, 2008.


