
©2003, Yu-Sung Wu, Bingrui Foo, Yongguo Mei, Saurabh Bagchi 

 
 

Collaborative Intrusion Detection System (CIDS): A Framework for Accurate 
and Efficient IDS 

 
Yu-Sung Wu, Bingrui Foo, Yongguo Mei, Saurabh Bagchi 

School of Electrical and Computer Engineering, Purdue University 
Email: {yswu,foob,ymei,sbagchi}@purdue.edu 

 
 

Abstract 
In this paper, we present the design and implementation of 

a Collaborative Intrusion Detection System (CIDS) for 
accurate and efficient intrusion detection in a distributed 
system. CIDS employs multiple specialized detectors at the 
different layers – network, kernel and application – and a 
manager based framework for aggregating the alarms from 
the different detectors to provide a combined alarm for an 
intrusion. The premise is that a carefully designed and 
configured CIDS can increase the accuracy of detection 
compared to individual detectors, without a substantial 
degradation in performance. In order to validate the premise, 
we present the design and implementation of a CIDS which 
employs Snort, Libsafe, and a new kernel level IDS called 
Sysmon. The manager has a graph-based and a Bayesian 
network based aggregation method for combining the alarms 
to finally come up with a decision about the intrusion. The 
system is evaluated using a web-based electronic store front 
application and under three different classes of attacks – 
buffer overflow, flooding and script-based attacks. The results 
show performance degradations compared to no detection of 
3.9% and 6.3% under normal workload and a buffer overflow 
attack respectively. The experiments to evaluate the accuracy 
of the system show that the normal workload generates false 
alarms for Snort and the elementary detectors produce missed 
alarms. CIDS does not flag the false alarm and reduces the 
incidence of missed alarms to 1 of the 7 cases. CIDS can also 
be used to measure the propagation time of an intrusion which 
is useful in choosing an appropriate response strategy. 
Keywords: Intrusion detection, Event correlation, Bayesian 
network based detection, False alarms, Missed alarms. 
 
1. Introduction 

Many critical parts of our information infrastructure 
comprise distributed computer systems with myriad 
application level and system level components deployed on 
multiple platforms. The infrastructures are vulnerable to 
attacks, especially when they have an open, connected 
architecture with interactions with untrusted clients over 
untrusted networks. Intrusion detection systems (IDSs) are 
deployed to protect the computer infrastructures. The classical 
IDSs fall into two classes – anomaly based, and misuse based. 

An anomaly based IDS specifies the normal behavior of users 
or applications and considers any pattern falling outside the 
defined behavior as an attack. A misuse based IDS specifies 
the signatures of attacks and parses audit files to detect any 
matches. The metrics for evaluating an IDS are false alarms 
(or, false positives), and missed alarms (or, false negatives). 
Individual IDSs are often found to be unsatisfactory with 
respect to either or both of the metrics. For instance, anomaly 
based detection can generate many false positives since 
deviation from the specified normal behavior is not necessarily 
an attack. Also, if the definition of normal behavior is updated 
at runtime, an expert intruder can slowly change her behavior 
to finally include it in the definition. This would then give rise 
to a false negative. Misuse based detection can generate many 
missed alarms since for most practical open systems it is very 
difficult to define an exhaustive attack data base. Also current 
misuse based IDS products generate false alarms as our 
experience with Snort reported here also shows. 

In this paper we propose a system model that employs 
multiple specialized detectors installed in different layers of 
the system, and a management infrastructure for collating the 
alerts from the multiple elementary detectors and synthesizing 
a global and aggregate alarm. For this purpose, a system is 
divided into the network layer, the kernel layer and the 
application layer. We claim that the aggregate alarm is more 
accurate than the elementary alarms, i.e., it reduces the 
incidence of false alarms and missed alarms. The system 
should also be efficient in that the performance degradation 
compared to the baseline case of no detector, or of a single 
detector, should not be substantial. We design and implement a 
system called the Collaborative Intrusion Detection System 
(CIDS) to demonstrate the feasibility of the idea. 

CIDS employs three elementary detectors (EDs)–Snort, a 
network level detector, Libsafe, an application level detector, 
and a new detector called Sysmon that executes at the kernel 
level. CIDS has a manager to which the alerts from the EDs 
are communicated. Sysmon consists of a modified Linux 
kernel for intercepting certain OS activities    file access, and 
illegal signals. The EDs may be monitoring different system 
components, possibly on different hosts and communicate with 
the manager through a message queue (MQ). The MQ design 
enables detectors on different hosts to communicate securely 
with the manager.  

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003) 
1063-9527/03 $17.00 © 2003 IEEE 



 

The CIDS manager consists of a Translation Engine, an 
Inference Engine, a collection of Rule Objects and a Response 
Engine. The Translation Engine translates the alerts from the 
different EDs into a common format and attaches identifying 
information, such as the host ID from which the alert 
originated. The Inference Engine uses the rule base to 
calculate the probability of an attack for each class and flags 
an alarm if a probability exceeds a threshold. The Inference 
Engine accommodates the choice of different techniques for 
rule matching. In the current system, there is a graph-based 
inference engine and a Bayesian network based inference 
engine. Both are able to handle partial matches of the observed 
events with the rule base events and non-determinism in the 
order in which the events are received. This design decision is 
guided by the practical observation that such partial streams 
and order non-determinism are common in distributed systems. 
The Response Engine can take various responses depending on 
the attack type and its characteristics (such as, the propagation 
speed). The current system uses the simple response of 
terminating the connection which originated the suspect 
packets. 

CIDS is evaluated with respect to performance degradation 
and accuracy of detection. Attacks from three different classes 
are used to stress the system – buffer overflow attack, flooding 
attack and script based attack. An electronic store front 
running on an Apache web server, implemented using CGI 
Perl scripts, and accessed using a web browser client is used as 
the workload. The application allows the typical operations of 
creating a user profile, browsing the catalog, adding items to a 
cart and completing an order, with multiple operations being 
grouped to form a transaction. The performance is measured 
by the number of transactions per second (tps) and the CPU 
available to the web server. The performance degradation is 
given by the values of these metrics in CIDS compared with 
the baseline system configuration with no detector. The results 
show degradations of 3.9% and 6.3% under normal workload 
and a buffer overflow attack respectively. Experiments are 
then conducted to explore the cases of false alarms and missed 
alarms. The false alarm experiment is conducted with the 
normal transaction and 3 variants. The missed alarm 
experiment is conducted with 7 different attack types 
corresponding to the 3 attack classes. The results show that the 
normal workload generates false alarms for Snort and Sysmon, 
and missed alarms for Snort (3 of 7 cases), Libsafe (6 of 7 
cases), and Sysmon’s two configurations (3 of 7,and 4 of 7 
cases). CIDS does not show any false alarm and reduces the 
incidence of missed alarms to 1 of the 7 cases. The third set of 
experiments tracks the timing information for detection by the 
EDs and inference at the manager. This brings out the speed of 
propagation of the attacks and the latency of each step in a 
CIDS workflow. 

The work presented here has the following claims of 
innovation – (i) it proposes a new system model for correlating 
alerts from multiple elementary detectors to perform more 

accurate intrusion detection; (ii) it presents an incremental 
inference engine capable of tolerating non determinism 
observed in practical systems; (iii) it provides an intrusion 
detection framework in a distributed multi-host system; (iv) it 
presents a new kernel level detector and shows it to be 
effective under several attack scenarios; (v) it provides timing 
analysis of events which can aid in selecting an appropriate 
intrusion response. 

The rest of the paper is organized as follows. Section 2 
refers to related research. Section 3 presents the architecture of 
CIDS and describes its components. Section 4 provides an 
instantiation of the architecture and presents the specific 
configuration of the system being evaluated in this paper. 
Section 5 describes the experiments and the results. Section 6 
concludes the paper with mention of future work. 
 
2. Related Research 

Several researchers have addressed the problem of false 
alarms and missed alarms with traditional IDSs which are 
classified as anomaly-based and misuse-based [8]. Also, 
traditional IDSs often generate a very large number of alerts 
for practical attack scenarios. The alarms correspond to 
elementary goals of the attack being realized. This large 
volume of alarms makes it difficult for a system administrator 
or even an automated intrusion response system to take 
appropriate actions. To counteract this problem, several 
researchers have developed alert correlation methods to 
construct attack scenarios. One class of techniques ([16],[19]) 
combines alerts based on similarity of certain alert attributes. 
For example, in [16], source and destination IP addresses and 
ports are used for determining similarity and graphs are drawn 
with links between related alerts. However, this class misses 
out on correlating a large set of related alerts. A second class 
of techniques [2],[6] use training set data to determine 
relations between alerts. In [2], attacks are characterized by 
pre-condition, post-condition, attacker actions, detection 
actions, and verification actions to determine if the attack  
succeeded. Knowing these attributes, they provide techniques 
to correlate alerts. However, the challenge remains to 
determine the attack characteristics. The most promising 
approach in alert correlation is demonstrated by [3],[13],[18] 
which correlate alerts based on pre-conditions and post-
conditions. Two alerts are correlated if the precondition of a 
later attack is satisfied by the post-condition of an earlier 
attack. This volume of work addresses a related but distinct 
problem than our work. The goal is to cluster the alerts 
corresponding to the distinct elementary attacks that form part 
of a larger attack. Our goal is to increase the accuracy of 
detection of each elementary attack. Their work uses detectors 
for detecting different types of attacks while we can have 
multiple detectors that detect the same kind of attack and use 
the multiple detection to increase the assurance in the alert. 
Thus, our work can be considered complementary and benefit 
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their work. Consider that the elementary alerts that they 
consider are not the alerts from individual detectors, but alerts 
from our CIDS manager. One concern about this volume of 
work is their ability to deal with non-determinism in alerts 
from detectors in real-world intrusion situations, such as, 
missed alarms, alarms appearing in different orders. For 
example, in [3], it would be difficult to detect multiple missing 
alerts and there is no notion of assurance which is reduced as 
the number of missing alerts increases. In none of this work is 
it obvious how overlapping alarms corresponding to multiple 
concurrent attacks on multiple hosts will be handled. On the 
other hand, CIDS can be deployed as a distributed intrusion 
detection system. 

3. Architecture of CIDS 
In this section, we describe the architecture of CIDS which 

has the following components – the Elementary Detectors 
(EDs), the Message Queue (MQ), the Connection Tracker, the 
Manager, and the Response Engine. 

 
3.1. Elementary Detectors 

 
The Elementary Detectors are the specialized intrusion 

detectors that are distributed through the system. From an 
architecture standpoint, each host is divided into three layers–
network layer, kernel layer and application layer. The network 
layer consists of the network protocol stack. The kernel layer 
consists of the operating system and its managed services. The 
application layer consists of everything else running as 
software on the host, including middleware. The EDs and the 
manager can be located on different hosts and communicate 
through a generalized Message Queue structure which enables 
communication regardless of where the communicating 
processes are located. A possible system view is represented in 
Figure 1. 
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Figure 1. System view of Elementary Detectors and 

Manager 
The EDs may be off-the-shelf detectors. CIDS does not 

mandate substantial changes of such off-the-shelf detectors. 
The only change is in the function when an alert is generated 

by the detector which puts an alert out on the MQ destined for 
the manager.  

Different hosts can have different configurations of the 
EDs. This is an important design principle since in a 
distributed system with heterogeneous services, different 
services on different hosts may need different kinds of 
detectors. There may be EDs specialized for detecting different 
kinds of attacks, EDs with overlapping functionality, and EDs 
which are an integral part of an application (such as, a Voice-
over-IP application that has inbuilt rules to detect traffic fraud 
attacks). The rule base at the manager has to be initialized with 
values for confidence placed on the alarms from the individual 
detectors for different types of attacks. The system will exhibit 
a faster learning curve if the initial confidence values are based 
on the specialized functionality of the detector. For example, 
an alarm from Libsafe which is a buffer overflow detector 
should have a higher confidence for the Rule Object for buffer 
overflow, rather than for flooding.  
 
3.2. Message Queue 
 

The components in the system communicate with one 
another using the Message Queue (MQ). MQ uses TCP as the 
data transport. Each message has a per sender unique 
monotonically increasing serial number and a signature which 
is the SHA1 hash value of the message body, the serial 
number, and a secret key. Each ED in the system has a secret 
key that is shared with the manager. Thus, without knowing 
the secret key, there is no way to forge a message or replay a 
legitimate message. 
 
3.3. Connection Tracker 
 

The Connection Tracker is a kernel level entity which 
maintains the mapping of port number to process ID of the 
process which has an active connection on the port. For this, it 
intercepts the system calls for accepting incoming connections 
and terminating connections. The manager may query the 
Connection Tracker to generate information about the target 
for which an alert is raised. The Connection Tracker maintains 
the information in a queue data structure.  
 
3.4. Manager 
 

The manager is the workhorse and the key differentiating 
component in CIDS. The manager is responsible for 
aggregating the information from the different detectors and 
making a combined system-wide decision about the existence 
of an intrusion. The architecture permits the manager to 
monitor multiple hosts. There is one manager for the 
administrative domain on which you would want to correlate 
alerts.  
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The manager has the following components: Translation 
Engine (translates the alert from an ED into a CIDS 
understandable abstract event form), Event Dispatcher 
(dispatches the event to the appropriate host’s Inference 
Engine instance), Inference Engine (matches the received 
events against the Rule Objects to come up with a 
determination of intrusion), and Combining Engine (collates 
the decisions from the different instances of the Inference 
Engine and decides on the appropriate response). An 
architecture of the manager with the different components is 
shown in Figure 2. 
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Figure 2. Architecture of the CIDS Manager 
3.4.1. Translation Engine (TransEng). The Translation 
Engine (TransEng) translates the alert from the ED into a 
common format. The format is as follows. 
• Event Id (EID): ID of the detector (DID); Specific ID 

given to the alarm type by the detector (AID) 
• Location Info (LID): Source IP address and port number 

(SIP, SPN); Destination IP address and port number (DIP, 
DPN), Process ID (PID)  
Each detector in the system has a unique ID which is filled 

in as DID when it sends an alarm. In addition, an ED may 
specify a unique ID specific to its detection, e.g., an ID 
corresponding to the nature of the attack detected. This may be 
used by the Inference Engine in deciding on the Assurance 
Value for the attack, e.g., an alarm corresponding to a buffer 
overflow by Snort will contribute less to the Assurance Value 
of a rule for detecting flooding attacks. The PID in the 
Location Info field gives the id of the process to which the 
suspected malicious packet was destined. The responsibility 
for filling in these fields is shared between the ED and the 
manager. TransEng fills in DIP, since the MQ maintains 
information about the IP address from which the message 
came. When Snort raises an alarm, it fills in the DPN field 
while TransEng fills in the PID field by querying the 
ConnectionTracker. Libsafe on the other hand fills in PID and 
TransEng queries Connection Tracker to fill in DPN. 

 

3.4.2. Event Dispatcher (EvDis). The Event Dispatcher 
(EvDis) dispatches the events to the Local Inference Engine of 
the host corresponding to the destination (the DIP field) of the 
event. The events being forwarded by EvDis are maintained in 
an Inference Queue in time order at each Local Inference 
Engine. The events are logically grouped by the target process 
they correspond to (the PID field). The Inference Engine can 
then process the events efficiently to determine if there is an 
attack on the target process. The logical structure of the 
Inference Queue is shown in Figure 3. 

 

…
PID1 PID2 PIDn

A1 A2 A3 B1 B2 B3 C1 C2
…

PID1 PID2 PIDn

A1 A2 A3 B1 B2 B3 C1 C2  
Figure 3. Logical structure of Inference Queue at each 

host’s Inference Engine. Ai, Bi, Ci are events. 
 

3.4.3. Inference Engine. The goal of the Inference Engine is 
to process the events in the Inference Queue and come up with 
the determination if an intrusion is in progress. The 
determination is quantified by an Assurance Value. The 
matching of the observed events is performed against a rule 
base consisting of Rule Objects. There is an instantiation of the 
Inference Engine and the Rule Base for each host monitored 
by the manager and a global Inference Engine and Rule Base 
which processes the output from the local engines. The 
manager’s rule-base is maintained by a system administrator 
and as part of future work, we plan to provide a feedback loop 
that lets the rules be updated based on the success of the 
detection. 

We describe below the design of the Inference Engine 
without the need to make a distinction between a Local and a 
Global Inference Engine. The distinction arises due to the 
specific rules that are in their corresponding rule bases. We 
have designed two different kinds of Inference Engines – a 
Graph-based Inference Engine and a Bayesian Network based 
Inference Engine.   
Graph-based Inference Engine 

Each Rule Object is a graph with the nodes being the 
events associated with an attack type and the edges denoting a 
sequencing of the events and marked with the confidence 
associated with the sequence. Intuitively, the Assurance Value 
(AV) for a particular attack is given by the sum of the edges in 
the longest path of the entire sequence of observed events. A 
path is considered longer if it has a higher assurance value. 
When a new event is added to the Inference Queue, the 
Inference Engine checks to see if it is fusionable with the 
events being currently matched. Two events are considered 
fusionable if they can be events in a common attack instance. 
This is application specific and can be customized in the 
environment. Currently, if two events are for the same target 
process they are considered fusionable. A sequence of 
fusionable events forms an event stream.  

The Inference Engine matches different streams of events 
that are in its Inference Queue in parallel. For each stream, it 
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matches it against each Rule Object. Let us consider below the 
processing of events from a single event stream being matched 
against one Rule Object graph. The Inference Engine drains an 
event from the Inference Queue and if fusionable with the 
previous event, puts it in a Match Queue. Each element in the 
Match Queue contains the highest Assurance Value associated 
with a path having the itself as the terminal node, and the 
predecessor event in such a path.  
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Figure 4. Example of Graph-based Rule Object and 

Event Stream 

An event would expire from the Match Queue when it is 
determined that the fresh alerts are corresponding to a different 
attack. This can be determined by using metrics such as the 
source of the attack, the time interval, the target process [1].  

Let us now consider a running example of a Rule Object 
graph and the processing at the Inference Engine. The Rule 
Object is shown in Figure 4. The nodes correspond to possible 
events with S being a special node corresponding to the start 
event. The events observed in time order are A;B;C;D;E;E. 
The snapshots of the Matching Queue on receipt of each event 
are shown in Figure 5. Only the arc corresponding to the 
newly added event is shown. The assurance value for an added 
event may not be monotonic as the addition of C shows.   
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Figure 5. Matching Queue snapshots on receiving each 
event in event stream 

The Inference Engine processes an event by scanning 
through the possible predecessors of the event in the Rule 
Object and calculating the Assurance Value for the new event. 
The Assurance Value at the end of the processing is converted 
to a probability value for matching against thresholds by 
dividing it by the maximum possible Assurance Value from 
the Rule Object. The algorithm runs in O(V2+VE) where V is 
the number of events being processed and E the number of 

edges in the Rule Object graph. The algorithm is given in 
Figure 6. 

 
Figure 6. Algorithm for processing a new event at the 

Graph-based Inference Engine 
How to handle missing events? In a practical system, there will 
be missing events and exact matches with the Rule Object 
graph will not always be possible. In order to handle this 
condition, we allow partial matches with a discounted 
Assurance Value. The discounted Assurance Value is obtained 
by multiplying the Assurance Value by a discount factor, 
which is given by the number of observed event nodes divided 
by the total number of nodes on the path. Thus, if event B was 
missing and the event stream was A;D, the Assurance Value 
would be 2/3*(3+2+2)=4.67. 
Parallelization and Distribution. The Inference Engines can be 
distributed very intuitively by having each local Inference 
Engine execute on a separate host. Each Inference Engine can 
parallelize the processing by matching each separate event 
stream against a Rule Object graph concurrently.  
Bayesian Network-based Inference Engine 

Bayesian Network is a compact representation of joint 
probability distributions via conditional independence [12]. In 
a Bayesian Network, the nodes represent random variables and 
edges the direct influence of one variable on another. A set of 
conditional probability distributions is associated with each 
node and a node is considered conditionally independent of its 
ancestors given its parents. There are two steps to modeling a 
Bayesian Network. The first step is creating the graph which 
describes the conditional probability relationship among events 
by putting an edge from event A to event B if B is conditioned 
on A. Next, we have to specify all the conditional 
probabilities, i.e. P(B|A). 
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Figure 7. Example of Bayesian Network based rule for 

OpenSSL attack type 

In CIDS, we model the rules in a very similar way. For 
example,  in the OpenSSL attack case, we have the Bayesian 
Network shown in Figure 7 as the BN-based rule in the 
manager. The conditional relationship is put in a causal way.  
For instance, we know that a OpenSSL attack could cause a 
Snort alert so we put an edge from the ‘OpenSSL Attack’ 
event node to the ‘Snort’ node.  After this, we give all the 
conditional probabilities P(Snort | OpenSSL Attack), P(Libsafe 
|OpenSSL Attack, Snort), P(SIGSEGV | OpenSSL Attack, 
Snort).  

When a new alert comes into the Inference Queue, it is 
checked for the fusionable property and all fusionable alerts 
are grouped into a vortex. The Matlab Bayesian Network 
Toolbox [11] is then invoked and events in the vortex are fed 
to it as evidence nodes. The inference function of the toolbox 
is executed to acquire the probability of the root node (e.g. the 
Open SSL Attack node), which is the alert probability of the 
attack based on the observed evidences. 
Role of Global Inference Engine. Alerts determined by a Local 
Inference Engine are fed into the Inference Queue of the 
Global Inference Engine (GIE). The motivation for a GIE is 
that a Local Inference Engine can determine if an individual 
service is under attack, but a GIE can determine if the 
aggregate distributed service is under attack. For example, the 
authentication information in an electronic store front may be 
compromised by launching a parallel attack against the DNS 
service (to misdirect traffic to a rogue host) and the SSH server 
(trying to sniff authentication information being exchanged 
between the client and the server). 
How Rule Objects are created. Rule objects are created 
individually for each attack type and built up incrementally for 
the entire system. Future work will be on retuning the 
confidence in a detector based on feedback from the response 
phase to decide if detection was successful or not.  

 
3.4.4. Combining Engine. The Inference Engine matches the 
event stream against the different Rule Objects using both the 
graph-based and Bayesian network based approaches. The 
Probabilistic Assurance Value from a particular type of 
Inference Engine is the maximum of the values from the 

different rules. The Combining Engine takes the greater of the 
Assurance Values from the two approaches. It compares this 
against a set of threshold values and depending on the 
threshold that is exceeded, the appropriate signal is sent to the 
Response Engine. The Assurance Value staying below the 
lowest threshold indicates that the alerts generated were false 
alarms and CIDS disregards them. 
 
3.5. Estimating Speed of Attack Propagation 
 

A key determinant of the response for an intrusion is the 
relative time taken to deploy the mechanism and the speed of 
propagation of the intrusion. A benefit of the CIDS 
architecture is that the propagation speed can be estimated 
using the timing of the alerts from the EDs. Information about 
cascaded security vulnerabilities in communicating services 
can be obtained by various tools developed by researchers 
such as Kaaniche [4], Deswarte [5], and Dacier [14]. From 
such information, a graph of services can be created and the 
time for a service to be affected can be extrapolated from an 
estimate of the speed of propagation of the intrusion. Consider 
an attack to service S1 has been determined by the CIDS 
manager at time t1 and a second attack to service S2 has been 
determined at time t2 (t2 > t1). If services S1, S2 and S3 are 
placed in a linear chain, then an unweighted linear 
extrapolation will indicate S3 will get affected by the intrusion 
at t2+(t2-t1) and therefore, the response mechanism must be 
able to complete by then. 

 
4. Instantiation of CIDS 
 

We build a system that instantiates the CIDS architecture 
and is described in this section with all the components that are 
used in the experimental evaluation. CIDS is currently 
implemented on Red Hat Linux 8.0. The main components of 
the current system are: Manager, Three EDs, Response 
Engine, Netfilter, and Apache web server as workload. A 
schematic of the system is shown in Figure 8. 

Apache web 
server

Libsafe
Snort

Sysmon

Response
Engine

Manager

Netfilter

External     
NetworkInternal Network

Linux Kernel

: netlink
:OS API & interface
: Message Queue

: Elementary Detector

Arrows

Apache web 
server

Libsafe
Snort

Sysmon

Response
Engine

Manager

Netfilter

External     
NetworkInternal Network

Linux Kernel

: netlink
:OS API & interface
: Message Queue

: Elementary Detector

Arrows

 
Figure 8. Currently implemented CIDS 
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4.1. Manager  
The manager has the Graph-based and the Bayesian 

Network based Inference Engines. The Inference Engines use 
Rule Objects for each attack type. Examples of graph and 
Bayesian Network rules for the Open SSL attack are shown in 
Figure 9. The nodes are labeled with the ED and the alarm ID. 
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Figure 9. (a) Graph-based and (b) Bayesian Network-

based rules for the OpenSSL attack 
 
4.2. Elementary Detectors 
 
Three EDs are used in CIDS: Snort, Libsafe and Sysmon, of 
which Sysmon is a new detector that is designed and 
implemented for CIDS.  

Snort [15] is a network level intrusion detector which sniffs 
the network flow by using libpcap [10]. Snort is capable of 
sniffing TCP, UDP, and ICMP packets. It then compares the 
sniffed packet against its rulebase and signals alerts when it 
matches rules. The snort rule has a very versatile description 
format and the Snort engine can perform simple matching by 
port numbers or IP addresses or perform more involved pattern 
matching in the payload of a packet and stateful protocol 
matching. We use Snort version 1.9.0 with the complete 
default set of rules (snort.conf version 1.124).  

Libsafe [9] is an application level ED. It provides a 
middleware software layer that intercepts function calls made 
to a set of C library functions that are known to be vulnerable 
to buffer overflow attacks, such as string manipulation 
routines. A substitute version of the corresponding function 
implements the original functionality, but in a manner that 
ensures that any buffer overflows are contained within the 
current stack frame. This prevents attackers from 'smashing' 
(overwriting) the return address and hijacking the control flow 
of a running program. Libsafe is limited to protecting against 
stack buffer overflow and is unable to catch heap or static 
buffer overflows. Also, according to our experiment, it misses 
some stack buffer overflow situations with optimized program 

code when it fails to get an accurate estimate of the stack 
frame size. We use Libsafe version 2.0-1 for our system. 

Sysmon is a new kernel level detector which comprises 
modifications to the Linux kernel for intercepting certain OS 
activities. Sysmon has two functions. 
1. Monitoring file accesses by intercepting the sys_open and 

sys_execve system calls 
Sysmon monitors all the file accesses. Currently, we only 

put simple access rules for conceptual purpose. The rules we 
have are: (a) Not allowing access to other users’ home 
directories; (b) Not allowing the execution of commands ‘ls’, 
‘rm’, and ‘gcc’ to prevent the hacker from listing or removing 
files and from compiling malicious codes on the machine. A 
more comprehensive approach in our current plans  is to create 
a list of allowed file accesses based on audit data.  
2. Intercept interested signals 

Sysmon can intercept all signals that a monitored process 
is receiving. Currently, we only process the SIGSEGV 
segmentation fault signal. This signal is usually a result of 
unsuccessful return address overwriting or unsuccessful 
injection of malicious code. 

 
4.3.  Apache Web Server Workload  
 

The Apache web server version 1.3.24 is used as the 
workload. An electronic store front is implemented using Perl 
CGI scripts which consists of 3 major parts: (i) Registering a 
user profile or account, (ii) Browsing the online catalog and 
placing items in a shopping cart, and (iii) Completing the 
order.  

 
5. Experiment 

 
In this section, we describe the experiments used to 

evaluate CIDS. We describe the normal workload, the 
simulated attacks, the performance measurements, the 
evaluation of false alarms and missed alarms, and the timing 
measurements. 

 
5.1.  Electronic Store Front Workload 

 
The normal workload used in the evaluation of CIDS is a 

client transaction which exercises different functionalities of 
the web-based electronic store front. The client transaction is 
written in HTML 1.1 and consists of the following steps. 
1. Getting the html page that allows a customer to register a 

profile. 
2. Sending information to mailer.cgi to create a profile. 
3. Getting the html page that contains the store catalog. 
4. Sending information to cart.cgi to place an item in the 

shopping cart. 
5. Viewing the shopping cart by executing view_cart.cgi. 
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6. Viewing the checkout information by executing 
checkout.cgi. 

7. Sending information to complete.cgi to complete the 
checkout. 

A basic TCP stream socket client program is used to send 
and receive all the steps synchronously and in sequence with 
no delay between successive steps. 

 
5.2.  Attack Types 

 
We simulate three classes of attacks to evaluate CIDS. For 

each class, we develop multiple attack types and variants for 
some of the types. A detailed description of the attack types is 
not relevant to the evaluation and hence only a high-level 
overview is given along with references to their details. A 
problem we faced in the study was availability of code to 
simulate the attacks. We developed the attack code from 
scratch for most types and occasionally got fragments of code 
that we could modify and use. An important design principle 
for the experiments was to separate the developer of the attack 
code from the designers of the system to prevent biasing of the 
attack methodology either to favor CIDS, or exploit known 
vulnerabilities in CIDS. The two groups had no 
communication during the entire length of the study. 
1. Buffer Overflow Attack. A buffer overflow attack 
exploits the fact that oftentimes programs do not check for 
boundary conditions in operations such as accessing arrays. 
This can be used to overwrite parts of the stack such as the 
return address and cause malicious code to be executed. 
1.1.  Apache Chunk attack [1]. Versions of the Apache web 
server up to and including 1.3.24 and 2.0 up to and including 
2.0.36 contain a bug in the routines which deal with invalid 
requests which are encoded using chunked encoding.  This bug 
can be triggered remotely by sending a carefully crafted 
invalid request. In 32-bit platforms (including ours), the attack 
causes a stack buffer overflow and process crash, while in 64-
bit platforms, it could be used to execute malicious code. 
1.2.  Open SSL attack [16]. This is a static buffer overflow 
attack and contains a remotely exploitable buffer overflow 
vulnerability in OpenSSL servers prior to 0.9.6e and pre-
release version 0.9.7-beta2. This vulnerability can be exploited 
by a client using a malformed key during the handshake 
process with an SSL server connection using the SSLv2 
communication process. As is previously documented, in our 
version of Linux (Redhat 8.0) and Apache web server (1.3.24), 

this attack can cause a segmentation fault, but not execution of 
malicious code. This attack consists of two 
phases  determining the version of Apache web server to 
determine the memory layout, and sending the malicious 
packet that causes the buffer overflow. We develop a variant 
of this attack where the initial phase is omitted and directly 
different malicious packets are sent for the memory layouts of 
different Apache versions.  
2. Flooding Attack. This class of attacks consists of sending 
a flood of network requests to a server program to cause DoS. 
2.1.  Ping flood. The attack attempts to saturate a network by 
sending a continuous series of ICMP echo requests (pings) 
over a high-bandwidth connection to a target host on a lower-
bandwidth connection to cause it to send back an ICMP echo 
reply for each request. The variants of this attack type use 
different packet sizes (64, 1024, 4096, 16000, 65000 bytes), 
and different inter-packet intervals (1 ms, 10 ms, 100 ms, 1 s). 
2.2. Smurf. The attack sends a large volume of ICMP echo 
(ping) traffic to the broadcast addresses of well-populated 
"intermediate" networks with the source IP address spoofed to 
match that of the intended victim host. On receiving the echo 
request, each host in the intermediate network responds with 
an echo reply to the attacked host, flooding both the host and 
its network. Variants of the attack use different sizes of echo 
packets (512 and 1024 bytes). 
3.  Script-based Attack. Script programs running on a web 
server get user inputs and then invoke shell commands, system 
commands, or other programs to accomplish some tasks. If the 
program doesn’t validate the input string before it transfers the 
input data to shell or system commands, this class of attacks 
may allow remote command execution. In our experiments, we 
probe the vulnerability in open(), and system() functions in the 
Perl CGI scripts to either overwrite or delete files, or inject 
executable code. 

 
5.3.  Performance Evaluation 

 
This experiment is divided into two sets – without and 

with attacks injected. Different configurations of the EDs are 
tested. For economy of space, for the attack case, only the 
results with the Apache chunk attack and open SSL attack are 
shown. Also these attacks trigger the most number of detectors 
and therefore provide a worst case performance measure. 
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Figure 10. Performance measurement in transactions per second for electronic store front client application with different 

combinations of EDs 

For the no attack case, 30 transactions are run 
concurrently. The number of transactions completing per 
second is measured for the 8 possible combinations of EDs. 
For the combinations with multiple EDs, the CIDS manager is 
present along with all the components mentioned in Section 
4.1. These results are presented in Figure 10.  

Snort as deployed with the default set of rules exhibits 
false alarms due to rules with Snort Rule ID (SID) 1807 and 
1933. These rules are fired respectively due to the use of 
chunk encoded data and an inexplicable disallowing of use of 
the string "cart.cgi" in input. Experiments are also run after 
disabling these erroneous rules and are shown with the prefix 
"NF". The results show that the performance degradation is 
most significant for the active ED,  Snort (4.18%) and least for 
the passive ED, Libsafe (2.53%). For Sysmon, the degradation 
is intermediate (3.46%). With the complete CIDS 
configuration, the performance degradation is only 5.60%, or 
3.95% if the erroneous Snort rules are removed. For the rest of 
the paper, Snort is deployed with the full set of rules so that it 
satisfies the requirement of being an off-the-shelf detector. 

Next we ask what the performance degradation of CIDS 
will be if the EDs are performing some detection. For this set 
of experiments, the normal workload (concurrency = 30) is run 
together with the attack program running continuously. The 
results are shown in Figure 11. 

The result for the chunk attack is counter-intuitive since 
the performance is better for all the EDs turned on. This is 
because Libsafe is able to detect the chunk attack and prevent 
the process from core dumping. With no detector, core is 
dumped and the overhead of creating a large core file causes 
the performance degradation. With the Open SSL attack, the 
performance degradation is 6.33%.  

Now let us try to analyze what the performance 
degradation is due to. In Figure 12, we show the CPU 
utilization by each of the components in CIDS. The total CPU 
utilization (user level + system level) is 100%, implying 
system level utilization is about 51%. The workload processes 
of the web server and the CGI processes have the highest 
utilizations. Among the CIDS components, the Matlab toolbox 

has the highest utilization (2.8%). This can be reduced by not 
invoking a separate toolbox for the Bayesian Network based 
Probabilistic Assurance Value computation, but performing 
this through native code resident within the manager itself. 
The Sysmon utilization is 1.5%. 
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Figure 11. Performance measurements under two 

attack types 

CPU Utilization (User level)

0 10 20 30 40 50

1

% (CPU Utilization)

httpd snort
sysmon manager
matlab CGI
CPU Util. Spent on other processes  
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5.4. Detection Effectiveness Evaluation 

In this section, we present our experiments to evaluate the 
effectiveness of CIDS with respect to the false positives and 
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Table 1. Cases of missing alarms for different attack types in different EDs and CIDS 
 Snort Libsafe Sysmon (Signal) Sysmon (File) CIDS 

No attacks Yes (1807,1933)  No No No No attack 
Open SSL Yes (1881,1887) No Yes R1 Yes 
Open SSL variant  No No Yes R1 Yes 
Apache Chunk Yes (1807, 1808, 

1809) 
Yes Yes R1 Yes 

Smurf  1000  Yes (499) No No No Yes 
Smurf  500  No No No No No 
Ping Flooding Yes (523, 1322) No No No Yes 
Script No  No No Yes Yes 

false negatives for the attack types and variants presented in 
Section 5.2.  

First, we show the incidence of missing alarms with 
different EDs and under CIDS in Table 1. A “Yes” in a cell 
indicates the attack was detected. With the Snort column, the 
ID of the Snort rule that detected the attack is shown. Sysmon 
(Signal) implies the illegal signal interception function of 
Sysmon and Sysmon (File) implies its file access detection 
function. Smurf 1000 and 500 refer to ping packets of sizes 1 
kB and 0.5 kB respectively. For both, the outgoing traffic from 
the attacker host is 114 kB/s and 10 broadcast addresses are 
used. 

Snort throws false alarms for the normal transaction due to 
rules 1807 and 1933. CIDS detects 6 of the 7 variants of 
attacks which is better than what any individual ED can 
accomplish.  The cells marked R1 imply that Sysmon was 
unable to detect a file access (creation) since the attack was not 
successful in reaching that step and instead crashed the Apache 
process. The smurf attack is undetectable by any of the EDs if 
it uses small enough packets, being sent at a high rate. Snort’s 
detection relies on finding patterns in packets and doesn’t 
detect dynamics like network flow rates. The importance of 
having Sysmon is borne out by the fact that the Open SSL 
variant and script vulnerability attacks could only by detected 
by it. 

Next, we run experiments to detect the incidence of false 
alarms. We create three variants of the normal transaction: 
placing items in shopping cart (cart.cgi), clearing shopping 
cart (delete.cgi), contacting store owner (contact.html, 
formmailer.cgi). The scripts used in each are mentioned 
alongside. The first and third throw false alarms in Snort (rules 
1933 and 884 respectively) while the second throws false 
alarm in Sysmon (File) since a file is being removed. CIDS 
shows no false alarms. It is clear that to make this result more 
meaningful, a much larger set of legal transactions will have to 
be generated and tested. 
 
5.5. Attack Propagation Speed 
 

The timing of the different events associated with the Open 
SSL buffer overflow attack with the Bayesian network based 
Inference Engine are shown in Figure 13. Snort Rule 1881 

(SID 1881) corresponds to the triggering of the rule for the 
initial web server version query and SID 1887 corresponds to 
the rule that checks for the string “TERM=xterm” in the 
malicious packet. Libsafe is unable to detect this attack and as 
a result, the process crashes dumping core which is detected by 
Sysmon. It is observed that the time to launch the counter 
attack is higher for the Bayesian Network based Inference 
Engine (5.01 s against 3.97 s for the graph-based inference 
engine). This is due to the longer time to invoke the Bayesian 
Network toolbox, and the more expensive computation. 
 

 
Figure 13. Timing for Open SSL attack with Bayesian 

Network based Inference Engine 

 
6. Conclusions 
 

In this paper, we have presented the architecture of a 
distributed system for intrusion detection called CIDS, which 
employs multiple elementary detectors and combination of 
their alerts to make an accurate determination of intrusion. 
Then we presented an instantiation of this architecture with 
three elementary detectors and a manager with a graph-based 
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and a Bayesian network based inference engine. We evaluated 
the system under a real-world web based e-commerce 
application and three classes of attacks. CIDS was found to 
bring down the incidence of missing alarms and false alarms 
with negligible impact on the performance. 

We are currently exploring how to set up the Rule Objects 
for different attack classes in an automated manner. The 
approach uses a feedback control loop to adjust the weights or 
probabilities in the rules. We are developing a larger set of test 
cases to carry out statistically large set of experiments to 
measure false positives and false negatives in CIDS. We are 
adding a timing module to estimate the speed of propagation of 
attacks and augmenting the Response Engine to have a choice 
of responses which will be decided based on the timing 
information. 
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