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Abstract—The industrial Internet of things (IIoT), a new com-
puting mode in Industry 4.0, is deployed to connect IoT devices and
use communication technology to respond to control commands
and handle industrial data. IIoT is typically employed to improve
the efficiency of computing and sensing and can be used in many
scenarios, such as intelligent manufacturing and video surveillance.
To build an IIoT system, we need a collection of software to manage
and monitor each system component when there are large-scale
devices. Application programming interface (API) is an effective
way to invoke public services provided by different platforms.
Developers can invoke different APIs to operate IoT devices without
knowing the implementation process. We can design a workflow to
configure how and when to invoke target APIs. Thus, APIs are a
powerful tool for rapidly developing industrial systems. However,
the increasing number of APIs exacerbates the problem of find-
ing suitable APIs. Current related recommendation methods have
defects. For example, most existing methods focus on the relation
between users and APIs but neglect the valuable relations among
the users or APIs themselves. To address these problems, this article
studies implicit knowledge in IIoT by using collaborative learning
techniques. Considering the increased dimensions and dynamics of
IoT devices, we explore the possible relationships between users and
between APIs. We enhance the matrix factorization (MF) model
with the mined implicit knowledge that are implicit relationships on
both sides. We build an ensemble model by using all implicit knowl-
edge. We conduct experiments on a collected real-world dataset
and simulate industrial system scenarios. The experimental results
verify the effectiveness and superiority of the proposed models.
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I. INTRODUCTION

T
HE industrial Internet of things (IIoT) system is distributed

and heterogeneous and works collaboratively to bridge the

application and device domains. With the explosive growth in

IIoT devices, applications have also substantially expanded in

recent years. The cooperation between large-scale IIoT devices

can be considered to be software-defined devices (SDDs), where

industrial workflow predefines tasks on when and how to invoke

or operate devices. When software features cross, developers

begin to think about whether the same data or functionality can

be just as easily consumed by another piece of software [1],

[2]. As one possible solution, application programming inter-

faces (APIs) are developed in this context. An API is geared

for consumption by software and allows applications, software

programs and hardware to interact [3], [4]. Figure 1 shows

that application developers can leverage APIs offered by local

software systems or IIoT devices where their application runs.

For example, applications can discover the current location of

a smart phone by calling the API associated with the Global

Positioning System (GPS) receiver of the mobile phone. Intelli-

gent manufacturing can order the operation of different types of

machine tool processing, such as metal cutting and stamping, to

work with the API channel. In Fig. 1, ERP is short for enterprise

resource planning, SCADA is short for supervisory control and

data acquisition, and DNC is short for direct numerical control.

APIs have become popular and have gained enormous support

from multiple platforms. For instance, there are more than 22914

publicly accessible APIs on ProgrammableWeb.1 The task of

finding the best API among a large number of candidates is

challenging. In this paper, we aim to solve the IIoT API rec-

ommendation task by studying implicit knowledge to improve

function integration and device collaboration.

To recommend appropriate items to a user, traditional recom-

mendation algorithms focus on historical user data. 1) Content-

based recommendations use the correlation between the infor-

mation content of items and preferences to filter information,

1https://www.programmableweb.com
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Fig. 1. The API-empowered IIoT framework.

thereby generating recommendations for a user [5]. The short-

coming of this approach is clear. If there is insufficient informa-

tion to distinguish between items that users like and items that

users dislike, a content-based recommendation system cannot

provide good recommendations [1]. 2) Collaborative filtering

(CF) recommendation systems filter information based on the

preferences of others and historical records. In general, CF can

be divided into two types: neighborhood-based methods and

model-based methods [6].

Neighborhood-based methods include user-based CF algo-

rithms and item-based CF algorithms. User-based CF algorithms

identify a user group that is similar to the target user and predict

the user rating of an item based on user group ratings of the

item [7]. User-based CF algorithms are dependent on user rating

data, so if two users have almost no ratings, bias can easily occur.

Item-based CF algorithms utilize user preferences for items, find

similarities between items and recommend similar items to the

target user based on learned historical preference [8]. A problem

with user-based and item-based CF algorithms is the cold-start

problem; i.e., it is difficult to provide recommendations without

historical data. Model-based methods train predefined models to

predict ratings [9]. Representative model-based CF algorithms

include clustering methods [10], aspect models [11] and latent

factor models (LFMs) [12]. Model-based methods partially

overcome the problem of data sparsity and improve prediction

accuracy but still ignore the relationships that exist in the real

world. In this paper, we use CF to develop API recommendation

for IIoT systems.

Current API recommendation approaches can be classified

into two categories, i.e., one approach for code and the other

for APIs. For code recommendation, some researchers try to

use statistical learning models trained for fine-grained code

changes [13], [14], while other researchers apply neural net-

work models [15]. Nearly one million APIs are available for

query on the website ProgrammableWeb. In [16]–[19], different

methods are used to recommend suitable APIs for mashups.

Some researchers combine knowledge graphs and random walks

with restart to find the potential relevance between the mashup

and API [20]. Some researchers present a knowledge graph

framework that uses side information to improve API recom-

mendation [21]. Other researchers focus on the popularity of

APIs and predict popularity by incorporating heterogeneous

information [22]. The approaches used in all of these studies

have performed well, but for APIs and users, many features and

the potential connections between users, respectively, have not

been explored.

In IIoT, we consider the function entity to be an IIoT device

public interface that is encapsulated as an API to support the

linkage between hardware and software. To address the existing

problems, we propose an ensemble model that combines an

LFM and the relationship between the user and the features of

the IIoT API. That is, by adding a regularization constraint to

the LFM, we support IIoT API recommendation by discovering

more implicit knowledge. The main contributions of this paper

are as follows:

1) We propose discovering and leveraging potential implicit

relations between users and between APIs. We propose a

solution to developing such a task by designing a similarity

computation between two users and between two APIs.

The computed similarities are to be implicit knowledge.

2) We propose two novel APIs recommendation models,

which are built by using matrix factorization (MF), sim-

ilarity computation and new regularization terms. One

model is built with the new designed regularization term on

the user side, another model is built with the new designed

regularization term on the API side and, finally, another

model is an ensemble model combining mined implicit

knowledge on both sides.

3) We crawled a new large-scale real-world dataset and evalu-

ated our models under different experimental settings. We

also studied the sensitivity of our model to parameters.

The rest of this paper is structured as follows: Section II

discusses current API recommendation methods. Section III

describes the details of the framework and our method. The ex-

perimental results are presented in Section IV. Finally, Section V

concludes this paper and discusses future research.

II. RELATED WORK

In this section, we review the algorithms that are currently

applied to APIs recommendation and service recommendation.

CF algorithms are widely used to make service recommenda-

tions [19], [23], [24]. To address the shortcomings of traditional

CF algorithms, in paper [23], the authors proposed a hybrid CF

algorithm. Specifically, the authors first proposed a mechanism

for collecting web service information and combined a user-

based and an item-based CF algorithm with different weights

by using a new weight calculation method, which improved

the algorithm’s recommendation accuracy. In [19], the author

proposed a mechanism for collecting web service information

and then combined a user-based and an item-based CF algorithm

with different weights by using a new weight calculation method.

As a new recommendation problem, APIs recommendation

has attracted much attention in recent years. Algorithms in this

field can be divided into APIs recommendation and mashup

recommendation.

For mashup recommendation, in paper [16], the authors rec-

ommended mashups to users based on user interests and service

social networks. User interest was extracted from the mashup

historical usage data. The service social network was constructed

based on the information related to the mashup service, Web
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API, and API tags. The mined interests of users were combined

with the network to make recommendations. To determine the

APIs that constituted a mashup, in [19], the author focused on

mining the potential associations between APIs and the mined

API joint invocation pattern in mashups and applied the mined

association to a recommendation model, which was a probabilis-

tic model enhanced with implicit correlation regularization.

For APIs recommendation, in paper [1], the authors pre-

sented a knowledge graph-based framework. The framework

first identifies the API invocation relationship and extracts key

information, such as labels and categories, and uses the extracted

information to generate the relationship component between

entities. The component is input into the knowledge graph for

recommendation. The authors in [20] proposed a recommen-

dation framework based on random walks on a knowledge

graph. The authors first captured the most useful information

of APIs by using a knowledge graph and filtered the nodes that

have rich semantic information. The authors used random walks

and reestimated the relatedness between the recommender and

the candidate. Heterogeneous networks were also employed to

resolve multiple types of objects and multiple links representing

different relationships. In paper [25], the authors combined API

information with mashup information and related attributes to

construct a heterogeneous information network and clustered the

information in the network to obtain a mashup group preference.

The model was trained to obtain personalized recommendation

results. In [26], the authors solved the problem that current API

search engines allow only representative services to be searched.

The authors proposed a new retrieval approach that is based

on service cooperative network and provides a visualization

technique for easy browsing.

Traditional CF algorithms are also used to recommend APIs.

In paper [27], the author proposed an item-based CF algorithm

for API recommendation; the algorithm computes the item

similarity based on a user group that contains users with similar

preferences and develops an item-based CF algorithm specific

to each user group. The performance of the MF model has been

verified to be superior to neighborhood-based CF, especially in

cases where the data are sparse. In paper [28], the authors tried

to learn the preferences that are displayed by users during the

invocation of APIs, mashups, and users. The authors created

a new recommendation model by combining embedded user

preference and the MF model.

Current methods have achieved good recommendation accu-

racy, but the information in the data has not been fully utilized.

In IoT, Chen et.al. [29] considered that temporal context plays

an important role in smart object recommendation, as most users

tend to utilize different objects at different time slots in a day. The

authors proposed a time-aware smart object recommendation

model by jointly considering user preference over time and

the smart object similarity. Duan et al. [30] proposed Join-

tRec, a deep learning-based joint cloud video recommendation

framework for IoT; JointRec aims to provide an accurate video

recommendation service to a minority of users. Huang et al. [31]

considered that in IoT, the description information of items is

typically heterogeneous and multimodal. The authors proposed

a multimodal representation learning-based model (MRLM) to

improve the recommendation accuracy in IoT. Hu et al. [32]

proposed vehicular ad-hoc network representation learning for

recommendations in IoT because trajectory records enable a bet-

ter understanding of human mobility patterns. In contrast to these

methods, in this paper, we explore the potential connections

between users and analyze the characteristics of APIs. We apply

collaborative learning to implicit knowledge discovery. Finally,

we propose several models based on the relationship between

users and the relationship between APIs for IIoT devices and

API recommendation.

III. COLLABORATIVE LEARNING FOR IIOT

API RECOMMENDATION

A. Framework Overview

Figure 2 shows an overview of our proposed method of collab-

orative learning for IIoT API recommendation; this method in-

cludes a user-oriented recommendation model, an API-oriented

recommendation model, and an ensemble recommendation

model. The core problem is how to implement implicit knowl-

edge discovery to improve IIoT API recommendations.

Module 1 (User-oriented recommendation). The similarity

between a user and a set of friends of the user is computed

and inserted into the reference matrix as the regularization term.

Next, the user matrix with social regularization is obtained as

the result of user-oriented recommendation.

Module 2 (API-oriented recommendation). The similarity

between the IIoT API and the regularization terms in the refer-

ence matrix is computed from the new auxiliary angle of IIoT

API records. In contrast to Module 1, we focus on the IIoT API

to calculate the similarity.

Module 3 (Ensemble recommendation). In this step, when

the user social matrix and the API social matrix are ready, the two

matrices have a different significance for the ensemble model;

therefore, we assign different weights to the two matrices to

obtain the minimum loss value.

B. MF

Now, we discuss the basic user-API matrix. Form users andn

APIs, we build a matrix in which the elements indicate whether

the user is following the API. Thus, the values in the matrix can

be 1 or 0, thus indicating following or not following, respectively.

Let Rm×n denote the user-API matrix, Rij represent the value

of user i for API j, Um×l be the user latent feature matrix, and

An×l be the API latent feature matrix. Ui denotes the user latent

feature vector, and Aj denotes the API latent feature vector. The

goal is to minimize the error between the predicted value and

the real value; thus, the basic objective function is to minimize

the squared error as follows:

min
U,V

Lbasic(R,U, V ) =
1

2

m
∑

i=1

n
∑

j=1

Iij(Rij − UT
i Aj)

2
(1)

To alleviate the overfitting problem that may occur during train-

ing, especially in cases where the training data are sparse, several

regularization terms can be added to the basic objective function.

Therefore, the final objective function of MF is constructed as
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Fig. 2. The overall framework of our proposed model.

Fig. 3. The IIoT example for MF.

follows:

min
U,V

Lbasic(R,U, V ) =
1

2

m
∑

i=1

n
∑

j=1

Iij(Rij − UT
i Aj)

2

+
λ

2
‖Ui‖

2
F +

λ

2
‖Aj‖

2
F

(2)

Figure 3 shows an example of applying the MF method to IIoT

data. The local minimum of the objective function given by Eq.

2 can be obtained by using gradient descent in the feature vectors

of U and A:

∂Lbasic

∂Ui

=

n
∑

j=1

(Rij − UT
i Aj)Aj + λUi

∂Lbasic

∂Aj

=

m
∑

i=1

(Rij − UT
i Aj)Ui + λAj (3)

C. API Recommendation With User Relations Mining

1) User Relations Mining: We assume that there is a rela-

tionship between two users if and only if the two users follow

the same API. For user-API item pairs, we can obtain the

similarity of user interests by calculating the similarity between

user behaviors. Given user i and user f , let N(i) denote the set

of APIs that user i has acted on, and let N(f) be the set of APIs

on which user f has acted. Then, we can simply calculate the

interest similarity of i and f by using the Jaccard formula:

Sim(i, f) =

∣

∣N(i) ∩N(f)

∣

∣

∣

∣N(i) ∪N(f)

∣

∣

(4)

In the real word, there are likely to be hundreds or thousands of

similar users with different degrees of similarity. Usually people

are more willing to trust recommendations from highly similar

users. On the other hand, decisions can be made based on the

opinions of different users. Thus, we propose a regularization

term for user relationships, defined as Eq. 5:

λu

2

m
∑

i=1

∥

∥

∥

∥

∥

Ui −

∑

f∈F+(i) Sim(i, f)× Uf
∑

f∈F+(i) Sim(i, f)

∥

∥

∥

∥

∥

2

F

(5)

where F+(i) denotes the set of similar users (each denoted as

user Ui) and the number of users in the set is |F+(i)|. User Ui

represents the latent feature vector of user i. The regularization

term aims to minimize the difference between the user interest

and the average value of the user interest of the similar user

set. Moreover, in the similar user set, users with high similarity

should contribute more to the interest orientation. Figure 4 shows
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Fig. 4. An example of a similarity process among users.

an example of a similarity process in which similar users can be

identified from among users.

2) MF With Users’ Implicit Knowledge: We extend the basic

MF model by adding user relationships to the MF objective

function in Eq. 2 in the form of regularization terms. We obtain

the user relation-based MF objective function:

min
U,V

Luser(R,U, V ) =
1

2

m
∑

i=1

n
∑

j=1

Iij(Rij − UT
i Aj)

2

+
λu

2

m
∑

i=1

∥

∥

∥

∥

∥

Ui −

∑

f∈F+(i) Sim(i, f)× Uf
∑

f∈F+(i) Sim(i, f)

∥

∥

∥

∥

∥

2

F

+
λ

2
‖Ui‖

2
F +

λ

2
‖Aj‖

2
F

(6)

Obtaining the global minimum of Eq. 6 by optimizingUi andAj

is an NP-hard (nondeterministic-polynomial-time-hard) task.

Therefore, we try to generate the local minimum of the objective

function in Eq. 6 by using gradient descent to learn all vectors

Ui and Aj . The detailed partial derivatives over Ui and Aj are

as follows:

∂Luser

∂Ui

=
n
∑

j=1

(Rij − UT
i Aj)Aj + λUi

+ λu

(

Ui −

∑

f∈F+(i) Sim(i, f)× Uf
∑

f∈F+(i) Sim(i, f)

)

+ λu

∑

g∈F−(i)

−Sim(i, g)(Ug −
∑

f∈F+(g) Sim(g,f)×Uf
∑

f∈F+(g) Sim(g,f) )
∑

f∈F+(g) Sim(g, f)

∂Luser

∂Aj

=

m
∑

i=1

(Rij − UT
i Aj)Ui + λAj (7)

where Ug represents those users whose similar neighbors’ set

includes user i. Using the gradient descent algorithm, we can

obtain the local optima of Ui and Aj , and the preference of user

i for API j can be predicted to be Rij ≈ UT
i Aj .

D. API Recommendation With API Relations Mining

1) API Relations Mining: For API relations, we propose

computing the similarity between APIs by using their content

Fig. 5. An example of a similarity process among API word vectors.

information. As the content’s introduction contains most of the

information on the API, such as the API functionality, category

and attributes, we use the introduction to compute the correlation

between APIs. As shown in Fig. 5, we first convert the API

introduction to a word vector in which these words are embedded

into the feature vector. We then calculate the similarity of the API

word vector to obtain the API similarity calculation formula, as

shown in Eq. 8:

Sim(j, s) =

∣

∣W(j) ∩W(s)

∣

∣

∣

∣W(j) ∪W(s)

∣

∣

(8)

Given API j and API s, W(j) denotes the word vector of API

j, andW(s) is the word vector of API s. The degree of similarity

between the two APIs reflects their functional similarity to

some extent. Then, we propose a regularization term for API

relationships, as shown in Eq. 9.

λa

2

n
∑

j=1

∥

∥

∥

∥

∥

Aj −

∑

s∈S+(j) Sim(j, s)×As
∑

s∈S+(j) Sim(j, s)

∥

∥

∥

∥

∥

2

F

(9)

where S+(j) denotes the set of similar APIs of API Aj and

the number of APIs in the set is |S+(j)|. Furthermore, API Aj

represents the latent feature vector of API j.

2) MF With APIs’ Implicit Knowledge: We elaborate the

design of the API relation-based MF model.

min
U,V

LAPI(R,U, V ) =
1

2

m
∑

i=1

n
∑

j=1

Iij
(

Rij − UT
i Aj

)2

+
λa

2

n
∑

j=1

∥

∥

∥

∥

∥

Aj −

∑

s∈S+(j) Sim(j, s)×As
∑

s∈S+(j) Sim(j, s)

∥

∥

∥

∥

∥

2

F

+
λ

2
‖Ui‖

2
F +

λ

2
‖Aj‖

2
F (10)

Similar to Eq. 7, obtaining the global minimum of Eq. 10 is an

NP-hard problem; we try to obtain the local minimum of Eq. 10
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by using gradient descent. The detailed partial derivatives over

Ui and Aj are as follows.

∂LAPI

∂Ui

=

n
∑

j=1

(Rij − UT
i Aj)Aj + λUi

∂LAPI

∂Aj

=

m
∑

i=1

(Rij − UT
i Aj)Ui + λAj

+ λa

(

Aj −

∑

s∈S+(j) Sim(j, s)×As
∑

s∈S+(j) Sim(j, s)

)

+ λa

∑

h∈S−(j)

−Sim(j, h)
(

Aj −
∑

s∈S+(j) Sim(h,s)×As
∑

s∈S+(j) Sim(h,s)

)

∑

s∈S+(j) Sim(h, s)

(11)

where Ah represents the APIs whose similar neighbors sets

include API j. With the generated local optima Ui and Aj , the

user preference can be predicted to be Rij ≈ UT
i Aj .

E. The Ensemble Recommendation Model

After obtaining two independent models, we consider whether

we can improve the recommendation accuracy by combining

the two models to take advantage of their respective strengths.

Therefore, based on the user-based and API-based model, we

obtain the final ensemble model, which is a linear combination

of the two individual models:

Lensemble(R,U, V ) = β × Luser(R,U, V )

+ (1− β)LAPI(R,U, V ) (12)

where β represents the weight of the model and the value of β

is obtained experimentally. Algorithm 1 shows the process of

the ensemble recommendation model, where the first two steps

aim to obtain the user-model and API model and the latter step

generates the hybrid model as the ensemble model. In Algorithm

1, line 2 computes the similarity between two users, and line 5

computes the similarity between two APIs. Line 9 computes the

local minimum of the proposed user-oriented MF model and

generates the local optima of Ui and Aj . Line 15 computes the

local minimum of the proposed API-oriented MF model. Line

20 denotes the ensemble model.

IV. EXPERIMENTS AND EVALUATION

To evaluate the performance of our proposed method, we

conducted a series of experiments to compare 9 other traditional

recommendation methods. In these experiments, the value of

each matrix is initially defined as 0 or 1; that is, a user following

the IIoT API is denoted as 1; otherwise, the value is set to

0. In Industry 4.0, factory components/devices can virtually

“talk” and “negotiate” with each other to decide for themselves

how to best optimize production. Thus, we conduct IIoT API

recommendation experiments.

A. Dataset

To simulate an IIoT API dataset, we crawled API data from

Programmable Web. This website contains detailed information

about almost all current APIs. We crawled data for 17412 APIs,

with each API having 5 attributes: the date the API was posted

on the site, a group of tags, a short description, a list of followers

and a list of developers. We cannot crawl users of the site, but for

each API, there is a property called follow, which is similar to the

collection feature when we browse an item, just like invoking or

operating devices. Therefore, we obtained 140,000 users after

collecting and sorting 17412 API followers. The data statistics

are given in Table I.

For training sets, validation sets and test sets, we evaluated our

models on five data settings, and in so doing, we tried to test the

performance comprehensively. We randomly select 90%, 80%,

70%, 60% and 10% data from the whole dataset as training sets,

and the remaining data are separated into validation sets and test

sets. In detail, in cases where the training set density is 90%,

the validation set density is 5% and test set density is also 5%.
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TABLE I
DATASET STATISTICS

Fig. 6. The SDD industrial system scenario using IoT APIs.

For the rest of the four settings, the validation set accounts for

10%, and the remaining data compose the test set. For example,

when the training set density is 10%, the validation set density is

10%, and the test set density is 80%. We performed each group

of experiments 10 times and obtained the mean absolute error

(MAE) and root-mean-square error (RMSE) for all groups.

B. Industrial Scenario Example of an Experiment

Figure 6 shows an example of an industrial scenario in which

an SDD calls for a workflow in which Agents organize different

industrial components to work together. We simulate this sce-

nario and support IIoT API recommendation. Suppose that each

API collected from the real-word dataset is considered to be an

IIoT API that will have a corresponding IIoT device supporting

specified industrial services. Thus, the preprocessed data are

manually marked and used in this simulation experiment for an

IIoT system.

C. Evaluation Metrics

Recommendation is a kind of prediction method. Thus, our

IIoT API recommendation experiments aim to assess prediction

accuracy. The MAE and RMSE are employed as the evaluation

metrics:

MAE =
1

N

∑

i,j

∣

∣

∣
Ri,j − R̂ij

∣

∣

∣
(13)

RMSE =

√

1

N

∑

i,j

(

Rij − R̂ij

)2

(14)

where Rij denotes the rating user i gave to item j, R̂ij denotes

the rating user i gave to item j as predicted by the specified

method, and N denotes the number of tests.

D. Parameter Setting

Our model is based on the LFM, and the main parameters

affecting the model include the following: The first parameter

is the number of latent features: if this value is too large, the

model is not interpretable, and if the value is too small, the

model training will be negatively affected. Therefore, we set the

number of latent features to 10. Moreover, a regularization term

is introduced to prevent overfitting. The regularization parameter

λ adjusts the weight of the regularization term. In our proposed

model, there are three regularization parameters: λ is set to 0.1,

and the user regularization term λu and API regularization term

λa are each set to 0.01.

E. Performance Comparison

We implemented the following methods to evaluate the per-

formance of our method; the experimental results are given in

Table II.

1) UPCC (user-based Pearson correlation coefficient). User-

based CF using the PCC to calculate users similarity [26].

2) IPCC (item-based PCC). Item-based CF using the PCC to

calculate user similarity [27].

3) WSRec (web service recommendation). A linear combina-

tion of the prediction results of the UPCC and IPCC [23].

4) NMF (nonnegative MF). Approximation of a nonnegative

matrix as the product of two nonnegative matrices [33].

5) LR (logistic regression). Used to estimate the probability

that an instance belongs to a particular category.

6) Autoencoder. A multilayer neural network that is often used

for dimensionality reduction in feature learning.

7) MF (matrix factorization). Connects user interests and

items through hidden features and adopts automatic clustering

based on user behavior statistics [34].

8) AR-URM (API recommendation with user relations min-

ing). Latent factor model using user similarity as the regulariza-

tion term.

9) AR-ARM (API recommendation with API relations min-

ing). Latent factor model using API similarity as the regulariza-

tion term.

10) Ensemble. Our method, which combines the user-oriented

model and API-oriented model into a linear combination.

Table II presents the experimental results, and we have the

following observations and findings:

1) The recommendation error of all methods is evaluated at

different training set densities, which are 90%, 80%, 70%,

60% and 10%. Our three proposed models achieve the

lowest errors at all data densities.

2) The training set density significantly affects the error. For

example, when the training set density is 70% as compared

to when the training set density is 90%, the errors of all

methods are higher; the higher errors indicate that the

model is not trained properly and that the data do not fit

the model well, thus resulting in large errors.
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TABLE II
A PREDICTION ACCURACY COMPARISON GROUPED BY TEST SET DENSITY (A SMALLER VALUE INDICATES BETTER PERFORMANCE)

Fig. 7. The impact of the data density of the training set. (a)Impact on RMSE. (b)Impact on MAE.

3) The ensemble recommendation model is consistently su-

perior to the two individual models because the ensemble

model utilizes all implicit knowledge among users and

APIs.

4) The last case (training set density of 10%) evaluates the

performance of different methods on few training data,

i.e., the cold-start case. Our models also perform best in

this scenario.

F. Sensitivity Analysis of Parameters

1) Impact of the Data Density of the Training Set: To more

intuitively illustrate the performance of different methods under

different training set densities, we drew a line chart showing the

performance of several typical methods, as shown in Figure 7.

Figure 7 shows the RMSE and MAE values of the five methods

we selected for different training set densities. The trend of

NMF is relatively stable, and relatively stable performance is

maintained under different test set densities. By contrast, al-

though logistic regression is also relatively stable, the error is

relatively large. When the test set density is 90%, the RMSE of

the autoencoder and the MAE of WSRec are the highest. The

error of our proposed method is generally lower than that of the

other algorithms, and our method performs well. As a result, our

method can provide better IIoT API recommendation not only

in the data sparsity scenario but also in the big data scenario in

which the IIoT system has the features of big data.

2) Impact of the Number of Latent factors: The value of

the latent factor determines the dimension of the matrix after

factorization. To identify the optimal value, we experimented

with the conventional range of latent factors. Figure 8 shows

the RMSE and MAE values of AR-URM and AR-ARM under

different latent factor values. When the value of the latent factor

is 4, the error of the two models reaches the minimum; however,

in papers on MF, the most common latent factor value is usually

10, so we also use 10 as the value of the latent factor.

3) Impact of Parameter λ: The regularization parameter reg-

ulates the influence of the regularization term on the model.

Figure 9 shows the results of the AR-URM and AR-ARM under

different values of λ: the error is smallest when λ is 0.1.

4) Impact of Parameter β: In the combination of AR-ARM

and AR-URM, how large a role each should play individually to

achieve the best effect of the ensemble model can be determined

experimentally. Figure 10 shows the RMSE and MAE values

of the ensemble model for different weights. When the weight

is 0.7, that is, when the AR-URM accounts for 70% and the

AR-ARM accounts for 30%, the RMSE and MAE of the en-

semble model reach the minimum values.
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Fig. 8. The impact of the latent factor. (a)Impact on RMSE. (b)Impact on MAE.

Fig. 9. The impact of λ. (a)Impact on RMSE. (b)Impact on MAE.

Fig. 10. The impact of the linear weight β. (a)Impact on RMSE. (b)Impact on MAE.
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The experimental results in Fig. 10 demonstrate that our

method with appropriate parameters can be used for IIoT API

recommendation. We believe that the API-empowered IIoT

framework will continue to flourish with the establishment of

ubiquitous connections among IoT devices.

V. CONCLUSION

The proliferation of IoT devices has led to revolutionary

changes in industrial systems that have transformed how hu-

mans interact with and control the physical world. However,

these heterogeneous systems and platforms need a unified man-

agement application to operate and control IIoT devices, and

how to interact with IIoT devices has become an important

problem. APIs represent one solution for supporting SDDs and

are a ubiquitous operating mode for IIoT systems. Considering

API recommendation in the IIoT environment, we propose an

approach that combines collaborative learning with implicit

knowledge discovery. We use MF and add regularization terms

to fuse user similarity and item similarity. Then, these two

models are combined via linear combination to generate the final

recommendation model. The experimental results show that our

approach is superior to other CF methods.

In future research, we will continue to further optimize our

models and explore the possible effects of different parameter

ratios for different application scenarios. We will also employ

machine learning or transfer learning [35] in our method to

implement real-time safety checking [36]–[38] and exception

prediction for IIoT systems. The safety and reliability of IIoT

challenges should be verified by using formal methods, such as

model checking, theorem-proving and formal testing. Verifica-

tion is another direction of our research on SDD-oriented IIoT

systems.
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