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Abstract—The limited battery capacity of sensor nodes has
become the biggest impediment to wireless sensor network (WSN)
applications. Two recent breakthroughs in the areas of wireless
energy transfer and rechargeable lithium batteries promise the
use of mobile vehicles, with high volume batteries, as mobile
chargers that transfer energy to sensor nodes wirelessly. In this
paper, for the first time, we envision a novel charging paradigm:
collaborative mobile charging, where mobile chargers are allowed
to charge each other. We investigate the problem of scheduling
multiple mobile chargers, which collaboratively recharge sensors,
to maximize the ratio of the amount of payload energy to
overhead energy, such that every sensor will not run out of
energy. We first consider the uniform case where all sensors
consume energy at the same rate, and propose a scheduling
algorithm, PushWait, which is proven to be optimal in this case
and can cover a one-dimensional WSN of infinite length. Then,
in the non-uniform case, which is conjectured to be NP-hard,
we first present two observations from space and time aspects to
remove some impossible scheduling choices, and we propose our
heuristic algorithm, ClusterCharging(β), which clusters sensors
into groups and divides a scheduling cycle into charging rounds.
Its approximation ratio is also presented. Extensive evaluations
confirm the efficiency of our algorithms.

Index Terms—Collaborative mobile charging, wireless energy
transfer, wireless sensor networks.

I. Introduction

Many applications of wireless sensor networks (WSNs) [1],

such as structural health monitoring for the Golden Gate

Bridge [2], agricultural rain-fed farming decisions [3], and

forest fire detection [4], desire a long-lived WSN. However,

sensor nodes are typically supplied by batteries that can only

store a limited amount of energy, which has become the

biggest impediment. Therefore, a lot of efforts, including

energy conservation [5–7], energy harvesting [8, 9], and sensor

reclamation [10], have been devoted to prolonging the lifetime

of WSNs. However, energy conservation cannot compensate

for energy depletion; energy harvesting is neither controllable

nor predictable; sensor reclamation is costly and impractical

when sensors are deployed in the deep ocean, on bridge

surfaces, or in containers of hazardous materials.

We recently observed two particular breakthroughs in the

areas of wireless energy transfer [11, 12] and rechargeable

lithium batteries [13]. Wireless energy transfer is the trans-

mission of electric energy from a power source to a receiver

without any interconnecting conductors. Rechargeable lithium

batteries with high energy density and high charge/discharge

capability are identified in [13]. Armed with these two tech-

nologies, some studies [14–17] employed mobile vehicles of

high volume batteries as mobile chargers to deliver energy to

sensors. However, most of them [14–16] assume that a mobile

charger has a sufficient amount of battery to cover the entire

WSN and to make a round trip back to the base station. This

model will become invalid when there is a remote area where

even a dedicated charger with full battery energy cannot reach

before running out of energy.

In this paper, we introduce a novel charging paradigm: col-

laborative mobile charging, where mobile chargers are allowed

to charge each other. That is to say, multiple mobile chargers

start from the base station with full energy, and after some

time, some of them can intentionally gather at a rendezvous

point to recharge others or to be recharged. We shall see

that this collaborative paradigm not only enlarges the charg-

ing coverage, but also improves the energy efficiency since

chargers in existing methods may return to the base station

with residual energy. The scheduling problem of collaborative

mobile charging in a general WSN is very complicated. As

a first step, to initiate a meaningful study, this paper narrows

the scope of this problem to a manageable extent: we consider

one-dimensional (1-D) WSNs and leave 2-D as future work.

The linear structure of 1-D WSNs can be utilized to reduce

maintenance costs, increase routing efficiency, and improve

network reliability [18]; therefore, these kind of WSNs have

a broad array of applications, ranging from oil/gas/water

pipeline monitoring [19] to driver-alert systems [18] to bridge

and international border protection [20].

This paper focuses on the following problem: given a 1-D

WSN and battery capacity constraints, how can we schedule

multiple mobile chargers, which collaboratively recharge sen-

sors, to maximize the ratio of the amount of payload energy

to overhead energy, such that every sensor will not run out

of energy? To gain a better understanding, we first consider

the uniform case of this problem, where all sensors consume

energy at the same rate, for which we propose an algorithm

called PushWait. We prove the optimality of PushWait in

this case. Then, in the non-uniform case of this problem, we

conjecture that the problem becomes NP-hard and propose a

heuristic algorithm called ClusterCharging(β) with guaranteed

performance. We evaluate the performance of our algorithms

with extensive simulations. The contributions of this paper are

summarized as follows:

(1) To our best knowledge, we are the first to consider the

collaborative mobile charging paradigm. By means of

examples, theoretical analysis and experimental evalua-

tions, this paper demonstrates the advantages of this novel

paradigm in coverage and energy efficiency.

(2) For the uniform case of the scheduling problem, we pro-

pose a scheduling algorithm, PushWait, which is proven



to be optimal and can cover a 1-D WSN of any length.

A variation of PushWait that uses dedicated chargers to

substitute roundtrip chargers is also presented.

(3) For the non-uniform case, which is conjectured to be

NP-hard, we first present two observations from space

and time aspects to remove some impossible schedul-

ing choices. Then, we propose our heuristic algorithm,

ClusterCharging(β), which clusters sensors into groups

and divides a scheduling cycle into charging rounds. Its

approximation ratio is also presented.

The remainder of this paper is organized as follows. We de-

scribe the problem in Section II. Sections III and IV investigate

the uniform and non-uniform cases of the scheduling problem,

respectively. Section V presents experimental results. Before

concluding this paper in Section VII, we survey the related

work in Section VI.

II. Problem Description

A. Network Model

We consider a set of sensor nodes that are uniformly dis-

tributed, unit distance apart, along a one-dimensional straight

line to the east of a base station (BS ), as shown in Fig. 1.

There are, in all, N sensor nodes, say s1, s2, ..., sN . Sensor

si consumes ri amount of energy per unit time. All nodes

are assumed to have the same battery capacity, say b. The

recharging cycle of a sensor is defined as the time period that

this sensor of full energy can survive without being charged.

Denote the recharging cycle of si as τi; we have τi = b/ri.

B. Charging Model

A mobile charger (MC) has a maximum battery capacity of

B and consumes c amount of energy per unit distance. The

base station BS serves as data sink as well as the energy

source. Mobile chargers start from the BS with full batteries,

charge sensors, finally come back to the BS , and then get

themselves recharged by the BS . Both the movement of the

mobile chargers and the process of wireless charging share the

same pool of battery energy.

The energy transfer efficiencies of BS -to-MC, MC-to-MC,

and MC-to-sensor are all assumed to be 1, i.e., there is no

energy loss. The corresponding charging time is negligible

compared to the traveling time of mobile chargers.

Typically, the recharging cycle (or the lifetime) of a sensor

is several months; while the time for a charger traveling from

the BS to the farthest sensor in a WSN is usually several

hours, or at most several days. Thus, in this paper, we assume

that any two charging rounds have no intersection, i.e., mobile

chargers can always accomplish a charging round, return to the

BS , and wait for another charging round.

C. Performance Measure

When scheduling, we must decide the actions (such as,

recharging a sensor or another charger, being charged, waiting,

etc.) of each mobile charger in its time-space trajectory. A

scheduling is said to be feasible if (i) all sensor nodes do not

die, i.e., each sensor node will get charged before running out
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Fig. 1: Problem description

of energy, and (ii) all MCs are able to return to the BS to be

serviced (e.g., replacing or recharging its battery).

We define the scheduling cycle of a scheduling to be the

time interval between two consecutive points of time when

all sensors are fully charged. Although this definition seems

strange at a first glance, we shall see its generality. It can be

applied to the uniform case problem (Section III), where the

scheduling cycle equals the recharging cycle of each sensor,

and it can also be applied to the non-uniform case problem

(Section IV), where the scheduling cycle contains more than

one recharging cycle of a sensor.

In a scheduling cycle, denote the energy eventually obtained

by sensors as payload energy (Epayload), and the energy con-

sumed by MCs′ movements as overhead energy (Eoverhead).

The efficiency ratio of the scheduling can be defined as:

ratio =
Epayload

Eoverhead
(1)

A feasible scheduling cyclically charges sensor nodes to

make a sensor network long-lived, so this definition charac-

terizes the long-term efficiency of a scheduling well.

D. Scheduling as an Optimization Problem

Problem 1: (Collaborative mobile charging scheduling

problem (CMCS )) Given a 1-D WSN with parameters b and

ri, how can we find a feasible scheduling of chargers, with

parameters c and B, so as to maximize the ratio defined above.

In order to have a better understanding of the CMCS

problem, we first consider a uniform case where all sensors

consume energy at the same rate in Section III; then, we

study the non-uniform case in Section IV with the knowledge

obtained from the uniform case.

III. CMCS with uniform energy consumption rate

In the uniform case, sensors consume energy at the same

rate, which is denoted as r, then all sensors have the same

recharging cycle, i.e., τ = b/r. This uniformity makes the

scheduling become simple: in each recharging cycle, we let

the MCs charge all of the sensors and then wait for the next

recharging cycle. Therefore, in this case, the scheduling cycle

equals the recharging cycle. We then have Epayload = N · b is

fixed, so the objective of maximizing the ratio of Epayload to

Eoverhead is reduced to minimizing Eoverhead.

A. Motivational Examples

We use the following examples to demonstrate the benefits

of collaborative mobile charging and to motivate our algorithm

design. Three different scheduling schemes are shown in

Fig. 2. The former two schemes do not consider collaboration,

while the third does. We denote K as the number of MCs, Li

(1 ≤ i ≤ K) as the farthest point that MCi reaches, and also let

LK+1 = 0 for compatibility. Figs. 2(a), 2(b), and 2(c) illustrate

the time-space view as well as the maximum coverage of



these three scheduling schemes, respectively. The settings are

B = 80J, b = 2J, c = 3J/m, and K = 3.

Scheme I: Each MC charges each sensor an mount of b/K

energy, and each sensor is charged by all passing MCs. As

shown in Fig. 2(a), 12 sensors can be covered.

Scheme II: Each sensor is charged by only one MC. MCi

(1 ≤ i ≤ K) charges sensors from Li+1 to Li, its residual energy

at Li is just enough for it to return to the BS . Fig. 2(b) shows

the entire process, where 13 sensors can be covered.

Scheme III: Each sensor is charged by only one MC. MCi

(2 ≤ i ≤ K) charges sensors from Li+1 to Li, and it transfers

energy to MCi−1, MCi−2,..., and MC1 until they are at their

full energy capacity at Li, and then it just has enough energy

to return to the BS . Fig. 2(c) illustrates this scheme, where

MC3 charges MC2 and MC1 at A, and MC2 charges MC1 at

B. This time, 17 sensors can be covered.

In summary, given a fixed number of MCs, scheme III can

cover more sensors than Schemes I and II; collaboration makes

scheduling more energy-efficient in the sense that scheduling

with collaboration consumes less Eoverhead than scheduling

without collaboration to deliver the same amount of Epayload.

B. PushWait

Recall the objective of our scheduling is to minimize

Eoverhead, which is consumed by MCs’ movement. The basic

idea of PushWait is to use as less MCs as possible to carry the

residual energy of all MCs through letting some MCs charge

others at some rendezvous points. PushWait is illustrated as:

• MCi charges sensors between Li+1 and Li to their full

batteries. At Li, MCi transfers energy to MCi−1, MCi−2,...,

and MC1 until they are at their full energy capacity. Then

MCi waits at Li, and all of the other i − 1 MCs keep

moving forward.

• After MCi−1, MCi−2,..., and MC1 return to Li, where MCi

waits for them, MCi evenly distributes its residual energy

among i MCs (including MCi). This will make them just

have enough energy to return to Li+1.

In PushWait, each MCi follows the iterative process below:

starts from the BS with full battery, gets fully charged at

locations LK , LK−1,..., and Li+1, charges sensor nodes between

Li+1 and Li, charges MCi−1, MCi−2,..., and MC1 at Li, waits

for these MCs to return, then evenly distributes its residual

energy among these i MCs (including MCi itself) and moves

towards the BS . The reason of naming this scheduling after

“PushWait” is clear: from the point of view of MCi, it pushes

the other MCs to move forward and waits for their return.

Fig. 2(d) depicts the time-space view of applying PushWait

to the aforementioned settings. Three chargers start from the

BS with 80J energy; when they reach L3, both MC1 and MC2

have 80−3 ·L3 = 70J energy, while MC3 has 80−3 ·L3−3 ·b =

64J energy because it recharges s1, s2, and s3; then, MC3

charges both MC1 and MC2 to their full battery. After this,

MC3 waits at L3 with 64 − 10 − 10 = 44J energy; similarly,

after MC2 charges sensors from s4 to s9, and charges MC1

to its full battery at L2, it waits at L2 with 34J energy; when

MC1 returns to L2, as the reader can verify, it will have zero
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Fig. 2: Time-space view of four different schemes where B = 80J, b =
2J and c = 3J/m. (J=Joule)

energy; MC2 then charges MC1 to half of its residual energy,

i.e., 17J, which is just enough for MC1 and MC2 to reach

L3; at L3, MC3 then charges MC1 and MC2 with 10J energy,

which is just enough for them return to the BS ; at the BS , only

MC3 has 14J residual energy. We see that PushWait achieves

the best result: 19 sensors can be covered.

C. Rendezvous Points

To make PushWait work, Li (1 ≤ i ≤ K) should be chosen

carefully to guarantee that MC1, MC2,..., and MCi−1 have zero

energy when they return to Li. Let’s take the interval between

Li+1 and Li as an example to illustrate how to determine the

values of these K rendezvous points.

MCi gets fully charged at Li+1 and comes back to Li+1 with

zero energy. The energy consumption of the full battery B

includes the following five parts: (i) energy transferred to the

sensors between Li+1 and Li; (ii) energy consumed by MCi to



travel from Li+1 to Li; (iii) energy transferred to MC1, MC2,

..., and MCi−1 at Li for the first time. Note that these i − 1

MCs are fully charged at Li+1, thus the energy transferred to

them at Li is exactly the energy consumed by them to travel

from Li+1 to Li; (iv) energy consumed by MCi to travel from

Li to Li+1; and (v) energy transferred to MC1, MC2, ..., and

MCi−1 at Li for the second time, which is exactly the energy

used by them to travel from Li to Li+1.

Therefore, we have the following equations.































2 · c · (L1 − L2) · 1 + b · (L1 − L2) = B

2 · c · (Li−1 − Li) · (i − 1) + b · (Li−1 − Li) = B (2 ≤ i ≤ K)

2 · c · (LK − 0) · K + b · (LK − 0) ≤ B

(2)

The last formula is an inequality, since PushWait cannot

use up the total amount of energy of K MCs precisely. It is

straightforward to see that:


















L1 = N

Li = N −
∑i−1

j=1
B

2·c·d· j+b
(2 ≤ i ≤ K)

(3)

K can be determined by: LK > 0, LK+1 ≤ 0. Then, we have:














Epayload = N · b

Eoverhead = 2c ·
∑K

i=1 Li

We note in passing that, as MCK may have some residual

energy when it returns to the BS , we can further improve

PushWait through the following trick. Let another MC′ stay

at LK to collect the residual energy that MCK would take back

to the BS . In doing so, after enough scheduling cycles, only

(K−1) MCs are required to start from the BS in the subsequent

scheduling cycle.

Fig. 2(d) shows an example, MC3 has 14J residual energy

when it comes back to the BS ; another MC′ can be used to

collect 14J energy at L3; after five scheduling cycles, MC′

will have 70J energy. As the reader can verify, in the sixth

scheduling cycle, only two MCs are needed.

D. Optimality

Theorem 1: For the uniform case of the CMCS problem,

PushWait achieves the maximum ratio of Epayload to Eoverhead.

Proof: Given a 1-D WSN where sensors consume energy

at the same rate, Epayload is fixed in a recharging cycle. Hence,

it is sufficient to prove that PushWait uses the minimum

Eoverhead, which is proportional to the distance traveled by

all of the MCs. Denote the distance traveled by all of the

MCs in a scheduling scheme as Distance(scheme). Suppose

that PushWait requires K MCs to charge the given WSN. We

prove the theorem by induction on K.

Base cases: K=1 and K=2

K = 1: this case is trivial. Distance(PushWait) = 2 ·L1. Note

that L1 equals the length of the given WSN. Any scheduling

scheme must have at least one MC to reach the farthest sensor

in the WSN and then turn back, thus Distance(anyscheme) ≥

2 · L1 = Distance(PushWait).

K = 2: (by contradiction) suppose that PushWait is not

optimal, and the optimal scheduling scheme is OPT . As one

MC is not enough to cover the entire WSN, there are at

least two MCs in the OPT . One of them, say MC′, must

reach the farthest sensor, thus it travels 2 · L1 distance. Since

OPT is the optimal scheduling scheme, i.e., Distance(OPT ) <

Distance(PushWait) = 2·L1+2·L2. Hence, all of the other MCs

in OPT should not reach L2; otherwise, OPT is not optimal.

However, according to our calculation of L2 in PushWait, a

fully charged MC at L2 only charges the sensors from L2 to

L1 and returns to L2 with zero energy, then we know MC′ in

OPT can by no means reach L1. A contradiction! Therefore,

no such OPT exists. PushWait is optimal.

I.H.: PushWait is optimal when K = n.

K = n + 1: (by contradiction) suppose that PushWait is not

optimal, and there are n+ 1 rendezvous points Ln+1, Ln, ...,L1

in PushWait. The optimal scheduling scheme is OPT .

We can divide the WSN into two parts, the BS -to-Ln+1 part,

and the Ln+1-to-L1 part. Suppose that a virtual base station BS ′

is located at Ln+1. PushWait needs precisely n · B energy to

cover the sensors between Ln+1 and L1. By I.H., OPT will

require more than n · B energy to cover the same part. Denote

this energy as Q > n · B.

Therefore, the task of PushWait is to cover the sensors from

BS to Ln+1 and to deliver n · B energy to Ln+1. According to

PushWait, n + 1 MCs that start from the BS can accomplish

this task. Correspondingly, the task of OPT is to cover the

sensors from BS to Ln+1 and to deliver Q energy to Ln+1. We

know that OPT requires at least n + 1 MCs to reach Ln+1

(otherwise, the total residual energy of less than n+ 1 MCs at

Ln+1 is definitely less than n · B).

Considering Q > n · B, PushWait is optimal.

Remarks: This proof is based on two conditions: (i) every

sensor needs to be charged b amount of energy, and (ii) sensors

are uniformly distributed, i.e., unit distance apart. However,

even if these two conditions fail, Theorem 1 still holds as

long as all sensors consume energy at the same rate. The

corresponding proof follows a similar routine as the above

proof and is left to the reader.

E. Coverage

Theorem 2: Given infinite MCs, the maximum numbers of

sensors that can be covered by scheme I, II, III, and PushWait

are ⌊B/2c⌋, ⌊B/2c⌋, ⌊B/c⌋, and infinite, respectively.

Proof: Scheme I: Each MC needs to contribute b/K

amount of energy to each sensor. When K tends to infinity,

the share b/K tends to be 0. However, every MC still needs

to return to the BS , thus the maximum number of sensors that

can be covered by this scheme is ⌊B/2c⌋.

Scheme II: When i increases, MCi needs to travel a longer

distance to reach the sensors that it should cover. Also, every

MC needs to return to the BS , so the maximum number of

sensors that can be covered by this scheme is also ⌊B/2c⌋.

Scheme III: When an MC begins to turn back, it can no

longer get energy from others. Thus, the maximum number of

sensors that can be covered is ⌊B/c⌋.
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Fig. 3: PushWait with dedicated mobile chargers. MC3 transfers 54
J energy to MC2 at A; MC3 transfers 26 J energy to MC2 at B; MC2

transfers 34 J energy to MC1 at C; MC3 transfers 34 J energy to
MC2 at D; MC3 transfers 46 J energy to MC2 at E; MC2 transfers
46 J energy to MC1 at F.

PushWait: According to Equ. (3), we have:

Li − Li+1 =
B

2 · c · i + b
,∀i ≥ 1 (4)

Then the distance covered by K MCs is:

K
∑

i=1

B

2 · c · i + b
>

K
∑

i=i0

B

2 · c · i + b
(let 2 · c · i0 ≥ b)

>

K
∑

i=i0

B

4 · c · i
=

B

4 · c

K
∑

i=i0

1

i
(harmonic series)

which tends to be infinity when K tends to be infinity.

F. A Variation of PushWait: Dedicated Chargers

In PushWait, all of the MCs start from the BS and return

to the BS in a scheduling cycle. It looks complex in terms of

oprations. In fact, a clean and simple variation of PushWait is

to have MCi travel between Li+1 and Li without going back to

the BS , which is illustrated in Fig. 3. The parameters are the

same as in Fig. 2. MC3 starts from the BS , charges sensors

s1, s2, and s3, arrives at L3, where it can transfer 54 J energy

to MC2 (point A). As MC2 is not fully charged, it waits at

point A for the next arrival of MC3, and so on. It is easy to

see that PushWait with dedicated mobile chargers achieves the

same energy efficiency ratio, i.e., Epayload/Eoverhead.

The drawback of this variation is that it finishes the charg-

ing of the entire network with a longer time compared to

PushWait, as MCi needs to wait for MCi+1 to deliver energy

to it. For example, MC2 needs to wait from A to B and then

from D to E, MC1 needs to wait from C to F.

The advantages of this variation are twofold. Firstly, this

variation simplifies the scheduling by just letting a dedicated

MC be responsible for an area of sensors. Secondly, when

there are many types of MCs with different capacities, it is

easy to apply PushWait to this situation by just expanding

each dedicated area.

IV. CMCS with non-uniform energy consumption rates

In this section, we employ the results from the last section

to develop a scheduling algorithm for the non-uniform case of

the CMCS problem. We first give two examples to help readers
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Fig. 4: Time-space view of two scheduling schemes. In the figure,
τ1 = 4, τ2 = 2, τ3 = 5, τ4 = 3. The black point “•” indicates the time
when the corresponding sensor is recharged.

understand the problem and see the need to design a heuristic

scheduling algorithm to cope with the NP-hardness of this

problem. Then, we present two observations that can remove

some impossible scheduling choices, after which we present

our heuristic, ClusterCharging(β), and its approximation ratio.

A. Examples of Scheduling Schemes

Denote τi = b/ri as the recharging cycle of sensor si. To

avoid the messy details and focus on the main problem, we

assume that τi is an integer (in fact, τi is typically large enough

for us to let τi = ⌊τi⌋). Fig. 4 shows two feasible scheduling

schemes. At time t0, four sensors are full of energy; as τ1 = 4,

s1 should be recharged no later than time t0 + 4, otherwise

it will die; similar statements hold for other sensors. Recall

our definition of scheduling cycle in Section II-C; in these

examples, the consecutive time points when all sensors get

fully charged are t0 and t0+6. Therefore, the scheduling cycle

of both of Scheme IV and V is 6, and there are 6 rounds of

charging in a scheduling cycle in both of them.

We notice from these examples that the number of possible

scheduling solutions could be extremely large, because any

charging round in a solution has exponential choices of a set of

sensors to recharge. To find the optimal scheduling for a given

WSN, we must determine both the length of the scheduling

cycle and the set of sensors to be recharged in each round.

With all that said, we conjecture that the non-uniform case of

the CMCS problem is NP-hard. In the following subsections,

we will present a heuristic with an approximation ratio after

introducing two observations.

B. Observation from Space Aspect

In Fig. 4(a), τ1 = 4 > τ2 = 2, whenever we recharge s2, we

can recharge s1 incidentally. Considering that the objective is

to maximize the ratio of payload energy to overhead energy,

we see that there is no need to recharge s1 individually, i.e.,

the recharging at point A in Fig. 4(a) is not cost-efficient. In

doing so, we can take τ1 as 2. For the same reason, we can

take τ3 as 3, and recharge s3 at time t0 + 3 (as point C shows)

instead of t0 + 5 (as point B shows). This observation enables

us to only consider the following setting in the rest of this

paper: τ1 ≤ τ2 ≤ · · · ≤ τN .



2 4 6BS
T
i
m
e

Space
t0

t0+1
t0+2
t0+3
t0+4
t0+5
t0+6

31 5
b b b b

bbbbb bbb b b
(a) β = 1, there are six groups; each
sensor itself forms a group.

T
i
m
e

Space
t0

t0+1
t0+2
t0+3
t0+4
t0+5
t0+6

bbbbbb
bbb

2b/32b/32b/3 4b/5 4b/6b
2 4 6BS 31 5

(b) β = 2, there are three groups: (s1),
(s2,s3), and (s4,s5,s6).

T
i
m
e

Space
t0

t0+1
t0+2
t0+3
t0+4
t0+5
t0+6

bbbbbb
b/2b/2b/2b/2b/2b/2

b
b b

3b/4 3b/5
3b/4 3b/5

2 4 6BS 31 5
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(d) β = ∞, there is only one group
that contains all sensors.

Fig. 5: Time-space view of ClusterCharing(β) where τi = i. The number near a black point is the amount of energy that the corresponding
sensor should be charged in that charging round.

C. Observation from Time Aspect

The following theorem indicates that we only need to start

a charging round when there is at least one sensor node that

will die if we do not. For example, in Fig. 4(b), we only plan

possible rounds at t = t0 + i, where i is an integer; we do not

need to start the round at t0 + 2.5 because, at that time, there

is no sensor node that will die if it is not charged.

Theorem 3: Given a base station BS and a sensor node s,

with a battery capacity of b, that are d distance apart, then it

is better to deliver b amount of energy to s using PushWait

one time than twice (the total energy s gets is still b).

Proof: Note that d is not restricted to being small, thus

one MC may not be enough. Suppose that k MCs are needed

to deliver b amount of energy to s using PushWait one time;

according to Equ. (4), k should satisfy:

B

2kc
+

B

2(k − 1)c
+ · · · +

B − b

2c
=

B

2c

i=k
∑

i=1

1

i
−

b

2c
= d

Equivalently:
k
∑

i=1

1

i
=

2cd + b

B
(5)

Similarly, if we use PushWait twice, suppose that k1 MCs

are needed to deliver ϵ amount of energy to s for the first time,

and k2 MCs are needed to deliver b − ϵ amount of energy to

s for the second time, then k1 and k2 should satisfy:

B

2k1c
+

B

2(k1 − 1)c
+ · · · +

B − ϵ

2c
=

B

2c

i=k1
∑

i=1

1

i
−
ϵ

2c
= d

B

2k2c
+

B

2(k2 − 1)c
+ · · · +

B − (b − ϵ)

2c
=

B

2c

i=k2
∑

i=1

1

i
−

b − ϵ

2c
= d

Equivalently:

k1
∑

i=1

1

i
=

2cd + ϵ

B
,

k2
∑

i=1

1

i
=

2cd + b − ϵ

B
(6)

Then it is sufficient to prove that k1 + k2 < k cannot be true,

subject to Equs. (5) and (6). The harmonic series [21] can be

represented as:
k
∑

i=1

1

i
≈ lnk +

1

2k
+ γ (7)

where γ is the Euler-Mascheroni constant. As we know, if

k1+k2 is fixed,
∑k1

i=1
1/i+

∑k2

i=1
1/i achieves its maximum when

k1 = k2. Therefore, we let k1 = k2 = k/2 to see what condition

k should satisfy to ensure Equs. (5) and (6). By combining

Equs. (5), (6), and (7), we have:

k =
B

2ln2 · B − b
<

B

2 · B − B
= 1 (8)

which is impossible. Alas, we prove that k1+k2 > k, indicating

that using PushWait one time is more cost-efficient.

It is worth mentioning that the above proof is based on the

following assumption: the total amount of energy of k MCs,

k1 MCs, or k2 MCs is completely used up. The worst case is

when the energy of k MCs is completely used up while there

are two MCs among k1 and k2 MCs whose energy is nearly

unused. Then, the two times of PushWait costs the total energy

of k1 − 1 + k2 − 1 = k1 + k2 − 2 MCs. As k1 + k2 ≥ k + 1, the

only bad situation is k1 + k2 = k + 1, which is rare compared

to all possible cases.

D. ClusterCharging(β)

1) Basic idea: The basic idea of ClusterCharging(β) is

to cluster sensors into groups such that the ratio of the

maximum recharging cycle to the minimum recharging cycle

in each group is less than the clustering threshold β. In

each charging round, our heuristic selects the groups that

satisfy the following condition as the charging targets, and

employs PushWait1 to recharge the sensors in these groups.

The condition is that there is at least one sensor that is going

to die if our heuristic does not recharge it.

Take Fig. 5 for example. In Fig. 5(a), β = 1, thus each sensor

itself forms a group; each group (or sensor) gets recharged

only before running out of energy.

In Fig. 5(b), β = 2. Since τ1 = 1 and τ2 = 2, τ2/τ1 ≥ 2 = β,

then s1 itself forms a group. Also τ3/τ2 < β and τ4/τ2 ≥ β,

thus sensors s2 and s3 form a group, and so forth. In summary,

when β = 2, there are three groups, (s1), (s2,s3), and (s4,s5,s6).

At time t0 + 1, only the first group is recharged; at time t0 + 2,

as s2 is going to die if it is not recharged, the second group

1Note that, in each round of this scenario, different sensors may need to
be charged a different amount of energy. For example, at time t0 + 4 in
Fig. 5(b), the six sensors need b, b, 2b/3, b, 4b/5, and 4b/6 amount of energy,
respectively. PushWait still achieves the optimality in each round according
to the remarks in Section III-D.



together with the first group are recharged; at time t0 + 3, all

groups are selected as the charging targets.

Similarly, when β = 3 in Fig. 5(c), there are three groups,

(s1, s2), (s3,s4,s5), and (s6). When β = ∞ in Fig. 5(d), there

is only one group that contains all sensors.

2) Scheduling Cycle: β = 1. ClusterCharing(1) lazily

charges each sensor just before it runs out of energy. The

scheduling cycle is the least common multiple of τ1,...,τN .

Denote it as lcm. Then, the Epayload in a scheduling cycle is:

Epayload =
lcm

τ1

b +
lcm

τ2

b + · · · +
lcm

τN

b =

N
∑

i=1

(ri · lcm)

β = 2, 3, ..., n. Suppose that there are x groups; since the

ratio of the maximum recharging cycle to the minimum

recharging cycle in each group is less than β, we have

τ1 · β
x ≤ τN , then we know x = ⌊logβ(τN/τ1)⌋. Thus, the

scheduling cycle of ClusterCharging(β) is:

β
⌊logβ(

τN
τ1

)⌋
· τ1

For example, the scheduling cycles in Figs. 5(b) and 5(c) are 4

and 6, respectively. Correspondingly, we can calculate Epayload

and Eoverhead in a scheduling cycle using PushWait.

β = ∞. ClusterCharging(∞) charges all sensors to their full

battery capacity every τ1 time, i.e., the minimum recharging

cycle among all sensor nodes. Obviously, the scheduling cycle

is τ1. Then, the Epayload in a scheduling cycle is:

Epayload =
τ1

τ1

b +
τ1

τ2

b + · · · +
τ1

τN

b =

N
∑

i=1

ri

r1

b

Different values of β lead to different performances. In our

simulations, we will show that when the parameters of the

problem instance change, the optimal β also changes.

3) Approximation Ratio of ClusterCharging(β): Denote by

Ratio(scheme) the ratio of Epayload to Eoverhead in a scheduling

scheme. Denote by OPT the optimal scheduling scheme for

the non-uniform case of the CMCS problem.

Theorem 4:

Ratio(ClusterCharging(β))

Ratio(OPT )
>

2c

kminBτN − b

where,

kmin = argmink(

k
∑

i=1

1

i
≥

2cτN + b

BτN

)

Proof: The main line of this proof is to construct a scheme

S I so that Ratio(S I) < Ratio(ClusterCharing(β)), and to

construct another scheme S II so that Ratio(OPT ) < Ratio(S II).

We then have Ratio(ClusterCharing(β))/Ratio(OPT ) >

Ratio(S I)/Ratio(S II).

Constructing S I . Consider the following charging round: we

use MCs to charge only one sensor, which is at the farthest

point of the WSN and only needs the least possible energy

amount, i.e., b/τN . In this round, Epayload = b/τN and Eoverhead

can be obtained as follows. The number of MCs used in this

round is: kmin = argmink(
∑k

i=1 1/i ≥ (2cτN + b)/BτN) (similar

to Equ. (5)). Therefore, Eoverhead = kmin · B − b/τN . As this

round is the worst round we can imagine, we have Ratio(S I) >

Epayload/Eoverhead = b/(kminBτN − b).

Constructing S II . Suppose that an MC has an infinite

amount of energy, then we only need one MC in each

round. Obviously, Ratio(OPT ) < Ratio(S II). Remember that

whenever a sensor needs to be recharged, this MC must travel

at least one unit distance to recharge it and then travel at least

another one unit distance to come back to its original point.

Therefore, Ratio(S II) < b/2c.

The theorem follows immediately.

V. Performance Evaluation

In this section, we primarily focus on evaluating

ClusterCharging(β) in different settings with respect to vari-

ous parameters, and will not evaluate PushWait since PushWait

provides the optimal solution for the uniform case of the

CMCS problem. We first introduce the evaluation settings,

then present the results.

A. Evaluation Setup

In order to see the impact of the recharging cycles, τ1, τ2,...,

and τN , on the performance of ClusterCharging(β), we use

two different settings to generate these cycles.

Random-Setting: The recharging cycles are randomly gen-

erated from a bounded range, i.e., [lbound, ubound] = [2, 8].

We then sort them to guarantee that τ1 ≤ τ2 ≤ · · · ≤ τN .

For evaluations based on this setting, we ran experiments 100

times and averaged the results.

Power-Setting: The recharging cycles are generated based

on a power function, i.e., τi = base⌊(i+1)/2⌋ = 2⌊(i+1)/base⌋.

These two settings reflect two extremes of the mathemati-

cal variances of recharging cycles: Random-Setting generates

cycles with a small variance, while Power-Setting generates

cycles with a relatively large variance. Therefore, we can

observe the impacts of the non-uniform recharging cycles on

our proposed heuristic more clearly.

In each setting, we try to evaluate the effects of the number

of sensors, N, the energy cost per unit distance, c, the battery

capacity of a sensor node, b, and the battery capacity of

a mobile charger, B, separately. We are also interested in

the impacts of the bounded range and the power function

in each setting. Hence, we ran experiments with the ubound

varying from 4 to 12 while keeping lbound = 2, and we ran

experiments with base varying from 2 to 6.

The optimal solution to the non-uniform case of the CMCS

problem requires exhaustive searching, which is infeasible

even when the number of sensors is a little large. Considering

that the approximation ratio of ClusterCharging(β) is given,

we do not implement the optimal solution for comparison.

B. Evaluation Results

1) Random-Setting: Fig. 6 shows the results of different se-

tups for the Random-Setting. In general, ClusterCharging(∞)

(red line with circle markers) achieves almost the same

performance as ClusterCharging(2) (green line with cross
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Fig. 6: Impact of various parameters in Random-Setting

markers), and they outperform ClusterCharging(1) (blue line

with square markers). In detail, when the other parameters

are fixed, the performance metric, i.e., the ratio of Epayload

to Eoverhead, goes down as the number of sensors increases

(Fig. 6(a)), goes down as the energy cost per unit distance

increases (Fig. 6(b)), goes up as the battery capacity of a sensor

node increases (Fig. 6(c)), and goes up as the battery capacity

of the MC increases (Fig. 6(d)).

In Fig. 6(e), when the ubound increases, the ratio increases.

This is because a larger range incurs a larger variance of the

recharging cycles, which leads to a longer scheduling cycle,

and only a few sensors need to be charged in each round. This

sparsity causes a performance reduction in each round.

Fig. 6(f) shows the partial derivative of the ratio with

respect to each parameter in this setting. For example, when N

increases by 1, the ratio of ClusterCharging(∞) decreases by

0.00684. We notice that the impact of c is the greatest; B and

ubound have the least impacts on the ratio. This is reasonable,

as the change of c influences every moving segment between

any pair of adjacent sensor nodes.

2) Power-Setting: Fig. 7 shows the results of different

setups for the Power-Setting. In general, ClusterCharging(1)

(blue line with square markers) achieves almost the same
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Fig. 7: Impact of various parameters in Power-Setting

performance as ClusterCharging(3) (green line with cross

markers), while ClusterCharging(∞) (red line with circle

markers) has the worst performance. Most of the observations

from Random-Setting still hold in Figs. 7(a) to 7(d).

In Fig. 7(e), when the base increases, the ratio decreases.

The main reason is that a larger base makes the length of

the consecutive recharging cycles of the same value become

longer, which further leads to a smaller variance. For example,

if base = 2, the generated sequence is {1, 2, 2, 4, 4, 8, ...}; if

base = 4, the sequence is {1, 1, 1, 4, 4, 4, 4, 16, ...}. Fig. 7(f)

illustrates the partial derivative of the ratio with respect to

each parameter in this setting. Like the partial derivatives in

Power-Setting, c has the greatest impact on the ratio; B have

the least impact.

In summary, our simulations show that the proposed al-

gorithms perform well in a variety of settings. Specifically,

when the variance of the recharging cycles becomes larg-

er, ClusterCharging(β) performs worse; ClusterCharging(1)

and ClusterCharging(∞) are sensible to the variance of the

recharging cycles, while ClusterCharging(β) with other value

of β is robust in both settings.



VI. RelatedWork

Energy conservation, harvesting and node reclamation.

Energy conservation was proposed to slow down the energy

consumption rate. Bhattacharya et al. [5] proposed to cache

mutable data at some locations to control data retrieval rate.

Dunkels et al. [6] incorporated cross-layer information-sharing

in the their proposed adaptive communication architecture.

Wang et al. [7] proposed to use resource rich mobile nodes

as sinks or relays to prolong the lifetime of WSNs. However,

conservation cannot compensate for energy depletion in the

end. Energy harvesting [8, 9] tries to harvest energy (such as

solar, wind, and vibration) directly from the environment to

replenish sensors, but it is neither controllable nor predictable,

which hinders WSNs from providing the desired level of

performance. Sensor reclamation [10] periodically replaces

sensors of no or low energy with fully charged ones; however,

it requires either human intervention or advanced robotic

mechanisms, which can be costly in various situations.

Wireless energy transfer. The wireless power consor-

tium [22] defines the inter-operability standards of wireless

energy transfer based on magnetic induction. Kurs et al. [11]

demonstrated it to be efficient and non-radiative in Science.

Peng et al. [14] proposed the use of a mobile charger with

sufficient energy to charge the entire network and formulated

it as a TSP-like (Traveling salesman problem [23]) problem.

Li et al. [15] took both mobile charger scheduling and touring

into consideration with the assumption that the movement of

a mobile charger costs zero energy. Tong et al. [17] found

that: when the number of sensor nodes being charged simulta-

neously increases, the average power received at each sensor

remains approximately the same. Using this observation, the

authors tried to determine the optimal node deployment and

routing strategies to improve energy efficiency. Shi et al. [16]

also assumed that the mobile charger has unbounded energy

and investigated the problem of periodically charging sensors

to maximize the free time of the mobile charger over a cycle.

In contrast to these works, we investigate the problem with

a more realistic condition: a mobile charger may not have

enough energy to cover the entire network.

VII. Conclusions and FutureWork

This paper introduces a novel charging paradigm, i.e.,

collaborative mobile charging. We investigate the collaborative

mobile charging scheduling problem in 1-D WSNs. We first

consider the uniform case and propose an algorithm, PushWait,

which is proven to be optimal in this case and can cover a 1-

D WSN of any length. A variation of PushWait that uses

dedicated chargers to substitute roundtrip chargers is also pre-

sented. We then develop a heuristic, ClusterCharging(β), with

guaranteed performance for the non-uniform case. Extensive

simulations validate the advantages of our algorithms.

Our future work will focus on two parts. One part involves

investigating the impact of wireless transfer efficiency, which

is assumed to be one in this paper. The other part involves

extending our algorithms to 2-D networks.
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