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Collaborative Multicast Beamforming for Content

Delivery by Cache-enabled Ultra Dense Networks
H. T. Nguyen, H. D. Tuan, T. Q. Duong, H. V. Poor, and W-J. Hwang

Abstract—Caching and multicast have surged as an effective
tool to alleviate the heavy load from the backhaul links while
enabling the content-centric delivery in communication networks.
The main focus was about cache placements to manage the
network delay and backhaul transmission cost. An important
issue of optimizing the cost efficiency in content delivery has not
been addressed. The paper tackles this issue by proposing col-
laborative multicast beamforming at cache-enabled ultra-dense
networks. Our objective is to maximize the cost efficiency, which
is defined as the ratio of the content throughput to the sum of
power consumption and backhaul cost, in providing the quality-
of-service for content delivery. Zero-forcing beamforming and
generalized zero-forcing beamforming are employed to force the
multi-content interference to zero or mitigate it while amplifying
the desired signals for users. These problems of the collaborative
multicast beamforming design are computationally difficult. We
develop path-following algorithms, which invoke a simple convex
quadratic program at each iteration, for their solution. Numerical
results are provided to demonstrate the computational efficiency
of the proposed algorithms and also give insights into the impact
of caching on the cost efficiency.

Index Terms—Content-centric communications, caching, mul-
ticast, collaborative beamforming, cost efficiency, quality-of-
service constraint, non-convex optimization, path-following al-
gorithm.

I. INTRODUCTION

In face of the quantum increased communication demand

from social networking platforms, the global mobile data

traffic is expected to exponentially grow in the 5th generation

cellular networks (5G) [1], [2]. Content-centric communica-

tions [3] have been introduced to support the content-service,

which is one of the 5G’s features. Multicast for content items

that are concurrently requested by users is a practical way to

save the data traffic in content-service communications [4].

Multicast beamforming has been addressed in [5], [6].
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Deployment of spatially distributed small base stations

(SBSs) is a 5G tool for increasing the network throughput

or enhancing the throughput at the cell-edge users. However,

the promises cannot hold during the high-peak traffic time due

to the bandwidth limitation of the backhaul links, which are

the backbone links between SBSs and the core network [7],

[8]. By equipping SBSs with local storage of high processing

rate [9], caching at the SBSs is considered as an effective way

to alleviate the burden on the backhaul links [8], [10].

Mixed caching and multicast have been discussed in [11]–

[13] in the context of heterogeneous networks of SBSs and

macro base stations (MBS) serving multiple users. A scheme

of unicast transmissions for the disperse popular content items

that are cached at SBSs and a multicast transmission by

an MBS for the concurrently requested content items was

proposed in [11]. A network of an MBS, which stores all

content items, and SBSs, which store a limited number of

content items was considered in [12]. A stochastic content

multicast scheduling was proposed to minimize the average

network delay and power costs when the MBS and the SBSs

operate nonconcurrently. By taking into account the backhaul

constraints, [13] examined the successful transmission proba-

bility in a large-scale heterogeneous network of MBSs storing

the same content items and SBSs storing different content

items randomly.

As the existing works on caching were mainly interested

in alleviating the burden on the backhaul links or shortening

the transmission delay, only a few works have studied the

impact of caching on energy efficiency (EE), which is one of

the important performance metrics in 5G [14]. For instance,

the relationship between the EE and cache hit ratio in user-

centric networks was investigated in [15]. Some key factors

that contribute to the EE gain by caching have been identified

in [16]. An EE-aware multicast beamforming in the context

of cache-enabled cloud radio access networks was considered

[17], which requires a high computational cost with no guar-

anteed optimality.

The present paper considers content-centric communications

by ultra-dense networks (UDNs) [18], [19], which consist

of the large numbers of cache-enabled spatially distributed

SBSs. The delivery of the cached content items is expected

to be cost-efficient since there is no need to fetch them from

the core network. In contrast, the central process needs to

fetch the cache-missed content items to SBSs through the

backhaul links, which are not only costly but also limited.

The users form disjoint clusters based on their requests, i.e.

those that request the same content belong to the same cluster.

On the other hand, those SBSs that have the same content



at their disposal also form a collaborative multicast group

to deliver this content via multicast transmission. Thus, each

SBS can belong to several multicast groups and each users’

cluster can be served by multiple SBSs. As a result, our

challenges are dealing with diverse interferences such as SBS

interference and multi-content interference. We consider the

problem of collaborative multicast beamforming to maximize

the network cost efficiency, in terms of the ratio of the sum

content throughput and the sum of the consumption power and

backhaul cost for fetching the cache-missed contents, under a

quality-of-service (QoS) constraint in terms of their throughput

thresholds. To achieve computational tractability, beamformers

are sought in the class of zero-forcing (ZF) beamforming

or generalized zero-forcing (GZF) beamforming1. Unlike the

user throughput in user-centric communication, which is ob-

viously a smooth function of beamforming vectors (see e.g.

[24]–[26] and [27]), the content throughput is no longer a

smooth function. Consequently, such beamforming designs are

modeled as nonconvex and nonsmooth optimization problems,

which are computationally difficult. We aim to propose path-

following computational procedures of low-complexity com-

putation, which invoke a simple convex quadratic program in

each iteration, for their solution.

The rest of this paper is organized as follows. The problem

statement is presented in Section II. Collaborative multicast ZF

beamforming is developed in Section III while collaborative

multicast GZF beamforming is developed in Section IV.

Numerical results are presented in Section V and conclusions

are drawn in Section VI.

Notation: Boldface upper denote matrices, bold lower-case

letters denote column vectors, and lower-case letters denote

scalars, respectively. The Hermitian transpose operator is

represented by (.)H . ‖.‖ and |.| denote the Euclidean norm

and the absolute value of a complex scalar, respectively. The

notation ℜ{.} denotes the real part of a complex number. A

Gaussian vector x with mean µ and covariance σ2
n is denoted

by x ∼ CN (µ, σ2
n). |A| for the set A is its cardinality.

II. PROBLEM STATEMENT

Consider an ultra-dense downlink network consisting of

NBS spatially distributed Nt-antenna SBSs indexed by Q =
{1, . . . , NBS} to serve Nu single-antenna users (UEs) as

illustrated in Fig. 1. Each SBS’s cache stores Ns contents.

There are a total of Nc contents, which are either distributed

among SBS caches or are stored in the database at the central

processor (CP). The capacity size of all content items is Cf .

Each SBS cannot store all Nc contents, so Ns < Nc [28].

Denote by Fq , q ∈ Q the set of the content items in SBS q’s

cache. Thus, it is true that |Fq| ≤ Ns, ∀q ∈ Q.

Each UE requests only one content at each interval time.

The content popularity is distributed according to a Zipf-like

distribution [29], in which the requesting probability of the

f -th content item is defined by

pf =
f−δ

∑Nf

j=1 j
−δ

.

1ZF beamforming in caching frameworks has been widely investigated to
minimize the normalized delivery time [20]–[23].

Fig. 1. An example of content-centric communications

where δ > 0 is the skew parameter and

Nc
∑

f=1

pf = 1. The

popularity distribution becomes more skewed towards the most

popular content as the skew parameter δ increases. In contrast,

less popular content items are more likely to be requested

whenever δ is low. UEs request content items with the prob-

ability according to their popularity. Let M = {s1, . . . sM},
with 1 ≤M ≤ Nu be the set of the requested contents. A UE

that requests sm that is missed in any SBS cache, acquires

the service of the Nf nearest SBSs. Accordingly, the CP must

fetch such cache-missed sm to these SBSs.

Define Km as the cluster of those UEs who request the same

content item sm

Km , {1m, . . . , |Km|m}, |Km| ≤ Nu.

Accordingly,

Qm , {m1, . . . ,m|Qm|} ⊂ Q, |Qm| ≤ NBS

is the set of SBSs that have content item sm in their disposal.

The UEs are clustered according to their requested content

items, but not relying on their locations, so Qm ∩Qn may be

not empty.

Each sm is beamformed by vector wmi
∈ C

Nt at SBS

mi ∈ Qm before the transmission. The signal received at UE

km is

ykm
=

|Qm|
∑

i=1

hH
km,mi

wmi
sm +

∑

ℓ 6=m

|Qℓ|
∑

j=1

hH
km,ℓjwℓjsℓ + nkm

,

(1)

where hkm,ℓj ∈ C
Nt is the channel vector from SBS ℓj to UE

km and nkm
∼ CN (µ, σ2

n) is the background noise. For

wm ,





wm1

...
wm|Qm|



 ∈ C
Nt.|Qm|,w = (w1, . . . ,wm),

the signal-to-interference-plus-noise-ratio (SINR) at UE km is

γkm
(w) =

|hH
km,mwm|2

∑

ℓ 6=m |hH
km,ℓwℓ|2 + σ2

. (2)



The throughput of sm is defined by

ρm(w) , min
k=1,...,|Km|

ln(1 + γkm
(w)),

so QoS for multicasting sm is set as

ρm(w) ≥ γm,m = 1, . . . ,M, (3)

where γm is the delivery rate threshold for sm.

Given a power budget Pmax, the power constraint at each

SBS n ∈ Q is
∑

m: n∈Qm

‖wmn
‖2 ≤ Pmax, n = 1, . . . , NBS . (4)

The total power consumption is defined as

τ(w) = α

NBS
∑

n=1

∑

m: n∈Qm

‖wmn
‖2 + Pnon, (5)

where α > 1 is the reciprocal of the drain efficiency of the

amplifier of SBSs and

Pnon = NtNBSPa,

with the per-antenna circuit power Pa of SBSs.

For a cache-missed sm, the backhaul cost in fetching to a

SBS via the backhaul link is its delivery rate. Thus, the total

cost for fetching sm to SBSs in cluster Qm is 2

|Qm|ρm(w). (6)

Let MF be the set of the cache-missed contents. The total

backhaul cost is
∑

m:sm∈MF

|Qm|ρm(w). (7)

To have a computationally tractable formulation, instead of (7)

we use its upper bound

χ(w) ,
∑

m:sm∈MF

|Qm|
|Km|

|Km|
∑

k=1

ln(1 + γkm
(w)). (8)

In this paper we consider the following optimization prob-

lem

max
w,(w1,...,wM )

∑M
m=1 ρm(w)

τ(w) + χ(w)
s.t. (3), (4). (9)

The objective function in (9) expresses the network cost

efficiency because its numerator is the sum content throughput

while its denominator is the sum of the consumption power

and backhaul cost for fetching the cache-missed content items.

As such, (9) is the problem of maximizing the cost efficiency

subject to the QoS constraint (3) and power constraint (4).

When there is no backhaul cost term χ(w) in the denominator,

the objective function in (9) is the conventional EE and (9) is

the problem of EE maximization.

For problem (9), like [17], the conventional assumption is

that full channel state information (CSI) is available, which is

practical for UDNs, where the propagation environment does

not change rapidly due to the slow mobility of their UEs,

making channel estimation effective and not costly.

2Recall that |Km| is the number of SBSs that transmit sm

One can see that (9) is a large-dimensional nonconvex

optimization problem, which is computationally prohibitive

in general. Our next sections are devoted to seeking the

beamformers wmn
in the class of ZF or GZF beamforming,

under which problem (9) is transformed to that of their power

allocation with the problem dimension essentially reduced,

paving effective computation.

III. ZERO-FORCING BEAMFORMING

A. Specialized optimization formulation

Under the definitions

ym ,





y1m
...

y|Km|m



 ∈ C
|Km|,hkm,ℓ ,





hkm,ℓ1

...
hkm,ℓ|Qℓ|



 ∈ C
Nt.|Qℓ|,

nm ,





n1m

...
n|Km|m



 ∈ C
|Km|,

and

Hm,ℓ ,





hH
1m,ℓ

...
hH
|Km|m,ℓ



 ∈ C
|Km|×(Nt.|Qℓ|),

Hm ,





H1,m

...
HM,m



 ∈ C
Nu×(Nt.|Qm|)

we can rewrite (1) in a compact form as





y1

...
yM



 =





H1,1 ... H1,M

... ... ...
HM,1 ... HM,M









w1s1
...

wMsM



+





n1

...
nM





=

M
∑

m=1

Hmwmsm +





n1

...
nM



 . (10)

For m = 1, . . . ,M , define the interfering matrix

H−m =

















H1,m

...
Hm−1,m

Hm+1,m

. . .
HM,m

















∈ C
(Nu−|Km|)×(Nt|Qm|). (11)

Under the assumption

Nu − |Km| < Nt|Qm|,m = 1, . . . ,M, (12)

that requires that each content sm is available in a sufficient

number of SBSs, we seek wm in the ZF class

H−mwm = 0Nu−|Km|,m = 1, . . . ,M, (13)

which forces the multi-content interference to zero, or equiv-

alently,

wm = Nmxm,m = 1, . . . ,M, (14)



where Nm ∈ C
(Nt.|Qm|)×(Nt.|Qm|−ηm) is the zero base of

H−m, ηm is the rank of H−m and xm ∈ C
Nt.|Qm|−ηm . By

partitioning

Nm =





Nm1

. . .
Nm|Qm|



 ,Nmi
∈ C

Nt×(Nt.|Qm|−ηm),

it follows that

wmi
= Nmi

xm, i = 1, . . . , |Qm|. (15)

The power constraint (4) at each SBS n ∈ Q becomes

∑

m:n∈Qm

||Nmn
xm||2 ≤ Pmax, n = 1, . . . , NBS . (16)

The power consumption defined from (5) is the convex

quadratic function

t(x1, . . . ,xm) = α

NBS
∑

n=1

∑

m: n∈Qm

||Nmn
xm||2 + Pnon.

The SINR in (2) at UE Km is simplified to

γkm
(xm) =

|hH
km,mNmxm|2

σ2
, (17)

while QoS constraint (3) becomes

rm(xm) ≥ γm, m = 1, . . . ,M

⇔ Γ(x) ≥ 1 (18)

for

rm(xm) , min
k=1,...,|Km|

ln(1 +
|hH

km,mNmxm|2
σ2

),

and

Γ(x) , min
m=1,...,M

min
k=1,...,|Km|

|hH
km,mNmxm|2
(eγm − 1)σ2

.

The problem (9) under the ZF class (13) is specialized to the

following optimization problem

max
x=(x1,..., xm)

E(x) ,
∑M

m=1 rm(xm)

t(x) +
∑

m: sm∈MF

|Qm|
|Km| r̄m(xm)

s.t. (16), (18), (19)

where

r̄m(xm) ,

|Km|
∑

k=1

ln

(

1 +
|hH

km,mNmxm|2
σ2

)

.

To the authors’ best knowledge, problem (19) has not been

considered in the literature so far. The numerator of the

objective function in (19) is not only nonconcave (preventing

of exploiting Dinkelbach’s iterations) but is non-differentiable

(preventing of exploiting gradient-based methods such as

Frank-and-Wolfe’s), while its denominator is also a nonconvex

function. The next subsection is devoted to its computation.

B. ZF Path-following Method

A path-following method starts from an initial feasible

point x
(0) = (x

(0)
1 , . . . ,x

(0)
M ) for (19) and then at the κ-

th iteration for κ = 0, 1, . . . , it generates a feasible point

x
(κ+1) = (x

(κ+1)
1 , . . . ,x

(κ+1)
M ) which is better than the

incumbent x(κ) = (x
(κ)
1 , . . . ,x

(κ)
M ).

1) Initialization step: To find a feasible point for (19)

consider the problem

max
x

Γ(x) s.t. (16). (20)

For easy of presentation, define the linear mapping

λkm,ℓ(xℓ) = hH
km,ℓNℓxℓ. (21)

For all xm and x
(κ)
m , it is true that

|hH
km,mNmxm|2 = |λkm,m(xm)|2

≥ ℓ
(κ)
km,m(xm)

, 2ℜ{λ∗
km,m(x(κ)

m )λkm,m(xm)}
−|λkm,m(x(κ)

m )|2, (22)

where the function ℓ
(κ)
km,m is affine. Initialized by any feasible

point x
(0)
m for the convex constraint (16), at the κ-th iteration

we solve the convex optimization problem3

max
x

Λ(κ)(x) , min
m=1,...,M

min
k=1,...,|Km|

ℓ
(κ)
km,m(xm)

(eγm − 1)σ2

s.t. (16), (23)

to generate x
(κ+1). Note that

Λ(κ)(x) ≤ Γ(x) ∀ x (24)

thanks to (22) and Λ(κ)(x(κ)) = Γ(x(κ)), which can be

easily verified. Moreover, Λ(κ)(x(κ+1)) > Λ(κ)(x(κ)) as far

as x
(κ+1) 6= x

(κ) because x
(κ+1) is the optimal solution of

(23) while x
(κ) is its feasible point. Therefore,

Γ(x(κ+1)) ≥ Λ(κ)(x(κ+1)) > Λ(κ)(x(κ)) = Γ(x(κ)).

Till reaching

Γ(x(κ+1)) ≥ 1, (25)

to satisfy the QoS constraint (18), we reset x(0) ← x
(κ+1) for

the next iteration.

2) The κ-th iteration: Let x(κ) be the feasible point for

(19), which is found from the (κ−1)th iteration. By inequality

(A.4) in the appendix,

ln
(

1 + |λkm,m(xm)|2/σ2
)

≥ r
(κ)
ZF,km,m(xm), (26)

where

r
(κ)
ZF,km,m(xm)

△
=a

(κ)
km,m + b

(κ)
km,m(1− |λkm,m(x

(κ)
m )|2

ℓ
(κ)
km,m(xm)

), (27)

3Function Λ(κ)(x) is concave as pointwise minimization of affine functions
[30]



Algorithm 1 Path-following algorithm for ZF beamforming

Initialize Iterate (23) for a feasible point x(0). Set κ := 0.

repeat

Solve the quadratic program (31) for the optimal solution

x
(κ+1).

Reset κ← κ+ 1.

until convergence

which is a concave function, and

0 < a
(κ)
km,m = ln(1 + |λkm,m(x

(κ)
m )|2/σ2),

0 < b
(κ)
km,m =

|λkm,m(x
(κ)
m )|2/σ2

1 + |λkm,m(x
(κ)
m )|2/σ2

.
(28)

The function

r
(κ)
ZF,m(xm) , min

k=1,...,|Km|
r
(κ)
ZF,km,m(xm),

is concave 4 and satisfies

r
(κ)
ZF,m(xm) ≤ rm(xm) (29)

with r
(κ)
ZF,m(x

(κ)
m ) = rm(x

(κ)
m ), m = 1, . . . ,M .

On the other hand, by using inequality (A.7) in the appendix

we obtain

r̄m(xm) ≤r̄up,(κ)ZF,m (xm)

,

|Km|
∑

k=1

[

ln

(

1 +
|λkm,m(x

(κ)
m )|2

σ2

)

+

(

1 +
|λkm,m(x

(κ)
m )|2

σ2

)−1

×
(

|λkm,m(xm)|2
σ2

− |λkm,m(x
(κ)
m )|2

σ2

)]

. (30)

The function r̄
up,(κ)
ZF,m (xm) is convex and satisfies r̄m(x

(κ)
m ) =

r̄
up,(κ)
ZF,m (x

(κ)
m ).

At the κth iteration, we solve the following convex opti-

mization problem to generalize the next feasible point x(κ+1)

for (19)

max
x

Υ(x) ,

M
∑

m=1

r
(κ)
ZF,m(xm)− E(x(κ))

×
(

t(x) +
∑

m:sm∈MF

|Qm|
|Km|

r̄
up,(κ)
ZF,m (xm)

)

s.t. (16),Λ(κ)(x) ≥ 1. (31)

Due to (24), each feasible point for (31) is also feasible for

(19). Note that x(κ) is a feasible point for (31) with

Υ(x(κ)) = 0.

4The function r
(κ)
ZF,m

is concave as a pointwise minimum of concave

functions [30]

Therefore, as far as x
(κ+1) 6= x

(κ), it is true that

Υ(x(κ+1)) > 0

⇔
M
∑

m=1

r
(κ)
ZF,m(x(κ+1)

m )/
[

t(x(κ+1))

+
∑

m:sm∈MF

|Qm|
|Km| r̄

up,(κ)
ZF,m (x

(κ+1)
m )

]

> E(x(κ)).

But by (29) and (30),

E(x(κ+1)) ≥
M
∑

m=1

r
(κ)
ZF,m(x(κ+1)

m )/
[

t(x(κ+1))

+
∑

m:sm∈MF

|Qm|
|Km|

r̄m(x(κ+1)
m )

]

,

so

E(x(κ+1)) > E(x(κ)), (32)

implying the x
(κ+1) is a better feasible point for (19) than

x
(κ). As such, Algorithm 1 at least converges to a locally

optimal solution of (19) [31].

IV. GENERALIZED ZERO-FORCING BEAMFORMING

A. Specialized optimization Formulation

Without the assumption (12), a nonzero wm to satisfy

the ZF condition (13) may not exist. A natural approach

is to satisfy the zero-forcing condition for the rank-ηm best

approximation of H−m for ηm < Nt.|Qm| as follows. Make

the singular-value decomposition (SVD)

H−m = U−mΣ−mV−m,

with unitary matrices U−m ∈ C
(Nu−|Km|)×(Nu−|Km|) and

V−m ∈ C
(Nt.|Qm|)×(Nt.|Qm|) and diagonal Σ−m with singu-

lar values in decreasing order on its diagonal. By keeping only

the ηm largest eigenvalues and resetting the other on diagonal

to zero to obtain matrix Σ̃−m, the best rank-ηm approximation

of H−m is obtained as

H̃−m = U−mΣ̃−mV−m.

By the Eckart and Young Theorem,

||H−m − H̃−m||F = σηm+1,

where σηm+1 is the (ηm+1)-th largest singular eigenvalue of

H−m. For simplicity, we choose ηm as

ηm = ⌊Nt.|Qm|
2

⌋. (33)

We thus seek wm in the GZF class

H̃−mwm = 0, (34)

or equivalently wm and wmi
are in forms (14) and (15), where

Nm ∈ C
(Nt.|Qm|)×(Nt.|Qm|−ηm) is the zero base of H̃−m.

Define the convex quadratic function

βkm,m(x) =
∑

ℓ 6=m

|λkm,ℓ(xℓ)|2 + σ2. (35)



Recalling definition (21), SINR (2) at UE km is now special-

ized to

γkm
(x) =

|λkm,m(xm)|2
βkm,m(x)

, (36)

while the QoS constraint (3) is

rm(x) ≥ γm, m = 1, . . . ,M,

⇔ Γ(x) ≥ 1

⇔ Ψ(x) ≤ 1 (37)

for

rm(x) , min
k=1,...,|Km|

ln(1 +
|λkm,m(xm)|2
βkm,m(x)

),

and

Γ(x) , min
m=1,...,M

min
k=1,...,|Km|

|λkm,m(xm)|2
(eγm − 1)βkm,m(x)

,

and

Ψ(x) , [Γ(x)]−1

= max
m=1,...,M

max
k=1,...,|Km|

(eγm − 1)βkm,m(x)

|λkm,m(xm)|2 .

It should be realized that

λkm,l(xl) = 0 (38)

whenever rank(H−m) = ηm, and

|λkm,l(xl)|2 ≤ σ2
ηm+1||Nℓxℓ||2. (39)

For the convex quadratic function t(x) defined by (5), the

problem (9) under the GZF condition (34) is specialized to

the following optimization problem:

max
x

E(x) ,
M
∑

m=1

rm(x)/

[

t(x) +
∑

m:sm∈MF

|Qm|
|Km|

r̄m(x)

]

s.t. (16), (37), (40)

where

r̄m(x) ,

|Km|
∑

k=1

ln

(

1 +
|λkm,m(xm)|2
βkm,m(x)

)

.

B. GZF Path-following Method

1) Initialization step: To find a feasible point for (40) we

need to consider the problem

min
x

Ψ(x) s.t. (16). (41)

Recalling definition (21) and (22) for the linear functions

λkm,m(xm) and ℓ
(κ)
km,m(xm), initialized by any feasible point

x
(0) for the convex constraint (16), at the κ-th iteration we

solve the convex optimization problem

min
x

Ψ(κ)(x) s.t. (16), (42a)

ℓ
(κ)
km,m(xm) > 0, k = 1, . . . , |Km|;m = 1, . . . ,M, (42b)

for5

Ψ(κ)(x) , max
m=1,...,M

max
k=1,...,|Km|

(eγm − 1)βkm,m(x)

ℓ
(κ)
km,m(xm)

to generate x
(κ+1)
m . Note that Ψ(κ)(x) ≥ Ψ(x) by (22), so

Ψ(x(κ+1)) ≤ Ψ(κ)(x(κ+1)) < Ψ(κ)(x(κ)) = Ψ(x(κ)).

Till reaching

Ψ(x(κ+1)) ≤ 1 (43)

to satisfy the QoS constraint (37), we then reset x(0) ← x
(κ+1)

for the next iterative process.

2) The κ-th iteration: Let x(κ) be the feasible point for

(40) found from the (κ − 1)th iteration. By inequality (A.2)

in the appendix,

ln(1 +
|λkm,m(xm)|2
βkm,m(x)

) ≥ r
(κ)
GZF,km,m(x), (44)

over the trust region (42b), where

r
(κ)
GZF,km,m(x)

△
=a

(κ)
km,m + b

(κ)
km,m

× (2− |λkm,m(x
(κ)
m )|2

ℓ
(κ)
km,m(xm)

− βkm,m(x)

βkm,m(x(κ))
),

(45)

which is a concave function with

0 < a
(κ)
km,m = ln(1 + |λkm,m(x(κ)

m )|2/βkm,m(x(κ))),

0 < b
(κ)
km,m =

|λkm,m(x
(κ)
m )|2/βkm,m(x(κ))

1 + |λkm,m(x
(κ)
m )|2/βkm,m(x(κ))

.
(46)

The function

r
(κ)
GZF,m(x) , min

km=1,...,|Km|
r
(κ)
GZF,km,m(x)

is concave, which satisfies r
(κ)
GZF,m(x) ≤ rm(x) and

r
(κ)
GZF,m(x(κ)) = rm(x(κ)).

On the other hand, by using the inequality (A.5) in the

appendix and also (44), we obtain

r̄m(x) ≤ r̄
up,(κ)
GZF,m(x)

,
1

|Km|

|Km|
∑

k=1

[

ln

(

1 +
|λkm,m(x

(κ)
m )|2

βkm,m(x(κ))

)

+

(

1 +
|λkm,m(x

(κ)
m )|2

βkm,m(x(κ))

)−1

×
(

|λkm,m(xm)|2

L(κ)
km

(x) + σ2
− |λkm,m(x

(κ)
m )|2

βkm,m(x(κ))

)]

,

over the trust region

L(κ)
km

(x) > 0, k = 1, . . . , |Km|, (47)

for

L(κ)
km

(x) ,
∑

ℓ 6=m

[

2ℜ{(λkm,ℓ(x
(κ)
ℓ ))∗λkm,ℓ(xℓ)}

−|λkm,ℓ(x
(κ)
ℓ )|2

]

.

5Function Ψ(κ)(x) is convex as pointwise maximum of convex functions
[30]



Algorithm 2 Path-following algorithm for GZF beamforming

Initialize Iterate (42) for a feasible point x(0). Set κ := 0.

repeat

Solve the convex optimization problem (48) for the

optimal solution x
(κ+1).

Reset κ← κ+ 1.

until convergence
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Fig. 2. Simulation scenario with NBS = 15 SBSs and Nu = 15 UEs
uniformly distributed in the cell.

The function r̄
up,(κ)
GZF,m(x) is convex and satisfies r̄m(x(κ)) =

r̄
up,(κ)
GZF,m(x(κ)). We solve the following convex optimization

problem to generate x
(κ+1)

max
x

M
∑

m=1

r
(κ)
GZF,m(x)− E(x(κ))

×
(

t(x) +
∑

m:sm∈MF

|Qm|
|Km|

r̄
up,(κ)
GZF,m(x)

)

s.t. (16), (42b), (47),Ψ(κ)(x) ≤ 1. (48)

Similarly, we can easily prove (32), and like Algorithm 1,

Algorithm 2 at least converges to a locally optimal solution of

the problem (40).

V. SIMULATION RESULTS

Consider an UDN scenario as illustrated by Fig. 2. There

are 15 SBSs (NBS = 15), each is equipped with four antennas

(Nt = 4), and 15 single-antenna UEs (Nu = 15), which are

uniformly distributed in the cell. The channel vector hkm,mi

between the SBS mi ∈ Qm and UE km ∈ Km is defined as

hH
km,mi

=
√
10−σpl/10h̃km,mi

, where the path loss component

σpl is modeled as

σpl = 148.1 + 37.6 log10(dkm,mi
), (49)

with the distance dkm,mi
in kilometers, and h̃km,mi

determines

small-scale effects. The other parameters in Table I are taken

from [32] and [33].

TABLE I
PARAMETER SETTINGS

Parameter Value

Radius of cell 500 m
Coverage of SBS 40 m
Carrier frequency/ Bandwidth(Bw) 2 GHz / 10 MHz
Shadowing standard deviation 8 dB
Efficiency of power amplifiers (1/α) 0.052
Noise power density −174 dBm/Hz
The circuit power per antenna 5.6*1e-3 W

There are total 30 content items (Nc = 30). Except in Figs.

6 and 7, each SBS’s cache is assumed to store 20 content items

(Ns = 20). Set γm = γth,m = 1, . . . ,M , for simplicity. Let

us consider the three following caching strategies.

• Most Popular Caching: The most popular content items

are cached by each of SBSs until its cache is full. The

cached content items thus are the same for all SBSs,

so |Fq| ≡ Ns and |Qm| ≡ NBS . The UEs’ requests

are fully matched with the most popular content items

whenever δ is large. The cache hit ratio is low and thus

the backhaul links are costly whenever δ is small because

the less popular content items are likely requested.

• Fair Caching: All content items are equally distributed

in the system to boost the cache-hit ratio. Namely, each

content item is stored by random ⌊NBSNs

Nc
⌋ SBSs. It

follows that |Fq| ≤ Ns and |Qm| ≡ ⌊NBSNs

Nc
⌋. The

cache-hit probability is one, so the backhaul link cost

is zero.

• Probabilistic Caching: each SBS decides on its cached

content items based on the contents’ popularity, i.e. it

selects a content item with the probability equal to the

content popularity. More popular content items have a

higher potential to be cached at SBSs. It follows that

|Fq| ≤ Ns and |Q1| > · · · > |QNc
|.

A. The effects of QoS requirements

To investigate the effect of QoS requirements on the cost

efficiency, we fix the skew parameter δ at the low value 0.2
so the UEs will request both popular and less popular content

items, and the power budget Pmax at 1 W. We employ the

Most Popular Caching strategy to make sure that there are

cache-missed content items and thus the backhaul cost cannot

be ignored. Algorithm 2 is implemented since the ZF condition

(12) is not fulfilled.

It can be observed from Fig. 3 that the cost efficiency at

lower QoS is better than that at higher QoS. The increase of the

rate thresholds gives rise to failure in providing the required

QoS. A higher QoS also costs more backhaul links. The SBSs

must use more transmit power to deliver the contents, which

also downgrades the cost efficiency. The cost efficiency is

highest by fetching each cache-missed content item to a single

SBS, i.e. Nf = 1. For Nf = 3 and Nf = 5, the cost efficiency

is lower due to the increased backhaul cost.

B. The effects of transmit power

The skew parameter δ is still fixed at 0.2 but the Fair

Caching strategy is employed to avoid the backhaul cost.
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Fig. 3. The cost efficiency versus minimum rate threshold γth.
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Fig. 4. The cost efficiency versus power budget Pmax.

Algorithm 1 is implemented since the ZF condition (12) is

fulfilled. Fig. 4 plots the cost efficiency versus the power

budget under different QoSs. The minimal power budget

Pmax for providing the QoS of γth = 2 bps/Hz, γth = 3
bps/Hz, and γth = 4 bps/Hz is = 0.06 W, 0.18 W, and 0.48
W, respectively. Increasing of transmit power exploits more

collaborative transmission. As expected, the cost efficiency

increases and then quickly saturates when the sum throughput

cannot be improved by using more transmit power.

C. The effects of content popularity and caching strategies

We fix γth = 2 bps/Hz, Pmax = 1 W and Nf = 1
to investigate the effects of content popularity on the cost

efficiency. For each value of the skew parameter δ, the cost

efficiency is the average over running 100 simulation trials.
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Fig. 5. The cost efficiency versus skew parameter δ.

Based on the satisfaction/dissatisfaction of the ZF condition

(12), which is dependent on the caching strategy used and

the value of the skew parameter α, Algorithm 1 or Algorithm

2 can be implemented. By Fig. 5, the Fair Caching strategy

outperforms other two caching strategies at low δ when the

backhaul cost under the former is zero but is sizable under the

latter two. The Most Popular Caching strategy is advantageous

with δ increased. As δ approaches 1, the most popular content

items, which are cached at SBSs under the Most Popular

Caching strategy have higher probability to be requested,

making its cost efficiency significantly increased.

Although the Fair Caching strategy outperforms the Prob-

abilistic Caching strategy for δ < 0.6, the former retains low

with δ increased, while the latter exploit the benefits from

caching the popular content items.

D. The effects of caching capacity

Recalling that the SBS cache is assumed to store Ns content

items, Figs. 6 and 7 plot the cost efficiency versus Ns, under

γth = 2 bps/Hz, Pmax = 1 W and Nf = 1, which is the

average over running 100 simulation trials. Algorithm 1 is

needed for those scenarios such that the ZF condition (12)

is guaranteed. Otherwise, Algorithm 2 is needed. With the

low value 0.2 of the skew parameter δ, Fig. 6 shows that the

cost efficiency under the Fair Caching strategy dramatically

increases when Ns approaches 24. The reason is that under this

strategy, more SBSs are engaged in the collaborative delivery

of each content item when Ns increases, which upgrade the

total delivery throughput and thus improve the cost efficiency.

The collaboration gain is so strongly reduced with Ns < 12
that QoS cannot be met. In addition, less popular content

items are likely to be requested for δ = 0.2. As a result,

the cost efficiency under the Most Popular Caching strategy

and the Probabilistic Caching strategy are mainly affected by

the backhaul cost and thus exhibits an unpredictable behavior.

For the high value 1 of the skew parameter δ, the cost
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Fig. 6. The cost efficiency versus caching capacity Ns with δ = 0.2.
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Fig. 7. The cost efficiency versus caching capacity Ns with δ = 1.

efficiency under the Most Popular Caching strategy and the

Probabilistic Caching strategy in Fig. 7 is high since the

requested content items are well matched with the cached

content items. In contrast, the cost efficiency under the Fair

Caching strategy is remarkably low because its collaboration

gain to deliver the requested content items is much smaller

than that under the other two strategies. Also, the cache miss

ratio is increased with the caching capacity decreased, leading

to more backhaul cost and thus making the cost efficiency

strongly reduced.

E. Convergence of the proposed algorithms

The typical convergence behavior of Algorithm 1 and Algo-

rithm 2 is shown in Fig. 8. The settings are the same as those

used in Fig. 4 with Pmax = 0.5 W and Fig. 3 with Nf = 5.

Both Algorithm 1 and Algorithm 2 converge to the optimal

solution within 10 iterations.

VI. CONCLUSIONS

The paper has proposed a collaborative multicast beamform-

ing to maximize the cost efficiency in terms of the ratio of

the sum content throughput and the sum of the consumption

power and backhaul cost for fetching cache-missed content

items while guaranteeing their QoS. Furthermore, the ZF and

GZF beamforming were also introduced to force the multi-

content interference to zero or mitigate it. The computational

low-complexity procedures, which invoke a simple convex

optimization at each iteration, have been developed for com-

putation. Numerical results have been provided to give insights

into the impact of content-centric caching on the delivery

performance.

APPENDIX: FUNDAMENTAL INEQUALITIES

For every x > 0, y > 0, x̄ > 0, and ȳ > 0 [34]

ln(1 + 1/xy) ≥ ln(1 + 1/x̄ȳ) +
1/x̄ȳ

1 + 1/x̄ȳ
(2− x/x̄− y/ȳ).

(A.1)

Particularly,

ln(1 + |z|2/y) ≥ ln(1 + |z̄|2/ȳ) + |z̄|2/ȳ
1 + |z̄|2/ȳ (2−

|z̄|2
|z|2 −

y

ȳ
)

≥ ln(1 + |z̄|2/ȳ)

+
|z̄|2/ȳ

1 + |z̄|2/ȳ (2−
|z̄|2

2ℜ{z̄∗z} − |z̄|2 −
y

ȳ
),

(A.2)

over the trust region

2ℜ{z̄∗z} − |z̄|2 > 0. (A.3)

Setting y = ȳ = σ2 in (A.2) leads to

ln(1 + |z|2/σ2) ≥ ln(1 + |z̄|2/σ2)

+
|z̄|2/σ2

1 + |z̄|2/σ2
(1− |z̄|2

2ℜ{z̄∗z} − |z̄|2 ),
(A.4)

over the trust region (A.3).

Also

ln

(

1 +
|z|2

|y|2 + σ2

)

≤ ln(1 +
|z̄|2

|ȳ|2 + σ2
) +

(

1 +
|z̄|2

|ȳ|2 + σ2

)−1

×
( |z|2
|y|2 + σ2

− |z̄|2
|ȳ|2 + σ2

)

≤ ln(1 +
|z̄|2

|ȳ|2 + σ2
) +

(

1 +
|z̄|2

|ȳ|2 + σ2

)−1

×
( |z|2
2ℜ{ȳ∗y} − |ȳ|2 + σ2

− |z̄|2
|ȳ|2 + σ2

)

(A.5)

over the trust region

2ℜ{ȳ∗y} − |ȳ|2 > 0. (A.6)
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Fig. 8. Convergence behavior of the proposed algorithms.

Particularly,

ln

(

1 +
|z|2
σ2

)

≤ ln(1 +
|z̄|2
σ2

)

+

(

1 +
|z̄|2
σ2

)−1( |z|2
σ2
− |z̄|

2

σ2

)

. (A.7)
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