
©2003, Yu-Sung Wu, Bingrui Foo, Yongguo Mei, Saurabh Bagchi

Collaborative Intrusion Detection System (CIDS): A Framework for Accurate
and Efficient IDS

Yu-Sung Wu, Bingrui Foo, Yongguo Mei, Saurabh Bagchi

School of Electrical and Computer Engineering, Purdue University
Email: {yswu,foob,ymei,sbagchi}@purdue.edu

Abstract
In this paper, we present the design and implementation of

a Collaborative Intrusion Detection System (CIDS) for
accurate and efficient intrusion detection in a distributed
system. CIDS employs multiple specialized detectors at the
different layers – network, kernel and application – and a
manager based framework for aggregating the alarms from
the different detectors to provide a combined alarm for an
intrusion. The premise is that a carefully designed and
configured CIDS can increase the accuracy of detection
compared to individual detectors, without a substantial
degradation in performance. In order to validate the premise,
we present the design and implementation of a CIDS which
employs Snort, Libsafe, and a new kernel level IDS called
Sysmon. The manager has a graph-based and a Bayesian
network based aggregation method for combining the alarms
to finally come up with a decision about the intrusion. The
system is evaluated using a web-based electronic store front
application and under three different classes of attacks –
buffer overflow, flooding and script-based attacks. The results
show performance degradations compared to no detection of
3.9% and 6.3% under normal workload and a buffer overflow
attack respectively. The experiments to evaluate the accuracy
of the system show that the normal workload generates false
alarms for Snort and the elementary detectors produce missed
alarms. CIDS does not flag the false alarm and reduces the
incidence of missed alarms to 1 of the 7 cases. CIDS can also
be used to measure the propagation time of an intrusion which
is useful in choosing an appropriate response strategy.
Keywords: Intrusion detection, Event correlation, Bayesian
network based detection, False alarms, Missed alarms.

1. Introduction

Many critical parts of our information infrastructure
comprise distributed computer systems with myriad
application level and system level components deployed on
multiple platforms. The infrastructures are vulnerable to
attacks, especially when they have an open, connected
architecture with interactions with untrusted clients over
untrusted networks. Intrusion detection systems (IDSs) are
deployed to protect the computer infrastructures. The classical
IDSs fall into two classes – anomaly based, and misuse based.

An anomaly based IDS specifies the normal behavior of users
or applications and considers any pattern falling outside the
defined behavior as an attack. A misuse based IDS specifies
the signatures of attacks and parses audit files to detect any
matches. The metrics for evaluating an IDS are false alarms
(or, false positives), and missed alarms (or, false negatives).
Individual IDSs are often found to be unsatisfactory with
respect to either or both of the metrics. For instance, anomaly
based detection can generate many false positives since
deviation from the specified normal behavior is not necessarily
an attack. Also, if the definition of normal behavior is updated
at runtime, an expert intruder can slowly change her behavior
to finally include it in the definition. This would then give rise
to a false negative. Misuse based detection can generate many
missed alarms since for most practical open systems it is very
difficult to define an exhaustive attack data base. Also current
misuse based IDS products generate false alarms as our
experience with Snort reported here also shows.

In this paper we propose a system model that employs
multiple specialized detectors installed in different layers of
the system, and a management infrastructure for collating the
alerts from the multiple elementary detectors and synthesizing
a global and aggregate alarm. For this purpose, a system is
divided into the network layer, the kernel layer and the
application layer. We claim that the aggregate alarm is more
accurate than the elementary alarms, i.e., it reduces the
incidence of false alarms and missed alarms. The system
should also be efficient in that the performance degradation
compared to the baseline case of no detector, or of a single
detector, should not be substantial. We design and implement a
system called the Collaborative Intrusion Detection System
(CIDS) to demonstrate the feasibility of the idea.

CIDS employs three elementary detectors (EDs)–Snort, a
network level detector, Libsafe, an application level detector,
and a new detector called Sysmon that executes at the kernel
level. CIDS has a manager to which the alerts from the EDs
are communicated. Sysmon consists of a modified Linux
kernel for intercepting certain OS activities file access, and
illegal signals. The EDs may be monitoring different system
components, possibly on different hosts and communicate with
the manager through a message queue (MQ). The MQ design
enables detectors on different hosts to communicate securely
with the manager.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

The CIDS manager consists of a Translation Engine, an
Inference Engine, a collection of Rule Objects and a Response
Engine. The Translation Engine translates the alerts from the
different EDs into a common format and attaches identifying
information, such as the host ID from which the alert
originated. The Inference Engine uses the rule base to
calculate the probability of an attack for each class and flags
an alarm if a probability exceeds a threshold. The Inference
Engine accommodates the choice of different techniques for
rule matching. In the current system, there is a graph-based
inference engine and a Bayesian network based inference
engine. Both are able to handle partial matches of the observed
events with the rule base events and non-determinism in the
order in which the events are received. This design decision is
guided by the practical observation that such partial streams
and order non-determinism are common in distributed systems.
The Response Engine can take various responses depending on
the attack type and its characteristics (such as, the propagation
speed). The current system uses the simple response of
terminating the connection which originated the suspect
packets.

CIDS is evaluated with respect to performance degradation
and accuracy of detection. Attacks from three different classes
are used to stress the system – buffer overflow attack, flooding
attack and script based attack. An electronic store front
running on an Apache web server, implemented using CGI
Perl scripts, and accessed using a web browser client is used as
the workload. The application allows the typical operations of
creating a user profile, browsing the catalog, adding items to a
cart and completing an order, with multiple operations being
grouped to form a transaction. The performance is measured
by the number of transactions per second (tps) and the CPU
available to the web server. The performance degradation is
given by the values of these metrics in CIDS compared with
the baseline system configuration with no detector. The results
show degradations of 3.9% and 6.3% under normal workload
and a buffer overflow attack respectively. Experiments are
then conducted to explore the cases of false alarms and missed
alarms. The false alarm experiment is conducted with the
normal transaction and 3 variants. The missed alarm
experiment is conducted with 7 different attack types
corresponding to the 3 attack classes. The results show that the
normal workload generates false alarms for Snort and Sysmon,
and missed alarms for Snort (3 of 7 cases), Libsafe (6 of 7
cases), and Sysmon’s two configurations (3 of 7,and 4 of 7
cases). CIDS does not show any false alarm and reduces the
incidence of missed alarms to 1 of the 7 cases. The third set of
experiments tracks the timing information for detection by the
EDs and inference at the manager. This brings out the speed of
propagation of the attacks and the latency of each step in a
CIDS workflow.

The work presented here has the following claims of
innovation – (i) it proposes a new system model for correlating
alerts from multiple elementary detectors to perform more

accurate intrusion detection; (ii) it presents an incremental
inference engine capable of tolerating non determinism
observed in practical systems; (iii) it provides an intrusion
detection framework in a distributed multi-host system; (iv) it
presents a new kernel level detector and shows it to be
effective under several attack scenarios; (v) it provides timing
analysis of events which can aid in selecting an appropriate
intrusion response.

The rest of the paper is organized as follows. Section 2
refers to related research. Section 3 presents the architecture of
CIDS and describes its components. Section 4 provides an
instantiation of the architecture and presents the specific
configuration of the system being evaluated in this paper.
Section 5 describes the experiments and the results. Section 6
concludes the paper with mention of future work.

2. Related Research

Several researchers have addressed the problem of false
alarms and missed alarms with traditional IDSs which are
classified as anomaly-based and misuse-based [8]. Also,
traditional IDSs often generate a very large number of alerts
for practical attack scenarios. The alarms correspond to
elementary goals of the attack being realized. This large
volume of alarms makes it difficult for a system administrator
or even an automated intrusion response system to take
appropriate actions. To counteract this problem, several
researchers have developed alert correlation methods to
construct attack scenarios. One class of techniques ([16],[19])
combines alerts based on similarity of certain alert attributes.
For example, in [16], source and destination IP addresses and
ports are used for determining similarity and graphs are drawn
with links between related alerts. However, this class misses
out on correlating a large set of related alerts. A second class
of techniques [2],[6] use training set data to determine
relations between alerts. In [2], attacks are characterized by
pre-condition, post-condition, attacker actions, detection
actions, and verification actions to determine if the attack
succeeded. Knowing these attributes, they provide techniques
to correlate alerts. However, the challenge remains to
determine the attack characteristics. The most promising
approach in alert correlation is demonstrated by [3],[13],[18]
which correlate alerts based on pre-conditions and post-
conditions. Two alerts are correlated if the precondition of a
later attack is satisfied by the post-condition of an earlier
attack. This volume of work addresses a related but distinct
problem than our work. The goal is to cluster the alerts
corresponding to the distinct elementary attacks that form part
of a larger attack. Our goal is to increase the accuracy of
detection of each elementary attack. Their work uses detectors
for detecting different types of attacks while we can have
multiple detectors that detect the same kind of attack and use
the multiple detection to increase the assurance in the alert.
Thus, our work can be considered complementary and benefit

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

their work. Consider that the elementary alerts that they
consider are not the alerts from individual detectors, but alerts
from our CIDS manager. One concern about this volume of
work is their ability to deal with non-determinism in alerts
from detectors in real-world intrusion situations, such as,
missed alarms, alarms appearing in different orders. For
example, in [3], it would be difficult to detect multiple missing
alerts and there is no notion of assurance which is reduced as
the number of missing alerts increases. In none of this work is
it obvious how overlapping alarms corresponding to multiple
concurrent attacks on multiple hosts will be handled. On the
other hand, CIDS can be deployed as a distributed intrusion
detection system.

3. Architecture of CIDS
In this section, we describe the architecture of CIDS which

has the following components – the Elementary Detectors
(EDs), the Message Queue (MQ), the Connection Tracker, the
Manager, and the Response Engine.

3.1. Elementary Detectors

The Elementary Detectors are the specialized intrusion

detectors that are distributed through the system. From an
architecture standpoint, each host is divided into three layers–
network layer, kernel layer and application layer. The network
layer consists of the network protocol stack. The kernel layer
consists of the operating system and its managed services. The
application layer consists of everything else running as
software on the host, including middleware. The EDs and the
manager can be located on different hosts and communicate
through a generalized Message Queue structure which enables
communication regardless of where the communicating
processes are located. A possible system view is represented in
Figure 1.

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

N/W
layer

System
layer

Application
layer

Manager

Dxx
Elementary Detector

Message Queue

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D1 D2

D3 D4CT

Application
layer

N/W
layer

System
layer

D5

D3 D4CT

CT Connection Tracker

Keys

Figure 1. System view of Elementary Detectors and

Manager
The EDs may be off-the-shelf detectors. CIDS does not

mandate substantial changes of such off-the-shelf detectors.
The only change is in the function when an alert is generated

by the detector which puts an alert out on the MQ destined for
the manager.

Different hosts can have different configurations of the
EDs. This is an important design principle since in a
distributed system with heterogeneous services, different
services on different hosts may need different kinds of
detectors. There may be EDs specialized for detecting different
kinds of attacks, EDs with overlapping functionality, and EDs
which are an integral part of an application (such as, a Voice-
over-IP application that has inbuilt rules to detect traffic fraud
attacks). The rule base at the manager has to be initialized with
values for confidence placed on the alarms from the individual
detectors for different types of attacks. The system will exhibit
a faster learning curve if the initial confidence values are based
on the specialized functionality of the detector. For example,
an alarm from Libsafe which is a buffer overflow detector
should have a higher confidence for the Rule Object for buffer
overflow, rather than for flooding.

3.2. Message Queue

The components in the system communicate with one
another using the Message Queue (MQ). MQ uses TCP as the
data transport. Each message has a per sender unique
monotonically increasing serial number and a signature which
is the SHA1 hash value of the message body, the serial
number, and a secret key. Each ED in the system has a secret
key that is shared with the manager. Thus, without knowing
the secret key, there is no way to forge a message or replay a
legitimate message.

3.3. Connection Tracker

The Connection Tracker is a kernel level entity which
maintains the mapping of port number to process ID of the
process which has an active connection on the port. For this, it
intercepts the system calls for accepting incoming connections
and terminating connections. The manager may query the
Connection Tracker to generate information about the target
for which an alert is raised. The Connection Tracker maintains
the information in a queue data structure.

3.4. Manager

The manager is the workhorse and the key differentiating
component in CIDS. The manager is responsible for
aggregating the information from the different detectors and
making a combined system-wide decision about the existence
of an intrusion. The architecture permits the manager to
monitor multiple hosts. There is one manager for the
administrative domain on which you would want to correlate
alerts.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

The manager has the following components: Translation
Engine (translates the alert from an ED into a CIDS
understandable abstract event form), Event Dispatcher
(dispatches the event to the appropriate host’s Inference
Engine instance), Inference Engine (matches the received
events against the Rule Objects to come up with a
determination of intrusion), and Combining Engine (collates
the decisions from the different instances of the Inference
Engine and decides on the appropriate response). An
architecture of the manager with the different components is
shown in Figure 2.

Host 1

Rules

Inference
Engine

Host 2 Host N

………….

Event Dispatcher

From ED

Translation Engine

Rules

Global Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Combining Engine

Host 1

Rules

Inference
Engine

Host 2 Host N

………….

Event Dispatcher

From ED

Translation Engine

Rules

Global Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Rules

Inference
Engine

Combining Engine

Combining Engine

Figure 2. Architecture of the CIDS Manager
3.4.1. Translation Engine (TransEng). The Translation
Engine (TransEng) translates the alert from the ED into a
common format. The format is as follows.
• Event Id (EID): ID of the detector (DID); Specific ID

given to the alarm type by the detector (AID)
• Location Info (LID): Source IP address and port number

(SIP, SPN); Destination IP address and port number (DIP,
DPN), Process ID (PID)
Each detector in the system has a unique ID which is filled

in as DID when it sends an alarm. In addition, an ED may
specify a unique ID specific to its detection, e.g., an ID
corresponding to the nature of the attack detected. This may be
used by the Inference Engine in deciding on the Assurance
Value for the attack, e.g., an alarm corresponding to a buffer
overflow by Snort will contribute less to the Assurance Value
of a rule for detecting flooding attacks. The PID in the
Location Info field gives the id of the process to which the
suspected malicious packet was destined. The responsibility
for filling in these fields is shared between the ED and the
manager. TransEng fills in DIP, since the MQ maintains
information about the IP address from which the message
came. When Snort raises an alarm, it fills in the DPN field
while TransEng fills in the PID field by querying the
ConnectionTracker. Libsafe on the other hand fills in PID and
TransEng queries Connection Tracker to fill in DPN.

3.4.2. Event Dispatcher (EvDis). The Event Dispatcher
(EvDis) dispatches the events to the Local Inference Engine of
the host corresponding to the destination (the DIP field) of the
event. The events being forwarded by EvDis are maintained in
an Inference Queue in time order at each Local Inference
Engine. The events are logically grouped by the target process
they correspond to (the PID field). The Inference Engine can
then process the events efficiently to determine if there is an
attack on the target process. The logical structure of the
Inference Queue is shown in Figure 3.

…
PID1 PID2 PIDn

A1 A2 A3 B1 B2 B3 C1 C2
…

PID1 PID2 PIDn

A1 A2 A3 B1 B2 B3 C1 C2
Figure 3. Logical structure of Inference Queue at each

host’s Inference Engine. Ai, Bi, Ci are events.

3.4.3. Inference Engine. The goal of the Inference Engine is
to process the events in the Inference Queue and come up with
the determination if an intrusion is in progress. The
determination is quantified by an Assurance Value. The
matching of the observed events is performed against a rule
base consisting of Rule Objects. There is an instantiation of the
Inference Engine and the Rule Base for each host monitored
by the manager and a global Inference Engine and Rule Base
which processes the output from the local engines. The
manager’s rule-base is maintained by a system administrator
and as part of future work, we plan to provide a feedback loop
that lets the rules be updated based on the success of the
detection.

We describe below the design of the Inference Engine
without the need to make a distinction between a Local and a
Global Inference Engine. The distinction arises due to the
specific rules that are in their corresponding rule bases. We
have designed two different kinds of Inference Engines – a
Graph-based Inference Engine and a Bayesian Network based
Inference Engine.
Graph-based Inference Engine

Each Rule Object is a graph with the nodes being the
events associated with an attack type and the edges denoting a
sequencing of the events and marked with the confidence
associated with the sequence. Intuitively, the Assurance Value
(AV) for a particular attack is given by the sum of the edges in
the longest path of the entire sequence of observed events. A
path is considered longer if it has a higher assurance value.
When a new event is added to the Inference Queue, the
Inference Engine checks to see if it is fusionable with the
events being currently matched. Two events are considered
fusionable if they can be events in a common attack instance.
This is application specific and can be customized in the
environment. Currently, if two events are for the same target
process they are considered fusionable. A sequence of
fusionable events forms an event stream.

The Inference Engine matches different streams of events
that are in its Inference Queue in parallel. For each stream, it

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

matches it against each Rule Object. Let us consider below the
processing of events from a single event stream being matched
against one Rule Object graph. The Inference Engine drains an
event from the Inference Queue and if fusionable with the
previous event, puts it in a Match Queue. Each element in the
Match Queue contains the highest Assurance Value associated
with a path having the itself as the terminal node, and the
predecessor event in such a path.

A

B

C

D

E

2

1

2

4

1

Rule Object #1

…
PID1 PID2 PIDn

A B C … …D E E

Inference Queue

A B C D E E

Matching Queue

S 3 A

B

C

D

E

2

1

2

4

1

Rule Object #1

…
PID1 PID2 PIDn

A B C … …D E E

Inference Queue

A B C D E E

Matching Queue

S 3

Figure 4. Example of Graph-based Rule Object and

Event Stream

An event would expire from the Match Queue when it is
determined that the fresh alerts are corresponding to a different
attack. This can be determined by using metrics such as the
source of the attack, the time interval, the target process [1].

Let us now consider a running example of a Rule Object
graph and the processing at the Inference Engine. The Rule
Object is shown in Figure 4. The nodes correspond to possible
events with S being a special node corresponding to the start
event. The events observed in time order are A;B;C;D;E;E.
The snapshots of the Matching Queue on receipt of each event
are shown in Figure 5. Only the arc corresponding to the
newly added event is shown. The assurance value for an added
event may not be monotonic as the addition of C shows.

T0: Event A A
3

T1: Event B A
3

B
5

T2: Event C A
3

B
5

C
4

T3: Event D A
3

B
5

C
4

D
7

T4: Event E A
3

B
5

C
4

D
7

E
9

T5: Event E A
3

B
5

C
4

D
7

E
9

E
9

T0: Event A A
3

T0: Event A A
3

T1: Event B A
3

B
5

T1: Event B A
3

B
5

T2: Event C A
3

B
5

C
4

T2: Event C A
3

B
5

C
4

T3: Event D A
3

B
5

C
4

D
7

T3: Event D A
3

B
5

C
4

D
7

T4: Event E A
3

B
5

C
4

D
7

E
9

T4: Event E A
3

B
5

C
4

D
7

E
9

T5: Event E A
3

B
5

C
4

D
7

E
9

E
9

T5: Event E A
3

B
5

C
4

D
7

E
9

E
9

Figure 5. Matching Queue snapshots on receiving each
event in event stream

The Inference Engine processes an event by scanning
through the possible predecessors of the event in the Rule
Object and calculating the Assurance Value for the new event.
The Assurance Value at the end of the processing is converted
to a probability value for matching against thresholds by
dividing it by the maximum possible Assurance Value from
the Rule Object. The algorithm runs in O(V2+VE) where V is
the number of events being processed and E the number of

edges in the Rule Object graph. The algorithm is given in
Figure 6.

Figure 6. Algorithm for processing a new event at the

Graph-based Inference Engine
How to handle missing events? In a practical system, there will
be missing events and exact matches with the Rule Object
graph will not always be possible. In order to handle this
condition, we allow partial matches with a discounted
Assurance Value. The discounted Assurance Value is obtained
by multiplying the Assurance Value by a discount factor,
which is given by the number of observed event nodes divided
by the total number of nodes on the path. Thus, if event B was
missing and the event stream was A;D, the Assurance Value
would be 2/3*(3+2+2)=4.67.
Parallelization and Distribution. The Inference Engines can be
distributed very intuitively by having each local Inference
Engine execute on a separate host. Each Inference Engine can
parallelize the processing by matching each separate event
stream against a Rule Object graph concurrently.
Bayesian Network-based Inference Engine

Bayesian Network is a compact representation of joint
probability distributions via conditional independence [12]. In
a Bayesian Network, the nodes represent random variables and
edges the direct influence of one variable on another. A set of
conditional probability distributions is associated with each
node and a node is considered conditionally independent of its
ancestors given its parents. There are two steps to modeling a
Bayesian Network. The first step is creating the graph which
describes the conditional probability relationship among events
by putting an edge from event A to event B if B is conditioned
on A. Next, we have to specify all the conditional
probabilities, i.e. P(B|A).

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

Figure 7. Example of Bayesian Network based rule for

OpenSSL attack type

In CIDS, we model the rules in a very similar way. For
example, in the OpenSSL attack case, we have the Bayesian
Network shown in Figure 7 as the BN-based rule in the
manager. The conditional relationship is put in a causal way.
For instance, we know that a OpenSSL attack could cause a
Snort alert so we put an edge from the ‘OpenSSL Attack’
event node to the ‘Snort’ node. After this, we give all the
conditional probabilities P(Snort | OpenSSL Attack), P(Libsafe
|OpenSSL Attack, Snort), P(SIGSEGV | OpenSSL Attack,
Snort).

When a new alert comes into the Inference Queue, it is
checked for the fusionable property and all fusionable alerts
are grouped into a vortex. The Matlab Bayesian Network
Toolbox [11] is then invoked and events in the vortex are fed
to it as evidence nodes. The inference function of the toolbox
is executed to acquire the probability of the root node (e.g. the
Open SSL Attack node), which is the alert probability of the
attack based on the observed evidences.
Role of Global Inference Engine. Alerts determined by a Local
Inference Engine are fed into the Inference Queue of the
Global Inference Engine (GIE). The motivation for a GIE is
that a Local Inference Engine can determine if an individual
service is under attack, but a GIE can determine if the
aggregate distributed service is under attack. For example, the
authentication information in an electronic store front may be
compromised by launching a parallel attack against the DNS
service (to misdirect traffic to a rogue host) and the SSH server
(trying to sniff authentication information being exchanged
between the client and the server).
How Rule Objects are created. Rule objects are created
individually for each attack type and built up incrementally for
the entire system. Future work will be on retuning the
confidence in a detector based on feedback from the response
phase to decide if detection was successful or not.

3.4.4. Combining Engine. The Inference Engine matches the
event stream against the different Rule Objects using both the
graph-based and Bayesian network based approaches. The
Probabilistic Assurance Value from a particular type of
Inference Engine is the maximum of the values from the

different rules. The Combining Engine takes the greater of the
Assurance Values from the two approaches. It compares this
against a set of threshold values and depending on the
threshold that is exceeded, the appropriate signal is sent to the
Response Engine. The Assurance Value staying below the
lowest threshold indicates that the alerts generated were false
alarms and CIDS disregards them.

3.5. Estimating Speed of Attack Propagation

A key determinant of the response for an intrusion is the
relative time taken to deploy the mechanism and the speed of
propagation of the intrusion. A benefit of the CIDS
architecture is that the propagation speed can be estimated
using the timing of the alerts from the EDs. Information about
cascaded security vulnerabilities in communicating services
can be obtained by various tools developed by researchers
such as Kaaniche [4], Deswarte [5], and Dacier [14]. From
such information, a graph of services can be created and the
time for a service to be affected can be extrapolated from an
estimate of the speed of propagation of the intrusion. Consider
an attack to service S1 has been determined by the CIDS
manager at time t1 and a second attack to service S2 has been
determined at time t2 (t2 > t1). If services S1, S2 and S3 are
placed in a linear chain, then an unweighted linear
extrapolation will indicate S3 will get affected by the intrusion
at t2+(t2-t1) and therefore, the response mechanism must be
able to complete by then.

4. Instantiation of CIDS

We build a system that instantiates the CIDS architecture
and is described in this section with all the components that are
used in the experimental evaluation. CIDS is currently
implemented on Red Hat Linux 8.0. The main components of
the current system are: Manager, Three EDs, Response
Engine, Netfilter, and Apache web server as workload. A
schematic of the system is shown in Figure 8.

Apache web
server

Libsafe
Snort

Sysmon

Response
Engine

Manager

Netfilter

External
NetworkInternal Network

Linux Kernel

: netlink
:OS API & interface
: Message Queue

: Elementary Detector

Arrows

Apache web
server

Libsafe
Snort

Sysmon

Response
Engine

Manager

Netfilter

External
NetworkInternal Network

Linux Kernel

: netlink
:OS API & interface
: Message Queue

: Elementary Detector

Arrows

Figure 8. Currently implemented CIDS

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

4.1. Manager
The manager has the Graph-based and the Bayesian

Network based Inference Engines. The Inference Engines use
Rule Objects for each attack type. Examples of graph and
Bayesian Network rules for the Open SSL attack are shown in
Figure 9. The nodes are labeled with the ED and the alarm ID.

OpenSSL
Attack

1100

Snort

1101
LibSafe

1002

Sysmon

(SIGSEGV)

1004

2 2

2 1

OpenSSL
Attack

1100

Snort

1101

LibSafe

1002

SIGSEGV

1004

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack

0.70.3TRUE

0.30.7FALSE

TRUEFALSE

Snort
OpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

LibSafe
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

SIGSEGV
SnortOpenSSL

Attack

0.90.1TRUETRUE

0.20.8TRUEFALSE

0.70.3FALSETRUE

0.10.9FALSEFALSE

TRUEFALSE

SIGSEGV
SnortOpenSSL

Attack

0.50.5

TRUEFALSE

OpenSSL Attack

0.50.5

TRUEFALSE

OpenSSL Attack

(a)

(b)

Figure 9. (a) Graph-based and (b) Bayesian Network-

based rules for the OpenSSL attack

4.2. Elementary Detectors

Three EDs are used in CIDS: Snort, Libsafe and Sysmon, of
which Sysmon is a new detector that is designed and
implemented for CIDS.

Snort [15] is a network level intrusion detector which sniffs
the network flow by using libpcap [10]. Snort is capable of
sniffing TCP, UDP, and ICMP packets. It then compares the
sniffed packet against its rulebase and signals alerts when it
matches rules. The snort rule has a very versatile description
format and the Snort engine can perform simple matching by
port numbers or IP addresses or perform more involved pattern
matching in the payload of a packet and stateful protocol
matching. We use Snort version 1.9.0 with the complete
default set of rules (snort.conf version 1.124).

Libsafe [9] is an application level ED. It provides a
middleware software layer that intercepts function calls made
to a set of C library functions that are known to be vulnerable
to buffer overflow attacks, such as string manipulation
routines. A substitute version of the corresponding function
implements the original functionality, but in a manner that
ensures that any buffer overflows are contained within the
current stack frame. This prevents attackers from 'smashing'
(overwriting) the return address and hijacking the control flow
of a running program. Libsafe is limited to protecting against
stack buffer overflow and is unable to catch heap or static
buffer overflows. Also, according to our experiment, it misses
some stack buffer overflow situations with optimized program

code when it fails to get an accurate estimate of the stack
frame size. We use Libsafe version 2.0-1 for our system.

Sysmon is a new kernel level detector which comprises
modifications to the Linux kernel for intercepting certain OS
activities. Sysmon has two functions.
1. Monitoring file accesses by intercepting the sys_open and

sys_execve system calls
Sysmon monitors all the file accesses. Currently, we only

put simple access rules for conceptual purpose. The rules we
have are: (a) Not allowing access to other users’ home
directories; (b) Not allowing the execution of commands ‘ls’,
‘rm’, and ‘gcc’ to prevent the hacker from listing or removing
files and from compiling malicious codes on the machine. A
more comprehensive approach in our current plans is to create
a list of allowed file accesses based on audit data.
2. Intercept interested signals

Sysmon can intercept all signals that a monitored process
is receiving. Currently, we only process the SIGSEGV
segmentation fault signal. This signal is usually a result of
unsuccessful return address overwriting or unsuccessful
injection of malicious code.

4.3. Apache Web Server Workload

The Apache web server version 1.3.24 is used as the
workload. An electronic store front is implemented using Perl
CGI scripts which consists of 3 major parts: (i) Registering a
user profile or account, (ii) Browsing the online catalog and
placing items in a shopping cart, and (iii) Completing the
order.

5. Experiment

In this section, we describe the experiments used to

evaluate CIDS. We describe the normal workload, the
simulated attacks, the performance measurements, the
evaluation of false alarms and missed alarms, and the timing
measurements.

5.1. Electronic Store Front Workload

The normal workload used in the evaluation of CIDS is a

client transaction which exercises different functionalities of
the web-based electronic store front. The client transaction is
written in HTML 1.1 and consists of the following steps.
1. Getting the html page that allows a customer to register a

profile.
2. Sending information to mailer.cgi to create a profile.
3. Getting the html page that contains the store catalog.
4. Sending information to cart.cgi to place an item in the

shopping cart.
5. Viewing the shopping cart by executing view_cart.cgi.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

6. Viewing the checkout information by executing
checkout.cgi.

7. Sending information to complete.cgi to complete the
checkout.

A basic TCP stream socket client program is used to send
and receive all the steps synchronously and in sequence with
no delay between successive steps.

5.2. Attack Types

We simulate three classes of attacks to evaluate CIDS. For

each class, we develop multiple attack types and variants for
some of the types. A detailed description of the attack types is
not relevant to the evaluation and hence only a high-level
overview is given along with references to their details. A
problem we faced in the study was availability of code to
simulate the attacks. We developed the attack code from
scratch for most types and occasionally got fragments of code
that we could modify and use. An important design principle
for the experiments was to separate the developer of the attack
code from the designers of the system to prevent biasing of the
attack methodology either to favor CIDS, or exploit known
vulnerabilities in CIDS. The two groups had no
communication during the entire length of the study.
1. Buffer Overflow Attack. A buffer overflow attack
exploits the fact that oftentimes programs do not check for
boundary conditions in operations such as accessing arrays.
This can be used to overwrite parts of the stack such as the
return address and cause malicious code to be executed.
1.1. Apache Chunk attack [1]. Versions of the Apache web
server up to and including 1.3.24 and 2.0 up to and including
2.0.36 contain a bug in the routines which deal with invalid
requests which are encoded using chunked encoding. This bug
can be triggered remotely by sending a carefully crafted
invalid request. In 32-bit platforms (including ours), the attack
causes a stack buffer overflow and process crash, while in 64-
bit platforms, it could be used to execute malicious code.
1.2. Open SSL attack [16]. This is a static buffer overflow
attack and contains a remotely exploitable buffer overflow
vulnerability in OpenSSL servers prior to 0.9.6e and pre-
release version 0.9.7-beta2. This vulnerability can be exploited
by a client using a malformed key during the handshake
process with an SSL server connection using the SSLv2
communication process. As is previously documented, in our
version of Linux (Redhat 8.0) and Apache web server (1.3.24),

this attack can cause a segmentation fault, but not execution of
malicious code. This attack consists of two
phases determining the version of Apache web server to
determine the memory layout, and sending the malicious
packet that causes the buffer overflow. We develop a variant
of this attack where the initial phase is omitted and directly
different malicious packets are sent for the memory layouts of
different Apache versions.
2. Flooding Attack. This class of attacks consists of sending
a flood of network requests to a server program to cause DoS.
2.1. Ping flood. The attack attempts to saturate a network by
sending a continuous series of ICMP echo requests (pings)
over a high-bandwidth connection to a target host on a lower-
bandwidth connection to cause it to send back an ICMP echo
reply for each request. The variants of this attack type use
different packet sizes (64, 1024, 4096, 16000, 65000 bytes),
and different inter-packet intervals (1 ms, 10 ms, 100 ms, 1 s).
2.2. Smurf. The attack sends a large volume of ICMP echo
(ping) traffic to the broadcast addresses of well-populated
"intermediate" networks with the source IP address spoofed to
match that of the intended victim host. On receiving the echo
request, each host in the intermediate network responds with
an echo reply to the attacked host, flooding both the host and
its network. Variants of the attack use different sizes of echo
packets (512 and 1024 bytes).
3. Script-based Attack. Script programs running on a web
server get user inputs and then invoke shell commands, system
commands, or other programs to accomplish some tasks. If the
program doesn’t validate the input string before it transfers the
input data to shell or system commands, this class of attacks
may allow remote command execution. In our experiments, we
probe the vulnerability in open(), and system() functions in the
Perl CGI scripts to either overwrite or delete files, or inject
executable code.

5.3. Performance Evaluation

This experiment is divided into two sets – without and

with attacks injected. Different configurations of the EDs are
tested. For economy of space, for the attack case, only the
results with the Apache chunk attack and open SSL attack are
shown. Also these attacks trigger the most number of detectors
and therefore provide a worst case performance measure.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

13.21

12.88
12.76

12.66 12.72

12.52
12.61

12.47

12.88 12.82
12.73 12.69

12.00

12.40

12.80

13.20

13.60

No detector Libsafe Sysmon Snort Libsafe +
Sysmon

Sysmon +
Snort

Snort +
LibSafe

LibSafe +
Snort +
Sysmon

(NF) Snort (NF) Snort
+ Libsafe

(NF) Snort
+ Sysmon

(NF)
Libsafe +
Snort +
Sysmon

T
ra

ns
/s

ec

Figure 10. Performance measurement in transactions per second for electronic store front client application with different

combinations of EDs

For the no attack case, 30 transactions are run
concurrently. The number of transactions completing per
second is measured for the 8 possible combinations of EDs.
For the combinations with multiple EDs, the CIDS manager is
present along with all the components mentioned in Section
4.1. These results are presented in Figure 10.

Snort as deployed with the default set of rules exhibits
false alarms due to rules with Snort Rule ID (SID) 1807 and
1933. These rules are fired respectively due to the use of
chunk encoded data and an inexplicable disallowing of use of
the string "cart.cgi" in input. Experiments are also run after
disabling these erroneous rules and are shown with the prefix
"NF". The results show that the performance degradation is
most significant for the active ED, Snort (4.18%) and least for
the passive ED, Libsafe (2.53%). For Sysmon, the degradation
is intermediate (3.46%). With the complete CIDS
configuration, the performance degradation is only 5.60%, or
3.95% if the erroneous Snort rules are removed. For the rest of
the paper, Snort is deployed with the full set of rules so that it
satisfies the requirement of being an off-the-shelf detector.

Next we ask what the performance degradation of CIDS
will be if the EDs are performing some detection. For this set
of experiments, the normal workload (concurrency = 30) is run
together with the attack program running continuously. The
results are shown in Figure 11.

The result for the chunk attack is counter-intuitive since
the performance is better for all the EDs turned on. This is
because Libsafe is able to detect the chunk attack and prevent
the process from core dumping. With no detector, core is
dumped and the overhead of creating a large core file causes
the performance degradation. With the Open SSL attack, the
performance degradation is 6.33%.

Now let us try to analyze what the performance
degradation is due to. In Figure 12, we show the CPU
utilization by each of the components in CIDS. The total CPU
utilization (user level + system level) is 100%, implying
system level utilization is about 51%. The workload processes
of the web server and the CGI processes have the highest
utilizations. Among the CIDS components, the Matlab toolbox

has the highest utilization (2.8%). This can be reduced by not
invoking a separate toolbox for the Bayesian Network based
Probabilistic Assurance Value computation, but performing
this through native code resident within the manager itself.
The Sysmon utilization is 1.5%.

11.19

12.30

13.13

12.30

10.00

11.00

12.00

13.00

14.00

No ED All EDs No ED All EDs

Chunk Attack Chunk Attack Open SSL Attack Open SSL Attack

T
ra

n
s/

se
c

Figure 11. Performance measurements under two

attack types

CPU Utilization (User level)

0 10 20 30 40 50

1

% (CPU Utilization)

httpd snort
sysmon manager
matlab CGI
CPU Util. Spent on other processes

Figure 12. CPU utilization due to CIDS components
and workload processes

5.4. Detection Effectiveness Evaluation

In this section, we present our experiments to evaluate the
effectiveness of CIDS with respect to the false positives and

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

Table 1. Cases of missing alarms for different attack types in different EDs and CIDS
 Snort Libsafe Sysmon (Signal) Sysmon (File) CIDS

No attacks Yes (1807,1933) No No No No attack
Open SSL Yes (1881,1887) No Yes R1 Yes
Open SSL variant No No Yes R1 Yes
Apache Chunk Yes (1807, 1808,

1809)
Yes Yes R1 Yes

Smurf 1000 Yes (499) No No No Yes
Smurf 500 No No No No No
Ping Flooding Yes (523, 1322) No No No Yes
Script No No No Yes Yes

false negatives for the attack types and variants presented in
Section 5.2.

First, we show the incidence of missing alarms with
different EDs and under CIDS in Table 1. A “Yes” in a cell
indicates the attack was detected. With the Snort column, the
ID of the Snort rule that detected the attack is shown. Sysmon
(Signal) implies the illegal signal interception function of
Sysmon and Sysmon (File) implies its file access detection
function. Smurf 1000 and 500 refer to ping packets of sizes 1
kB and 0.5 kB respectively. For both, the outgoing traffic from
the attacker host is 114 kB/s and 10 broadcast addresses are
used.

Snort throws false alarms for the normal transaction due to
rules 1807 and 1933. CIDS detects 6 of the 7 variants of
attacks which is better than what any individual ED can
accomplish. The cells marked R1 imply that Sysmon was
unable to detect a file access (creation) since the attack was not
successful in reaching that step and instead crashed the Apache
process. The smurf attack is undetectable by any of the EDs if
it uses small enough packets, being sent at a high rate. Snort’s
detection relies on finding patterns in packets and doesn’t
detect dynamics like network flow rates. The importance of
having Sysmon is borne out by the fact that the Open SSL
variant and script vulnerability attacks could only by detected
by it.

Next, we run experiments to detect the incidence of false
alarms. We create three variants of the normal transaction:
placing items in shopping cart (cart.cgi), clearing shopping
cart (delete.cgi), contacting store owner (contact.html,
formmailer.cgi). The scripts used in each are mentioned
alongside. The first and third throw false alarms in Snort (rules
1933 and 884 respectively) while the second throws false
alarm in Sysmon (File) since a file is being removed. CIDS
shows no false alarms. It is clear that to make this result more
meaningful, a much larger set of legal transactions will have to
be generated and tested.

5.5. Attack Propagation Speed

The timing of the different events associated with the Open
SSL buffer overflow attack with the Bayesian network based
Inference Engine are shown in Figure 13. Snort Rule 1881

(SID 1881) corresponds to the triggering of the rule for the
initial web server version query and SID 1887 corresponds to
the rule that checks for the string “TERM=xterm” in the
malicious packet. Libsafe is unable to detect this attack and as
a result, the process crashes dumping core which is detected by
Sysmon. It is observed that the time to launch the counter
attack is higher for the Bayesian Network based Inference
Engine (5.01 s against 3.97 s for the graph-based inference
engine). This is due to the longer time to invoke the Bayesian
Network toolbox, and the more expensive computation.

Figure 13. Timing for Open SSL attack with Bayesian

Network based Inference Engine

6. Conclusions

In this paper, we have presented the architecture of a
distributed system for intrusion detection called CIDS, which
employs multiple elementary detectors and combination of
their alerts to make an accurate determination of intrusion.
Then we presented an instantiation of this architecture with
three elementary detectors and a manager with a graph-based

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

and a Bayesian network based inference engine. We evaluated
the system under a real-world web based e-commerce
application and three classes of attacks. CIDS was found to
bring down the incidence of missing alarms and false alarms
with negligible impact on the performance.

We are currently exploring how to set up the Rule Objects
for different attack classes in an automated manner. The
approach uses a feedback control loop to adjust the weights or
probabilities in the rules. We are developing a larger set of test
cases to carry out statistically large set of experiments to
measure false positives and false negatives in CIDS. We are
adding a timing module to estimate the speed of propagation of
attacks and augmenting the Response Engine to have a choice
of responses which will be decided based on the timing
information.

Acknowledgements
We would like to acknowledge the help of Eugene

Spafford, Arif Ghafoor and James Joshi for several
illuminating discussions on intrusion tolerance and pointers to
related work. Our thanks are also due to Alan Fern for pointing
us to the Bayesian Network approach to the inferencing
problem.

References
[1] Curtis A. Carver, John M.D. Hill, and Udo W. Pooch, “Limiting
Uncertainty in Intrusion Response,” Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security United States
Military Academy, West Point, NY, 5-6 June, 2001.

[2] “Apache Chunk Buffer Overflow Attack”. At:
http://httpd.apache.org/info/security_bulletin_20020617.txt

[3] F. Cuppens and R. Ortalo, “LAMBDA: A Language to Model a
Database for Detection of Attacks”, In Proceedings of the Third
International Workshop on the Recent Advances in Intrusion
Detection (RAID’2000), Toulouse, France, October 2000.

[4] F. Cuppens and A. Miege, “Alert Correlation in a Cooperative
Intrusion Detection Framework”, In IEEE Symposium on Security
and Privacy, Oakland, USA, 2002.

[5] M. Dacier and Y. Deswarte, “The Privilege Graph: an Extension
to the Typed Access Matrix Model”, in European Symposium in
Computer Security (ESORICS'94), (D. Gollman, Ed.), Lecture Notes
in Computer Science, 875, pp.319-334, Springer-Verlag, Brighton,
UK, November 1994.

[6] M. Dacier, Y. Deswarte and M. Kaâniche, “Models and Tools
for Quantitative Assessment of Operational Security”, in 12th
International Information Security Conference (IFIP/SEC'96), (S.K.
Katsikas and D. Gritzalis, Eds.), pp.177-186, Chapman & Hall,
Samos (Greece), May 1996.

[7] O. Dain and R. Cunningham, “Fusing a Heterogeneous Alert
Stream into Scenarios”, In Proc. of the 2001 ACM Workshop on Data
Mining for Security Applications, pages 1-13, Nov. 2001.

[8] T. Verwoerd and R. Hunt, “Intrusion Detection Techniques and
Approaches”, In Computer Communications vol. 25, Issue 15, 2002.

[9] “Avaya Labs Research - Projects: Libsafe”, At
http://www.research.avayalabs.com/project/libsafe

[10] “SourceForge.net: Project Info - The libpcap project”, At:
http://sourceforge.net/projects/libpcap

[11] Kevin Murphy, “Bayes Net Toolbox for Matlab”, At:
http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html

[12] Kevin Murphy, “Tutorial on Bayesian Network Toolbox”, At:
http://www.ai.mit.edu/~murphyk/Software/BNT/BNT_mathworks.ppt

[13] Peng Ning, Yun Cui, Douglas S. Reeves, “Constructing Attack
Scenarios through Correlation of Intrusion Alerts”, In Proceedings of
the 9th ACM Conference on Computer & Communications Security
(CCS 2002), pages 245-254, Washington D.C., November 2002.

[14] Rodolphe Ortalo and Yves Deswarte and Mohamed Kaaniche,
“Experimenting with Quantitative Evaluation Tools for Monitoring
Operational Security”, Journal of Software Engineering, vol. 25, no.
5, pp. 633-650, 1999.

[15] M. Roesch, “Snort – Lightweight Intrusion Detection for
Networks”, In Proceedings of USENIX LISA’99, November 1999.

[16] “Apache OpenSSL Attack”. At:
http://www.cert.org/advisories/CA-2002-27.html

[17] S. Staniford, J.A. Hoagland and J.M. McAlerney, “Practical
Automated Detection of Stealthy Portscans”, In the Journal of
Computer Security, Volume 10, Issues 1/2, 2002, pp. 105-136.

[18] S. Templeton and K. Levit, “A requires/provides model for
computer attacks”, In Proc. of New Security Paradigms Workshop,
pages 31-38, September 2000.

[19] A. Valdes and K. Skinner, “Probabilistic alert correlation”, In
Proc. of the 4th Int'l Symposium on Recent Advances in Intrusion
Detection (RAID 2001), pages 54-68, 2001.

Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003)
1063-9527/03 $17.00 © 2003 IEEE

