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Abstract

Background—Controversy persists about optimal mammography screening strategies.

Objective—To evaluate mammography strategies considering screening and treatment advances.

Design—Collaboration of six simulation models.

Data Sources—National data on incidence, risk, breast density, digital mammography 

performance, treatment effects, and other-cause mortality.

Target Population—An average-risk cohort.

Time Horizon—Lifetime.

Perspective—Societal.

Interventions—Mammograms from age 40, 45 or 50 to 74 at annual or biennial intervals, or 

annually from 40 or 45 to 49 then biennially to 74, assuming 100% screening and treatment 

adherence.

Outcome Measures—Screening benefits (vs. no screening) include percent breast cancer 

mortality reduction, deaths averted, and life-years gained. Harms include number of 

mammograms, false-positives, benign biopsies, and overdiagnosis.

Results for Average-Risk Women—Biennial strategies maintain 79.8%-81.3% (range across 

strategies and models: 68.3–98.9%) of annual screening benefits with almost half the false-

positives and fewer overdiagnoses. Screening biennially from ages 50–74 achieves a median 
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25.8% (range: 24.1%-31.8%) breast cancer mortality reduction; annual screening from ages 40–74 

years reduces mortality an additional 12.0% (range: 5.7%-17.2%) vs. no screening, but yields 

1988 more false-positives and 7 more overdiagnoses per 1000 women screened. Annual screening 

from ages 50–74 had similar benefits as other strategies but more harms, so would not be 

recommended.

Sub-population Results—Annual screening starting at age 40 for women who have a two- to 

four-fold increase in risk has a similar balance of harms and benefits as biennial screening of 

average-risk women from 50–74.

Limitations—We do not consider other imaging technologies, polygenic risk, or non-adherence.

Conclusion—These results suggest that biennial screening is efficient for average-risk groups, 

but decisions on strategies depend on the weight given to the balance of harms and benefits.

Primary Funding Source—National Institutes of Health

Introduction

Despite decades of mammography screening for early breast cancer detection, there is no 

consensus on optimal strategies, target populations, or the magnitude of benefits and harms. 

(1–11) Based on data available at the time, the 2009 US Preventive Services Task Force 

(USPSTF) recommended biennial film mammography from ages 50–74, with suggestions 

for shared decision-making about whether to start screening in the 40’s.(12) Since then, 

there are some new data regarding screening benefits,(2,6,8,9,11,13) digital mammography 

has replaced plain film,(14) and increasingly effective breast cancer systemic treatment 

regimens targeting molecular sub-types are in widespread use.(15)

These advances have the potential to affect conclusions about optimal breast cancer 

screening programs.(16) There is also growing interest in personalizing screening based on 

breast density, risk factors, life expectancy, and patient preferences.(16–21) Modeling has 

the advantage of considering these factors and providing a quantitative summary of the net 

balance of harms and benefits that incorporate preferences (utilities), while holding selected 

conditions (e.g., treatment effects) constant, facilitating strategy comparisons.(22,23) 

Collaboration of several models provides a range of plausible effects and illustrates the 

impact of differences in model assumptions.(1,7,24)

We use six well-established simulation models to synthesize new data to examine outcomes 

of biennial or annual digital mammography screening starting at ages 40, 45, or 50 through 

age 74 among average-risk women. In secondary analyses we also examine how breast 

density, and risk- or comorbidity-level affects results, and whether utilities for health states 

related to screening and its downstream consequences affect conclusions. The results are 

intended to contribute to current practice and policy debates.

Methods

The models were developed independently within the Cancer Intervention and Surveillance 

Modeling Network (CISNET) (25–31) and were institutional review board approved. The 

models included model D (Dana-Farber Cancer Institute, Boston, Massachusetts), model E 
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(Erasmus Medical Center, Rotterdam, the Netherlands), model GE (Georgetown University 

Medical Center, Washington, DC and Albert Einstein College of Medicine, Bronx, New 

York), model M (MD Anderson Cancer Center, Houston, Texas), model S (Stanford 

University, Stanford, California), and model W (University of Wisconsin, Madison, 

Wisconsin and Harvard Medical School, Boston, Massachusetts).

Since our earlier analysis,(1) the models have undergone substantial revision to reflect 

advances in breast cancer control, including: portrayal of four distinct molecular subtypes 

based on estrogen receptor (ER) and human epidermal growth factor-2 receptor (HER2) 

status;(24) current population incidence (32) and competing non-breast cancer mortality; 

digital screening; and the most current therapies.(33) All models (except Model S) include 

DCIS. The general modeling approach is summarized below; full details are available at: 

https://resources.cisnet.cancer.gov/registry and (34).

The models begin with estimates of breast cancer incidence (32) and ER/HER2-specific 

survival trends without screening or adjuvant treatment and then overlay data on screening 

and molecular subtype-specific adjuvant treatment to generate observed US population 

incidence and mortality trends.(1,7,16,24,35) Breast cancers have a distribution of 

preclinical screen-detectable periods (sojourn time) and clinical detection points. Digital 

mammography performance characteristics are based on age, first vs. subsequent screen, 

time since last mammogram, and breast density. ER/HER2 status is assigned at diagnosis 

based on stage and age. Molecular sub-type- and stage-specific treatment reduces the 

hazards of breast cancer death (models D, GE, M, and S) or results in a cure for some cases 

(models E and W). Women can die of breast cancer or other causes.

Screen detection of cancer during the preclinical screen-detectable period can result in the 

identification (and treatment) of earlier-stage or smaller tumors than might occur via clinical 

detection, with a corresponding reduction in breast cancer mortality.

We used a cohort of women born in 1970 with average population risk and breast density 

and follow them from age 25 (since breast cancer is rare before this age [0.08% of cases]) 

until death.

Model Input Parameters

The models begin with a common set of age-specific variables for breast cancer incidence, 

digital mammography performance characteristics, ER/HER2-specific treatment effects, and 

average and comorbidity-level specific-non-breast cancer competing causes of death. (34) In 

addition, each group includes model-specific inputs (or intermediate outputs) to represent 

preclinical detectable times, lead-time, and age- and ER/HER2-specific stage distribution in 

screen- vs. non-screen-detected women on the basis of their specific model structure.

(1,7,24–31) These model-specific parameters are based on assumptions about combinations 

of values that reproduce US trends in incidence and mortality, including proportions of 

DCIS that are nonprogressive and would not be detected without screening. Models M and 

W also assume some small nonprogressive invasive cancers. The models adopt an age-

period-cohort modeling approach to project breast cancer incidence rates in the absence of 
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screening;(32,36) Model M uses 1975–79 SEER rates. The models assume 100% adherence 

to screening and the most effective treatment to isolate the effect of screening strategies.

Four models use age-specific digital mammography sensitivity values observed in the Breast 

Cancer Surveillance Consortium (BCSC) for detection of invasive and DCIS cancers 

combined (model S only uses data for invasive cancers). Separate values are used for initial 

and subsequent mammography performed at annual or biennial intervals. An annual interval 

is defined as 9–18 months between examinations and biennial as 19–30 months.(37–39) 

Model D uses these data as input variables (29) and models GE, S, and W use the data for 

calibration.(25,26,28) Models E and M fit estimates from the BCSC and other data.(27,30)

All women with ER-positive tumors receive five years of hormonal therapy (tamoxifen if 

diagnosed <50 years and aromatase inhibitors if ≥50 years) and an anthracycline-based 

regimen accompanied by a taxane. Women with ER-negative invasive tumors receive 

anthracycline-based regimens with a taxane. Those with HER2-positive tumors receive 

trastuzumab. Women with ER–positive DCIS receive hormonal therapy.(15) Treatment 

effectiveness is based on clinical trials and is modeled as a reduction in mortality risk or 

increase in the proportion cured vs. ER/HER2-specific survival in the absence of therapy;

(33) estimates assume women receive local therapy.

Benefits

Screening benefits (vs. no screening or other screening strategies) are measured using 

percent breast cancer mortality reduction, breast cancer deaths averted, and life-years (LYs) 

and quality-adjusted life-years (QALYs) gained because of averted or delayed breast cancer 

death. Benefits (and harms) are accumulated from ages 40–100 years to capture the lifetime 

impact of screening strategies.

To quality-adjust life years, we applied a disutility for age- and gender-specific general 

population health.(40) These were further adjusted to account for additional disutilities 

related to undergoing screening (−0.006 for one week), having an evaluation of a positive 

screen (−0.105 for five weeks), initial treatment by stage (for the first 2 years after 

diagnosis), and distant disease (for the last year of life for all women who die of breast 

cancer).(34,41,42)

Harms

Harms included number of mammograms, false-positive mammograms, benign biopsies, 

and overdiagnosis. We defined the rate of false-positive mammograms as the number of 

mammograms read as abnormal or needing further work-up in women without cancer 

divided by the total number of screening mammograms. Benign biopsies were defined as a 

biopsy recommendation among women with false-positive screening results.(43) 

Overdiagnosis was defined as cases that would not have been clinically detected in the 

absence of screening (because of lack of progressive potential or death from competing 

mortality). The impact of overdiagnosis on QALYs is captured by the disutility for being in a 

cancer state but dying of other causes without a change in life expectancy.
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Analysis

We evaluated eight strategies that varied by starting age (40, 45, 50) and interval (annual, 

biennial, and hybrid [annual in the 40’s and biennial in the 50’s]); all strategies stop 

screening at age 74. We included “no screening” as baseline for the percent mortality 

reduction associated with any given strategy.

We ranked strategies by the number of mammograms performed (or harms) for each model. 

We report the median benefit and range across models. We also obtained an efficiency 

frontier by plotting the sequence of points that represent the largest incremental percent 

mortality reduction (or LYs or QALYs) per mammograms performed or harm entailed. 

Screening strategies that fall on this frontier are the most efficient (i.e., no alternative exists 

that provides more benefit with fewer resources/harms). The most intensive strategy is 

usually the top anchor point on the frontier.

Four models (model D, E, GE, and W) also evaluated how results vary when different 

subpopulations are screened. First, we investigated subpopulations based on their breast 

density: entirely fatty (“a”), scattered density (“b”), heterogeneously dense (“c”) and 

extremely dense (“d”). Based on observed age-specific prevalence rates, density was 

assigned at age 40, and could have remained the same or decreased by one level at age 50 

and again at age 65.(44) Density modified mammography sensitivity and specificity based 

on age, density, interval, and first vs. subsequent screening.(34) Density also modified risk 

of developing breast cancer for age groups 40–49, 50–64, and 65+, using the average 

population density in each age group as the referent category (BCSC unpublished data).

(45,46) Density did not affect molecular subtype or disease natural history. Density results 

were grouped into low (a and b) and high density (c and d) for results presentation.

Additionally, we evaluated results for subpopulations with higher than average risk: 1.3 

(e.g., nullparity or age at first live birth >30), (18,47) 2.0 (e.g., family history of one first 

degree relative), (18) or 4.0 times higher than average-risk (e.g., 2 or more first degree 

relatives).(18,46) Higher risk levels, such as seen with BRCA 1/2 mutations, were not 

considered since such women have specific screening guidelines. Finally, we examined the 

impact on results of combinations of density and risk level. We made the simplifying 

assumption that risk affected incidence, but not other aspects of disease.

In other subpopulation analyses, two models (model E and GE) examined the impact of 

comorbidity-specific vs. overall population competing mortality on upper ages of screening 

cessation based on comorbidity-specific life expectancy.(21,48,49) We compare results for 

continuing to screen biennially past age 74 among women with lower than average 

comorbidity or stopping earlier than 74 for those with moderate or high comorbidity. These 

analyses included women who survived and did not develop breast cancer up until the point 

where screening is to be extended or stopped.

Four models considered the impact of varying the values for disutilities in sensitivity 

analyses to identify if there was a strategy where high disutility would eliminate screening 

benefits. Finally, we evaluated the ability of the models to independently predict external 

trends and results (Appendix 1).
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Role of the Funding Source

We worked with US Preventive Services Task Force and Agency for Healthcare Research 

and Quality (AHRQ) to develop the research question, but they had no role in study conduct. 

NCI investigators (KC, EF) collaborated on the research in their role as scientific project 

officers.

Results

Benefits

The models produced consistent rankings of screening strategies (Table 1). Biennial 

screening from ages 50 to 74 yielded a median 25.8% reduction in breast cancer mortality 

compared to no screening (range: 24.1%-31.8). Annual screening led to slightly greater 

reductions in mortality than biennial strategies. Rankings were similar for LYs and QALYs. 

For all benefit metrics (Table 2), strategies that included initiation at age 45 yielded results 

intermediate between those beginning at 40 and 50.

Incremental benefits of starting screening at age 40 vs. 50 were slightly greater in terms of 

breast cancer deaths averted for annual and biennial screening (median 1.3 [range: 1.1–1.7] 

vs. 1.0 [0.8–1.7] per 1000 women screened, respectively). (Table 3) Biennial strategies 

maintained a median of 79.8%-81.3% of the mortality reduction of annual screening (range 

across strategies and models 68.3–98.9%) (Table 4).

Harms

All of the models projected more false-positive results, benign biopsies, and overdiagnosed 

cases under annual vs. biennial schedules and starting at age 40 vs. age 50 (Table 2). For 

instance, if biennial screening began at age 40 instead of age 50, for every 1000 women 

screened there would be a median of 1 more death averted, but 576 more false-positive 

results, 58 benign biopsies, and 2 added overdiagnosed cases.

Efficiency Frontiers

Biennial strategies starting at age 40, 45, and 50 would generally be considered efficient 

when examining the balance of screening benefits and harms (Figure 1 and Appendix Figure 

2). The hybrid strategies of annual screening starting at age 40 or 45, followed by biennial 

screening at age 50 were close to being efficient. Annual screening from ages 50 to 74 

yielded the same or fewer benefits than the next least intensive strategy in all or most models 

depending on the measure of benefits, but required more mammograms or had more harms 

(i.e., was dominated), so would not be considered efficient.

Subpopulation Analyses

The rankings of strategies did not change when screening was targeted to groups with 

increasing risk levels; annual screening from ages 50 to 74 remained dominated across all 

risk levels (not shown). However, the balance of harms and benefits differed by risk group, 

with women who had higher risk having lower rates of false positives and higher gains from 

screening than lower risk groups. Screening higher risk women also yielded a lower 

proportion of overdiagnosed cases per death averted than screening women of average-risk.

Mandelblatt et al. Page 8

Ann Intern Med. Author manuscript; available in PMC 2016 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For women with a two- to four-fold increase in risk, annual screening starting at age 40 or 

45 had a similar or more favorable harm to benefit ratio (based on false positives) as biennial 

screening average-risk women from 50–74. For instance, for every 1000 average-risk 

women screened biennially from 50–74, there would be 226.5 (range: 169.9–267.0) false 

positives per death averted. If women with a two-fold increase in risk begin annual screening 

at age 40, their corresponding ratio would be slightly more favorable at 200.7 (range: 177.5–

232.2). For women with a 1.3 fold increase in risk, biennial screening starting at age 40 

would have similar harm to benefit ratios as biennial screening of average-risk women from 

ages 50–74.

Considering breast density group (low vs. high) changed absolute benefits, but did not affect 

ranking of the strategies, and for all metrics, annual screening from 50–74 remained 

dominated for all breast density groups. Women in the low density group had a greater 

proportion of their cancers detected and therefore greater mortality reduction than those in 

the high density group. However, women in the high density group had a greater absolute 

number of cancers because the incidence of cancer was higher in these women, therefore 

more life years were saved among women in the high density group (not shown).

For women with no comorbidity, biennial screening could continue to age 78 or 80 and still 

have similar harm to benefit ratios as screening women of average comorbidity biennially 

from 50–74. However, for women with moderate to severe comorbidity, the comparable 

ratios were equivalent at about age 68 (not shown).

Sensitivity Analyses

Consideration of utilities for usual health, screening, diagnosis, and treatment decreases 

estimates of QALYs but does not affect ranking of strategies (Table 1). The largest 

decrement related to quality adjustment accrues because of declines in health as women age. 

There are also substantial decrements in QALYs attributed to the disutility of undergoing 

diagnostic evaluation of an abnormal screening exam and for having cancer. The disutility 

associated with undergoing screening itself has a minimal impact on QALYs. Overall, there 

are persistent QALY gains under all screening strategies, but the magnitude becomes smaller 

when the highest disutility estimates are used. (34)

Discussion

This study used six established models with differing approaches and assumptions to 

estimate the potential efficacy of various US screening strategies based on risk, breast 

density, and comorbidity. All six modeling groups project some benefits associated with 

screening average-risk women from 40 to 49. The models consistently rank strategies and 

conclude that biennial screening strategies are most frequently efficient. Screening initiation 

at age 40 for average-risk women has the greatest benefit, but also the greatest harms. While 

absolute benefits vary, the ranking of strategies was not affected by risk level or breast 

density. Annual screening of women with a two to four-fold increased risk from ages 40–74 

had comparable harms to benefits ratios as biennial screening from age 50 to 74 in average-

risk populations. Consideration of quality of life reduced, but did not eliminate the 
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magnitude of benefits from all strategies. Among women with severe or moderate levels of 

comorbidity, harms of screening outweighed benefits before age 74.

The results of this collaborative modeling research indicate that digital mammography 

screening of populations of average-risk women in their 40’s modestly lowers mortality and 

extends the length of life. This conclusion was seen in all models, although the absolute 

benefit varied based on model structure and assumptions.

Similar to our 2009 analysis,(1) biennial strategies are most consistently on the efficiency 

frontier. Screening annually from ages 50–74 had fewer benefits for any given harm (or 

resource use) under virtually all circumstances. However, annually screening in the 40’s 

followed by biennial screening at age 50, or the most intensive schedule evaluated (annual 

screening 40–74) were also on the efficiency frontier, and might be considered depending on 

preferences for thresholds of harms relative to benefits. While we only evaluated two 

starting ages in the 40’s, we found that screening benefits and harms for younger women 

seem to exist on a continuum.

This analysis extends our prior work by explicitly considering overdiagnosis. Depending on 

screening strategy, the models estimated that from 2% to 12% of invasive and 30% to 50% 

of DCIS cases may represent overdiagnoses. While the models differed in absolute 

estimates, they agreed on how overdiagnosis affects the ranking of strategies and that the 

majority of overdiagnosed cases were DCIS. The model results for overdiagnosis are not 

directly comparable to other published estimates (8,50) since the models followed women 

for their entire lives and considered competing mortality; the models also made assumptions 

about input parameters. While there is no agreement on methods to estimate (51) or the true 

rate of overdiagnosis,(52,53) there is agreement that it can lead to harm. Active surveillance 

for low-risk DCIS is one potential future approach to reduce harms from overdiagnosis of 

DCIS. More information is also needed on consumer knowledge of and willingness to risk 

overdiagnosis.(54)

The balance of harms to benefits became more favorable as underlying risk levels increased, 

but our results did not suggest that screening strategies necessarily need to be tailored by 

breast density, at least when grouped into low/high categories. Our results may differ from 

past studies of screening based on breast density,(20,55) since we modeled established 

digital mammography. While optimized for density, digital sensitivity is still lower in 

women with dense than non-dense breasts.(56–58) Improving outcomes for women with 

dense breasts may require dual consideration of risk and density,(58) and/or use of 

technology that employs alternative approaches to tissue visualization, such as 

tomosynthesis (59,60) or breast-specific gamma imaging,(61,62) or identification of genetic 

risk markers.(63–65)

Consistent with other analyses of screening upper age limits,(21,66–68) and other 

recommendations,(12,69) our results suggested that the balance of harms and benefits of 

screening was affected by competing mortality, so that age of screening cessation should be 

tailored by comorbidity levels.
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Overall, this study has several important strengths including collaboration of six independent 

modeling groups, consideration of digital technology, incorporation of increasingly effective 

treatments, and consideration of risk factors, breast density, and comorbidity levels. (70) The 

conclusions about the ranking of screening strategies are robust and should provide greater 

credibility than inferences based on one model alone. Despite this, there are several caveats 

that should be considered in evaluating our results. First, we assumed 100% adherence to 

screening, prompt evaluation of abnormal results, and full use of optimal treatment to 

evaluate program efficacy. Benefits will always fall short of the projected results since 

adherence is not perfect. If actual adherence varies systematically by age, risk, or other 

factors, it is also possible that the ranking of strategies could change. Second, we did not 

consider other imaging technologies, such as computer-aided detection,(71) tomosynthesis, 

or magnetic resonance imaging (MRI). Performance data for general populations are still 

emerging,(60) so this will be important to consider once additional data are available. Next, 

we assumed that risk factors influenced incidence but did not affect disease natural history. 

Since certain risk factors are associated with higher false-positive rates than average,(38) the 

use of non-risk adjusted test specificity could have under-estimated false-positive rates. 

Also, we acknowledge that certain risk factors, such as family history, are age-dependent in 

their effects.(18,72) Since we held relative risk levels constant over age, our benefit 

estimates could be over- or under-estimated for specific risk factors.(16) We did not consider 

polygenic risk; this is an important emerging area for future research.(73,74) Last, compared 

to our earlier research,(1) the models all estimated similar, but somewhat greater mortality 

reductions from screening (e.g., 22% vs. 25.8% median mortality reduction with biennial 

screening from 50–74 in 2009 vs. current models, respectively). The primary reasons for this 

modeled improvement relate to the increased sensitivity of digital vs. film mammography, 

advances in molecular sub-type directed-adjuvant therapy, and changes in underlying breast 

cancer trends.

Overall, the evaluation of screening strategies by the six models suggests that optimal 

program design for average-risk women would continue to be based on biennial intervals. 

Choices about optimal ages of initiation and cessation will ultimately depend on program 

goals, weight attached to the balance of harms and benefits,(75) and considerations of 

efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Efficiency Frontier for Harms (Average Number of Screening Examinations) and 
Benefits (Life Years Gained) for Exemplar Model by Screening Strategy
The panel shows an efficiency frontier graph for an exemplar model (model D); comparable 

graphs are included on Appendix Figure 2 for all 6 models.

The graph plots the average number of mammograms per 1,000 women against the life-

years gained for each screening strategy (vs. no screening). We plot efficient strategies (i.e., 

those in which increases in mammography use results in greater life-years gained than the 

next least-intensive strategy). The line between strategies represents the “efficiency frontier.” 

Strategies on this line would be considered efficient because they achieve the greatest gain 

per mammography used compared with the point (or strategy) immediately below it. Points 

that fall below the line are not as efficient as those on the line. When the slope in the 

efficiency frontier plot levels off, the additional life-years gained per increase in 

mammography are small relative to the previous strategies and could indicate a point at 

which additional screening might be considered as having a low return (benefit).

Black strategies are efficient; dark grey strategies are close to the efficiency frontier; and 

light grey strategies are dominated (inefficient). Biennial strategies are indicated with a 

square; hybrid strategies (annual in the 40’s, followed by biennial from 50–74) are 

represented by a triangle, and annual strategies with a circle. Efficiency frontiers for other 

harm and benefit metrics can be found at: (34)
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