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Abstract—Some vehicular Internet-of-Things (IoT) applica-
tions have a strict requirement on the end-to-end delay where
edge computing can be used to provide a short delay for end-users
by conducing efficient caching and computing at the edge nodes.
However, a fast and efficient communication route creation in
multi-access vehicular environment is an underexplored research
problem. In this paper, we propose a collaborative learning-
based routing scheme for multi-access vehicular edge computing
environment. The proposed scheme employs a reinforcement
learning algorithm based on end-edge-cloud collaboration to
find routes in a proactive manner with a low communication
overhead. The routes are also preemptively changed based on
the learned information. By integrating the “proactive” and
“preemptive” approach, the proposed scheme can achieve a better
forwarding of packets as compared with existing alternatives. We
conduct extensive and realistic computer simulations to show the
performance advantage of the proposed scheme over existing
baselines.

Index Terms—Vehicular networks, routing protocol, collabo-
rative learning, multi-access vehicular environment, fuzzy logic,
reinforcement learning.

I. INTRODUCTION

Future vehicular Internet-of-Things (IoT) systems involve a

huge number of devices in multi-access environments where

different types of wireless spectrums should be efficiently

utilized [1]–[3]. At the same time, novel services, such as co-

operative autonomous driving and intelligent transport systems

that demand unprecedented accuracy, latency and bandwidth

are emerging. These services have an extreme variance in their

resource demand with respect to time, location, context, as

well as individual patterns. Current vehicular IoT systems,
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such as autonomous driving, only consider the intelligence

of a single vehicle agent, and therefore a limitation exists. In

order to realize a more intelligent vehicular IoT system, the

collaboration between different vehicle/roadside units should

be utilized efficiently. This requires an efficient and intelligent

networking scheme that can handle the highly mobile and

varying features of the environment.

The future vehicular IoT applications can be classified into

two main categories in terms of the underlying networking

technologies, namely, vehicle-to-infrastructure (V2I) applica-

tions and vehicle-to-vehicle (V2V) applications. Most V2I

applications, such as vehicular sensor data collections, are

traffic-intensive, which means that the applications require a

communication approach that could deliver a large amount

of data in a short time. In contrast, most vehicle-to-vehicle

applications are used to delivery safety messages or control

messages between vehicles, which are delay-sensitive. The

traffic-intensive applications and delay-sensitive applications

have different types of quality-of-service (QoS) or quality-

of-experience (QoE) requirements [4], [5], and therefore we

should consider the difference in the design of communication

protocols.

Meanwhile, there could be multiple types of communication

interfaces available simultaneously for each vehicle, resulting

in the selection of best communication approach in a multi-

access environment particularly important. The edge comput-

ing [6]–[9] has been widely discussed for use in data caching

and computation offloading. However, the communication

route selection in a multi-access vehicular environment was

not discussed adequately. Since the communication request

and the corresponding QoS requirement are always difficult

to predict, we have to reserve some communication resources

before a request is made. However, it is difficult to find the

best route for each possible communication pair with low over-

head, especially when the communication environment itself

changes fast with the vehicle movement. It is important to

design an intelligent method to handle these spatial-temporal

changes of vehicular environment. Recently, artificial intel-

ligence based approaches have been attracting great interest

in achieving intelligence in computer systems. However, due

to the above mentioned characteristics of vehicular networks,

conducting an efficient learning in vehicular environments is a

difficult scientific problem. It is important to design a learning

scheme that could evaluate and improve actions with low

communication overhead.

In this paper, we propose a reinforcement learning based

scheme for route selection in multi-access vehicular edge
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computing environment. We employ an efficient end-edge-

cloud collaboration to fasten the convergence speed of the

learning algorithm. The main contributions of this paper are

as follows.

• We propose a Q-learning-based routing scheme for multi-

access vehicular edge computing environments. The pro-

posed scheme uses a “proactive” approach to find com-

munication routes with a low overhead, reducing the

delay in finding a route when a communication request

is received. The proposed scheme also employs a “pre-

emptive” approach to replace an existing route with a

new one by dynamically learning a better route using a

reinforcement learning approach.

• We propose a decentralized approach for vehicle edge se-

lection by jointly considering the vehicle velocity, vehicle

distribution, and the connectivity between vehicles based

on fuzzy logic.

• We achieve end-edge-cloud collaboration approach based

on a Q-learning algorithm. Each vehicle agent is able to

learn the best route by receiving the feedback from the

cloud/edge.

• We consider different QoS requirements posed by differ-

ent types of applications and select the best next hop route

according to the specific requirement of each application.

The remainder of the paper is organized as follows. We

first give a brief survey of related work in Section II. Then,

the details about the proposed scheme are explained in section

III. Section IV shows the simulation results for the evaluation

of the proposed scheme, and finally section V draws our

conclusions.

II. RELATED WORK

A. Edge computing in vehicular IoT

Most of the existing studies discuss how to conduct effi-

cient caching or computation offloading, and do not seriously

discuss how to find a communication peer in a multi-access

vehicular environment. Su et al. [10] have proposed a cross-

entropy-based caching scheme for vehicular content networks.

The content access pattern, vehicle speed, and vehicle density

were considered in the content caching at the edge nodes

in order to facilitate a timely content delivery. Ale et al.

[11] have employed a bidirectional deep recurrent neural

network (BRNN) to conduct online proactive caching for

edge computing. The BRNN model was used to predict time-

series content requests in order to solve the difficulty in

content popularity recognition. In [12], the joint optimization

of content placement and content delivery in the vehicular

edge computing was studied, and a deep deterministic policy

gradient framework was used to solve the problem.

Feng et al. [13] have introduced the concept of autonomous

vehicular edge computing that utilizes the computational ca-

pabilities of vehicles in a decentralized manner. An efficient

job caching approach was proposed to improve the scheduling

of jobs based on the information exchange between neighbors.

Wang et al. [14] have proposed a multi-user non-cooperative

game-based approach for computation offloading in vehicular

edge computing. They designed a payoff function taking

into account the node distance, application requirements,

communication overhead, and the contention for computing

resources. In [15], Liu et al. discussed the offloading prob-

lem of multiple tasks with task dependency, and proposed

a task scheduling algorithm that prioritizes multiple tasks to

guarantee the completion time constraint of each task while

considering the dependency relationship between tasks. The

problem of vehicle edge server selection for the task migration

has been discussed in [16]. The problem was formulated as a

finite horizon Markov decision process, and a time-aware task

offloading approach was proposed to solve the problem.

Tan and Hu et al. [17] have proposed a joint caching

and computing approach where the resource allocation was

conducted by considering the vehicle mobility and service

deadline constraint. In [18], a deep reinforcement learning-

based joint optimization of the edge computing and content

caching was managed to improve the profits of mobile network

operator while ensuring user QoS in 5G-envisioned internet-

of-vehicles.

B. QoS control in vehicular environment

Since diverse applications that require different levels of

QoS constraints are expected for vehicular networks, the

conventional one-fit-all approach fails to satisfy the needs of

different users. Wu and Zheng [19] have conducted a theoreti-

cal analysis on the uplink local delay between a vehicle and an

edge node in a MEC-based VANET using stochastic geometry.

The distributions of vehicles and edge nodes were modeled as

an independent one-dimensional homogeneous Poisson point

process. The analytical result was validated through computer

simulations and the dominant factors on the transmission delay

were investigated. Zhang et al. [20] have proposed a service-

oriented hierarchical soft slicing framework to support multi-

dimensional QoS in vehicular networks. Different network

slices were constructed to support the context information

service and the infotainment service, respectively, in order to

differentiate different QoS requirements.

In [21], a grid routing protocol was proposed to guarantee

QoS in the perception of complex vehicular IoT environments.

The grid identification number was used to calculate the

distance between nodes and find the least delay path. Garg

et al. [22] have discussed the integration of software defined

networking (SDN) and edge computing for QoS guarantee

in vehicular networks, and proposed a mobility and QoS-

aware SDN framework for autonomous vehicles. Kumar et

al. [23] have studied the multimedia content delivery from

cloud video streaming servers to moving vehicles. In order

to support sufficient QoS for different video streaming cases,

a QoS-aware hierarchical web caching strategy was proposed

based on two metrics, namely, the load utilization ratio and

the query to connectivity ratio. Peng et al. [24] proposed

a dynamic spectrum management framework to guarantee

QoS by considering the spectrum slicing, spectrum allocation,

and transmission power adjustment. Three important issues,

specifically, spectrum slicing among base stations, spectrum

allocation for vehicles, and transmit power adjustment at base

stations, were jointly solved through an alternate concave
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search algorithm. In the above mentioned studies, an efficient

integration of different communication approaches in a multi-

access vehicular environment is not discussed.

C. Communication resource allocation in multi-access vehic-

ular environment

Sun et al. [25] have introduced a data delivery protocol

for vehicular networks based on a prediction of vehicular

traffic volume. Li et al. [26] have addressed the data routing

problem from a vehicle to a fixed destination with multi-

hop forwarding. The routing decision was made by using

a geographical approach that divides a road segment into

smaller grids. However, an efficient use of multiple access

technologies was not studied. In [27], an efficient integration

of licensed and unlicensed spectrums was discussed. An

edge computing approach at vehicles was used to improve

the spectrum efficiency in the case where multiple types

of communication approaches exist. Nkenyereye et al. [28]

have proposed an SDN-based multi-access edge computing

approach for vehicular networks. An OpenFlow algorithm was

developed to facilitate the packet forwarding process based on

the target area and current route condition.

Different types of communications, including broadcast and

unicast, coexist in vehicular networks. In [29], an approach

for neighbor discovery was proposed. The neighbor discovery

approach conducts mobility prediction based on Kalman filter

theory. Kuhlmorgen et al. [30] have proposed a packet for-

warding scheme that takes advantage of both contention-based

forwarding and decentralized congestion control considering

the existence of mixed data traffic.

Some studies have discussed the use of physical layer

technologies in improving the resource allocation efficiency.

Yang et al. [31] have studied the downlink radio resource

management problem for ultra-reliable and low latency com-

munications in V2I systems. The problem was discussed by

exploiting the benefits of massive MIMO. A non-orthogonal

multiple access (NOMA) based resource allocation for vehic-

ular networks has been discussed in [32]. However, the QoS-

aware resource allocation problems in a multi-access vehicular

environment, especially the route selection and communication

approach selection, still need investigations.

III. PROPOSED SCHEME

A. Problem definition and system overview

We assume that each node has three different types of

communication interfaces, specifically, cellular, IEEE 802.11p

and mmWave interface. These communication approaches do

not interfere with each other, and each node can switch

between them or utilize all the communication approaches

simultaneously. The use of different communication interfaces

can improve the wireless resource utilization efficiency while

requiring an approach to find the best communication interface

for the transmission of each packet. Each node sends periodical

hello messages with IEEE 802.11p interface in order to

exchange information among neighbors, and the hello interval

is 1 second by default. The vehicle identifier, position infor-

mation, vehicle velocity, and some other information (details

will be explained later) are attached in the hello messages.

The research problems we discuss here are: 1) how to

efficiently utilize different types of communication interfaces?;

2) how to find the best route for each vehicle with low

overhead in accordance with the requirement and ensure the

update of the route when a change of environment occurs?;

3) how to design a learning scheme that could adapt to the

dynamically changing vehicular environment?

We propose a reinforcement learning-based routing scheme

for multi-access vehicular edge computing environments. The

proposed scheme employs a Q-learning algorithm to find the

best route for each agent, and uses an end-edge-cloud collab-

oration approach to achieve intelligence in the route selection.

The proposed scheme uses different learning approaches for

traffic-intensive applications and delay-sensitive applications.

First, we introduce a route selection approach for traffic-

intensive applications. Then, we introduce a vehicle-to-vehicle

route selection approach for delay-sensitive applications.

In our proposed scheme, IEEE 802.11p is used for trans-

mission of both data and control messages while mmWave is

only used to transmit data among neighbors. Basic procedure

of the proposed scheme consists of two stages. In the first

stage, we choose the vehicle edge nodes 1. In this stage,

we select all the vehicle edges, and ensure that they are

connected with each other through IEEE 802.11p link. In

the second stage, each agent (vehicle) learns the best route

to the corresponding destination by evaluating the reward

(feedback) from the cloud (in the case of V2I communications)

or from the communication partner (in the case of V2V

communications). As shown in Fig.1, an ordinary vehicle

could receive a reward from a base station (BS) or receive

a discounted reward from an edge vehicle. In the former case

the vehicle connects with the BS using cellular interface, and

in the latter case the vehicle connects to the BS through the

edge vehicle using mmWave/IEEE 802.11p interface. Based on

the reward, the vehicle chooses the best action between two

possible next hops, specifically, the BS or the edge vehicle.

The route selection approach for traffic-intensive applica-

tions is as follows. By selecting a vehicle edge node/base

station as the next hop (action), each agent could receive a

feedback from the next hop and evaluate the goodness of

the action. The reward is only allocated by the base station

(BS), and is transmitted to each agent with a discounted value.

The learning for the delay-sensitive applications uses a similar

learning approach but with a difference in the allocation of the

reward. While the learning of the traffic-intensive applications

allocates the reward based on the throughput each route can

provide, the learning of delay-sensitive routes allocates reward

based on the expected transmission delay.

B. Fuzzy logic-based vehicle edge selection

We use a fuzzy logic-based approach to evaluate each

vehicle is whether suitable for being an edge node or not.

1In the following, “edge node” and “vehicle edge node” are used inter-
changeably; “non-edge node” denotes a vehicle that is not selected as an
edge node.
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Fig. 1. Learning based on end-edge-cloud collaboration.

The suitability value is calculated by considering the vehicle

velocity, vehicle distribution, and the connectivity between

vehicles. The suitability value is calculated as follows. First,

three different metrics, namely, stability metric, leadership

metric, and connectivity metric, are defined. Then, we convert

these metrics to fuzzy values using fuzzy membership func-

tions, and then apply some predefined rules to calculate the

fuzzy value for the suitability level. In the final step, the fuzzy

value for the suitability is converted to a numerical value [33].

The suitability value is calculated for each vehicle within the

range of 1

2
R where R is the one-hop communication distance

of IEEE 802.11p. If a node finds itself having the largest

suitability value, the node declares itself as an edge node. Here,

“edge node” works a leader to manage a group of vehicles

and provide gateway supports for the ordinary vehicles in the

group.

1) First step – definition of three factors: The stability

metric, leadership metric, and connectivity metric factor are

calculated based on the information in the hello messages

received from neighbors.

Stability Metric (SM ): Stability metric of node x is

calculated as follows.

SM(x) = 1−
||υ(x)| − avgy∈Nx

|υ(y)||

maxy∈Nx
|υ(y)|

(1)

where a higher value means a higher stability. Since hello

messages are exchanged between neighbors, each vehicle can

calculate its neighbors’ SM. Here, avgy∈Nx
|υ(y)| is predicted

from the information attached in the hello messages. SM is

updated periodically (one second interval) based on a weighted

exponential moving average with a smoothing factor of 0.7.

The value of smoothing factor is determined based on our

experience [33].

Leadership Metric (LM ): Leadership metric is calculated

as follows.

LM(x) = min

(

1,
c(x)

Number of neighbor vehicles

)

(2)

where c(x) denotes the number of vehicles traveling to the

same direction as the node x in its neighbors. The higher

the number, the higher chance the vehicle is elected as an

edge node. Here, the number of vehicles in one-hop region is

acquired from the information attached in the hello messages.

LM is updated periodically (one second interval) based on a

weighted exponential moving average with a smooth factor of

0.7.

Connectivity Metric (CM ): Connectivity metric can be

calculated in two ways depending on the available information.

First, we can use the ratio of “the number of hello messages

received from all one-hop neighbors” to “the number of hello

messages sent by all one-hop neighbors” as

CM(x) =
Num of hellos received from all NBs

Num of hellos sent by all NBs
. (3)

Note that “the number of hello messages sent by all one-

hop neighbors” can be calculated by observing the sequence

number of received hello messages since each hello message

is identified with a unique sequence number which is incre-

mented by a predefined value for each hello period. The other

way is to use the antenna height to show the connectivity

metric as a vehicle with a higher antenna always can provide

a better connectivity to the neighbor vehicles. In that case,

CM is calculated as

CM(x) =
h(x)

maxy∈Nx
h(y)

. (4)

where h(x) is the antenna height of node x.

2) Second step – fuzzification and fuzzy rules: Fuzzy logic

is used to evaluate whether a vehicle is suitable for working

as an edge node or not. This evaluation should be conducted

as soon as possible in order to satisfy strict QoS require-

ments of vehicular IoT applications. Therefore, considering

computational complexity, we use triangular or trapezoidal

membership functions instead of non-liner membership func-

tions, such as Gaussian membership functions that require

more computational resources in fuzzy reasoning. The fuzzy

membership functions are defined as shown in Fig. 2. The

linguistic variables of the three metric are defined as {Good,

Medium, Bad}.
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Fig. 2. Fuzzy membership functions (left: SM , middle: LM , right: CM ).

The fuzzy rule is defined in Table I.

Each node calculates the rank (a suitability value for being

an edge node) of each neighbor based on the IF/THEN rules

as defined in Table I. The linguistic variables for the rank

are defined as {Perfect, Good, Acceptable, Unpreferable, Bad,

VeryBad}. In Table I, Rule 1 is expressed as follows:

IF Velocity is Slow, Leadership is High, and Connectivity

is Good THEN Rank is Perfect.

Note that multiple rules could be applied for the same fuzzy

value. Here, we use the Min-Max method to combine the

results from multiple rules.
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TABLE I
FUZZY RULES

Stability Leadership Connectivity Rank

Rule1 Good Good Good Perfect
Rule2 Good Good Medium Good
Rule3 Good Good Bad Unpreferable
Rule4 Good Medium Good Good
Rule5 Good Medium Medium Acceptable
Rule6 Good Medium Bad Bad
Rule7 Good Bad Good Unpreferable
Rule8 Good Bad Medium Bad
Rule9 Good Bad Bad VeryBad
Rule10 Medium Good Good Good
Rule11 Medium Good Medium Acceptable
Rule12 Medium Good Bad Bad
Rule13 Medium Medium Good Acceptable
Rule14 Medium Medium Medium Unpreferable
Rule15 Medium Medium Bad Bad
Rule16 Medium Bad Good Bad
Rule17 Medium Bad Medium Bad
Rule18 Medium Bad Bad VeryBad
Rule19 Bad Good Good Unpreferable
Rule20 Bad Good Medium Bad
Rule21 Bad Good Bad VeryBad
Rule22 Bad Medium Good Bad
Rule23 Bad Medium Medium Bad
Rule24 Bad Medium Bad VeryBad
Rule25 Bad Bad Good Bad
Rule26 Bad Bad Medium VeryBad
Rule27 Bad Bad Bad VeryBad

3) Last step – defuzzification: Fig. 3 shows the output

membership function that is used to convert from a fuzzy

value to a numerical value. The process of conversion is called

defuzzification. In this work, the center of gravity (COG)

method is used for the defuzzification.
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Fig. 3. Output membership function.

C. Q-learning based end-edge-cloud collaboration for traffic-

intensive applications

Here, BS is connected to the cloud, and the vehicles are con-

nected to the cloud through the BS. Therefore, the BS is treated

as the cloud in our learning model for simplicity. The selected

edge vehicles are the edges. The ordinary vehicles are the

end nodes. Our aim is to conduct an intelligent collaboration

within the end-edge-cloud architecture. The cloud and edge

nodes give suggestion to the end nodes to select the next hop

node for information transmission. Note that the information

could be sensor data or the data required for task offloading,

which means that finding a next hop node is mandatory for

communications as well as computing.

1) Q-learning model: The Q-learning model is defined as

follows. Vehicles are the agents, and the actions are the pairs of

a possible communication type and the next hop node for the

packet forwarding. The possible actions at each node would

be the set of its one-hop neighbors including base station. The

BS is responsible for sending back a reward for each action the

vehicle executed. The reward will be further transmitted with

a discount by other edge vehicles. Each vehicle adjusts own

behavior based on the feedback from the BS. The information

exchange between agents is done with hello messages. Each

node maintains a Q-Table where each Q-value shows the value

for choosing m as the next hop to the RSU.

2) Update of Q-Table: The state is expressed by a pair of

{destination, current node}, and the action is determined by

{communication type, next hop}. In case of using the cellular

communications, the next hop would be BS, and in the case

of IEEE 802.11p, the next hop node would be a neighbor

node. Each node has to maintain a Q-value for each triple

of a destination, the communication type, and an one-hop

neighbor. Upon reception of each hello message, the Q-Table

is updated. The initial value for each Q-value is 0. Each vehicle

maintains a Q-value to the BS and each vehicle in two-hop

region. Considering the change of neighbors with the vehicle

movement, we release the corresponding Q-Table space of

old neighbors when necessary for the purpose of maintaining

information about new neighbors. The proposed scheme does

not maintain route for each possible destination considering

the size of Q-Table. For finding a route to other nodes, the

proposed scheme uses a hierarchical routing approach where

different levels of gateway nodes exist. Note that for each

vehicle, there is at least one neighbor would be an edge node

that is working as a gateway node and responsible for finding

a route to any other vehicle. The BS also performs a duty

of gateway. After reception of a hello message from node m,

node c updates the corresponding Q-value as

Qc(d, t,m) ← α× LQ(c,m)

×{R+ γ ×maxy∈NBm
Qm(d, t, y)}

+ (1− α)×Qc(d, t,m). (5)

where d and t are the destination node and communication

type, respectively. LQ(c,m) is the link quality value between

node c and m, which is expressed by the hello reception ratio

between two nodes. NBm denotes the one-hop neighbor set

of node m. Here, the learning rate α and discount rate γ are

set to 0.8 and 0.9, respectively, based on our experience [34].

The reward Rm is calculated as

R =

{

R̄, if m is base station and c is an edge node

0, otherwise
(6)

where R̄ ∈ [0, 1] is allocated by the BS according to the

number of vehicles connected to the BS. The base station will

set the reward according the vehicle density. If the density is

high, the cloud will give a high reward to the corresponding
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edge candidate. The reward is further discounted according to

the number of hops. The exploration is achieved by exchang-

ing hello messages among neighbors. Therefore, for a route

selection, each node always can choose the pair of node and

communication type showing the highest Q-value.

In case of V2V communication routes, the reward is updated

as

R =

{

1, if m is an edge node

0, otherwise.
(7)

The reward is set to 1 here in order to utilize decentralized

communications as far as possible. The decentralized com-

munication approaches include IEEE 802.11p and mmWave.

Since the mmWave communication is only possible in a line-

of-sight communication link, we only use mmWave for the

communications between an edge vehicle node and its non-

edge neighbors. For this type of communication pairs, if both

mmWave and IEEE 802.11p are available, then the mmWave

is used.

Each edge vehicle attaches its own cost (the corresponding

Q-value) to its neighbors in the hello message. Upon reception

of a hello message from a neighbor vehicle, the vehicle

could update the corresponding cost in the case of using the

neighbor as the next hop based on the Q-learning algorithm.

The exploration of Q-learning is achieved by the periodical

hello message exchange. Therefore, each agent is aware of

the best action based on the Q-values.

D. Q-learning based packet forwarding for delay-sensitive

unicast applications

The delay-sensitive applications could be used to send the

information required for the collaboration between vehicles,

which could enable collaborative autonomous driving. The

data transfer can be either conducted by up to 2-hop V2V

communications or cellular communications. Here the reward

is calculated based on the delay. For V2V communications, the

reward is sent by each vehicle to its neighbors. The selected

edge vehicle could further transmit the discounted reward to

its neighbors, but the reward will not be disseminated to more

than two hops. This is achieved by only the edge vehicle nodes

attaching the Q-Table entries of one-hop neighbors to the hello

messages.

The reward from the BS through cellular interface is calcu-

lated as

R̂ = min(1,
Dth

Spkt∗Nue

BWul
+

Spkt∗Nue

BWdl
+Dbs

) (8)

where Dth, Spkt, Nue, BWul, BWdl, Dbs are the delay

requirement, packet size, number of user devices, uplink

bandwidth, down link bandwidth, and processing delay at

the base station. If the BS is able to satisfy the incoming

request, R̂ is set as 1, and otherwise set to a smaller value.

The processing delay includes all the times required for the

scheduling, queueing, and computing except the propagation

delay.

For the path using IEEE 802.11p communications, the

reward is received from a neighbor node. In this case, the

reward from a vehicle is calculated as

R̂ = min(1,
Dth

Spkt

BW11p×HRR
+D11p

) (9)

where BW11p is the bandwidth of IEEE 802.11p (27 Mbps)

and HRR is hello reception ration between two neighbors.

D11p is the processing delay at each vehicle, which includes

all the contention delay, the retransmission delay due to packet

collisions, and computing delay. Here, the discount rate is set

as 0.5 in order to avoid the use of 2-hop transmissions as

far as possible. Note that the parameters of Eq.(8) and Eq.(9)

should be tuned based on the corresponding hardware and

environment, which is beyond the scope of this paper.

E. Data dissemination for delay-sensitive broadcast applica-

tions

Data dissemination for delay-sensitive broadcast applica-

tions should be conducted through IEEE 802.11p V2V com-

munications as it could be difficult to use cellular commu-

nications to detect all the intended receivers. We propose a

multi-hop broadcast approach based on the proposed edge

architecture. As shown in Fig.4, the broadcast messages are

forwarded by the edge nodes. The ordinary nodes do not

rebroadcast the messages, which can significantly reduce the

redundant forwarding. It is also possible to confirm the packet

delivery status of a broadcast packet by sending the acknowl-

edge message (ACK) from the edge nodes, which makes the

retransmission of a broadcast message possible and therefore

ensure a high packet dissemination ratio. The forwarding

algorithm is also simple as follow. If the current node is an

edge node, the node just rebroadcasts the packet, and otherwise

just receives the packet without further forwarding.

Fig. 4. Edge-based multi-hop broadcast.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed scheme, we

conducted extensive computer simulations using ns-2.34 [35]

(see Table II). We used a freeway road having three lanes in

each direction, which was generated using the same approach

as [34]. Each vehicle had three different types of wireless

interfaces, namely, cellular, IEEE 802.11p, and mmWave. For

IEEE 802.11p, we used Nakagami model to include a realistic

fading environment, and the parameters were the same as

[34]. The average transmission range of IEEE 802.11p was

set as 250 m. The proposed protocol was compared with

“Without edge” (without edge computing), “Random edge”

(random edge selection), and “Edge without preemptive” (edge
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without preemptive route change). In “Without edge”, each

node only uses the cellular interface for communications.

“Random edge” collects some nodes randomly to conduct

data caching. “Edge without preemptive” employs the same

approach as the proposed scheme for the edge selection but

does not conduct efficient route change between different

wireless interfaces. Three different types of applications were

considered in the simulations, namely, traffic-intensive applica-

tions, delay-sensitive unicast applications, and delay-sensitive

broadcast applications. In the following simulation result fig-

ures, each error bar shows the 95% confidence interval of the

corresponding data.

TABLE II
SIMULATION ENVIRONMENT

Topology Freeway, 2000m, 6 lanes

Number of nodes 400

Maximum velocity 100 km/h

Mobility generator Ref. [34]

MAC IEEE 802.11p MAC

Data rate 27 Mbps (unicast), 3 Mbps (broadcast)

Fading model Nakagami Model

Simulation time 1000 s

A. Performance for traffic-intensive applications

For traffic-intensive applications, we evaluated the commu-

nication performance between vehicles and the cloud. The

number of cellular base station was 1, which means that

the communication path to the cloud must go through this

base station. For simplicity, we used a down link traffic

where the data were sent from the cloud to all the vehicles

and data were cached at the base station. Note that, in the

simulation topology, the base station was “cloud”, and the

selected vehicle edge nodes were “edges”. Therefore, “end-

edge-cloud collaboration” was simulated by the collaboration

among non-edge vehicles, edge vehicles, and the base station.

Fig.5 shows the TCP throughput for various numbers of

receivers where the cellular bandwidth was 500 Mbps. The

maximum vehicle velocity was 100 Km/h. We can observe

that “Without edge” approach fails to provide an acceptable

throughput since all the vehicles use cellular communications

and therefore the resource allocated to each vehicle is small.

“Random edge” achieves better performance by conducting

data caching at randomly selected edge nodes. However,

due to the inefficiency of the random edge selection, the

performance improvement is limited. By choosing the best

nodes for the edge nodes based on a fuzzy logic algorithm,

the proposed scheme shows the largest throughput. “Edge

without preemptive” uses fixed edge node and changes a

route only when the link becomes unavailable, resulting in

difficulty of adapting to the change of network environments.

The advantage of the proposed protocol over “Edge without

preemptive” explains that it is promising to conduct a route

change by preemptively finding a better route. The proposed

scheme is able to preemptively change to a better route by

using the Q-learning approach to explore all the possible paths

based on the exchange of periodical hello messages.
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Fig. 5. TCP throughput for various numbers of receivers.

Fig.6 shows the TCP throughput for various maximum

vehicle velocities. The number of vehicle was 300. The perfor-

mance of “Random edge” is affected by the vehicle velocity

significantly, which shows the importance of using an efficient

edge selection algorithm. The proposed scheme can find stable

edge nodes by taking into account the velocity factor, vehicle

distribution, and the signal quality between vehicles for the

edge selection. This ensures that the proposed scheme could

achieve the best performance for different vehicle velocities.
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Fig. 6. TCP throughput for various vehicle velocities.

The effect of the available cellular bandwidth on the pro-

tocol performance is shown in Fig.7. The number of vehicle

was 300, and the maximum vehicle velocity was 100 Km/h.

In “Without edge”, all the receiver nodes directly get the

data from the cloud by using cellular communications, which

results in an inefficient use of cellular resources. Therefore,

the throughput improvement with the increase of cellular

bandwidth is not notable. Other approaches could utilize

the cellular resources more efficiently by conducting edge

computing at edge nodes. However, the performance of “Ran-

dom edge” is still unsatisfactory due to the blindness of the

random edge selection. “Edge without preemptive” performs
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better than “Random edge” by selecting better and more

stable edge nodes. The proposed scheme can further improve

“Edge without preemptive” by finding the best route based

on Q-learning and switching between different communication

interfaces.
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B. Performance for delay-sensitive unicast applications

We generated UDP traffics to evaluate the performance of

the proposed scheme for delay-sensitive unicast applications.

UDP packet size was 512 bytes, and the data rate for each

traffic flow was set as 1 packet per second. The cellular

bandwidths for uplink and downlink were 250 Mbps and

500 Mbps, respectively. The processing delay at the base

station was set as 50 ms. Fig.8 shows the end-to-end delay

for various numbers of traffic flows. The delay of “Without

edge” is the largest as the use of pure cellular transmis-

sions always encounter the problem of insufficient bandwidths

when then number of traffic flows is large. This is because

all the traffic flows go through the base station, which is

inefficient for some communication pairs that are close to

each other geographically. “Random edge” shows a better

outcome by conducing some IEEE 802.11p communications

through randomly selected edge nodes without going through

the base station. However, the random selection of edge node

is unsatisfactory in terms of MAC layer contention efficiency.

Since the proposed scheme could select the best edge nodes

for selection, it can achieve the lowest delay, which is a

significant improvement especially when the number of traffic

flows is large. The difference between “edge w/o preemptive”

and the proposed scheme shows that it is difficult to achieve

a good performance if the route is not changed until the route

is disconnected. It is important to switch efficiently between

the cellular communications and IEEE 802.11p according

to the usage ratio of cellular spectrum. This requires an

adaptive algorithm that can evolve by efficiently perceiving

the environments.

We also conducted evaluations for different processing

latencies at the base station where the number of traffic

flows was 300. As shown in Fig.9, with the increase of the
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Fig. 8. End-to-end delay for various vehicle densities.

processing delay at the base station, the advantage of the

proposed scheme becomes more significant. This is because

it becomes important to use other types of communication

approaches to support the cellular communications in order

to provide a low delay for all the communication pairs. The

proposed scheme always can achieve a low delay by using

IEEE 802.11p communications for some communication pairs.

By using the Q-learning algorithm, the proposed scheme can

find the best communication interface and the corresponding

route for each communication pair, resulting in the lowest

delay.
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Fig. 9. End-to-end delay for various processing latencies at the base station.

Fig.10 shows the end-to-end delay for various vehicle ve-

locities. The number of traffic flows was 100. We can observe

that the delay of “Without edge” and “Random edge” increases

as the vehicle velocity becomes faster. This explains the

importance of selecting stable edge nodes for the data caching.

By considering the vehicle velocity and vehicle distribution in

the edge node selection, the proposed scheme achieves a stable

latency for different vehicle velocities. The preemptive route

change approach also contributes to the short delay by finding

a better route before the current route is broken.
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C. Performance for delay-sensitive broadcast applications

We also conducted simulations for delay-sensitive broadcast

applications. The number of broadcast source nodes was 1, and

all other vehicles were considered as the intended receivers.

Since the broadcast communication through cellular interface

is not realistic, here “Without edge” denotes the weighted p-

persistence [33]. Fig.11 shows the packet dissemination ratio

for various vehicle densities. Since “Without edge” does not

use edge computing on packet dissemination, it results in a low

packet dissemination ratio due to the redundant rebroadcast

of data. The edge selection of “Random edge” also cannot

achieve a satisfactory result. “Edge without preemptive” shows

a higher packet dissemination ratio as compared with “Without

edge” and “Random edge” by using a more efficient edge

selection. Based on the efficient edge node selection and the

edge-based retransmission scheme, the proposed scheme can

provide the perfect packet dissemination ratio.
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Fig. 11. Packet dissemination ratio for various vehicle densities.

As shown in Fig.12, the proposed scheme shows the lowest

end-to-end delay. When the node density is high, the se-

lection of edge node has more a remarkable impact on the

delay. Since the proposed scheme considers vehicle velocity,

vehicle distribution, and the link quality between vehicles,

the proposed scheme is able to find the best edges, and

therefore satisfy the low latency requirement of delay-sensitive

broadcast applications.
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Fig. 12. End-to-end delay for various vehicle densities.

V. CONCLUSIONS

We discussed the problem of route selection in multi-

access vehicular edge computing environment, and proposed

a scheme based on a reinforcement learning approach. The

proposed scheme employs a “proactive” approach to find

communication routes based on periodical hello message ex-

change with low overhead, and conducts “preemptive” change

of communication interfaces and routes to ensure a high

performance in varying network environments. The propose

scheme uses different learning criteria for traffic-intensive

applications and delay-sensitive applications in order to satisfy

different QoS requirements. The simulation results show that

the proposed approach can achieve a better performance than

existing baselines.
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