
1

Collaborative Multi-fidelity Based Surrogate Models
for Genetic Programming in Dynamic Flexible

Job Shop Scheduling
Fangfang Zhang, Graduate Student Member, IEEE, Yi Mei, Senior Member, IEEE,

Su Nguyen, Member, IEEE, and Mengjie Zhang, Fellow, IEEE

Abstract—Dynamic flexible job shop scheduling has received
widespread attention from academia and industry due to its
practical application value. It requires complex routing and
sequencing decisions under unpredicted dynamic events. Genetic
programming, as a hyper-heuristic approach, has been success-
fully applied to evolve scheduling heuristics for job shop schedul-
ing due to its flexible representation. However, the simulation-
based evaluation is computationally expensive since there are
many calculations based on individuals for making decisions
in the simulation. To improve training efficiency, this paper
proposes a novel multi-fidelity based surrogate-assisted genetic
programming. Specifically, multi-fidelity based surrogate models
are first designed by simplifying the problem expected to be
solved. In addition, this paper proposes an effective collaboration
mechanism with knowledge transfer for utilising the advantages
of multi-fidelity based surrogate models to solve the desired
problems. This paper examines the proposed algorithm in six
different scenarios. The results show that the proposed algorithm
can dramatically reduce the computational cost of genetic pro-
gramming without sacrificing the performance in all scenarios.
With the same training time, the proposed algorithm can achieve
significantly better performance than its counterparts in most
scenarios while no worse in others.

Index Terms—Collaboration, Multi-fidelity Based Surrogate
Models, Knowledge Transfer, Genetic Programming, Dynamic
Flexible Job Shop Scheduling.

I. INTRODUCTION

Job shop scheduling (JSS) [1] is one of the best-known
combinatorial optimisation problems, which is of great

scientific research value since it reflects the real-world ap-
plications such as manufacturing processes [2], [3] and cloud

Manuscript received January 1, 2020; revised September 14, 2020; accepted
January 1, 2021. This work was supported in part by the Marsden Fund
of New Zealand Government under Contracts VUW1509 and VUW1614,
the Science for Technological Innovation Challenge (SfTI) fund under grant
E3603/2903, and the MBIE SSIF Fund under Contract VUW RTVU1914. This
work of Fangfang Zhang was supported by the China Scholarship Council
(CSC)/Victoria University Scholarship. This article was recommended by
Associate Editor XXX. (Corresponding author: Fangfang Zhang.)

Fangfang Zhang, Yi Mei, and Mengjie Zhang are with the Evo-
lutionary Computation Research Group, School of Engineering and
Computer Science, Victoria University of Wellington, Wellington 6140,
New Zealand (e-mail: fangfang.zhang@ecs.vuw.ac.nz; yi.mei@ecs.vuw.ac.nz;
mengjie.zhang@ecs.vuw.ac.nz).

Su Nguyen is with the Centre for Data Analytics and Cogni-
tion, La Trobe University, Melbourne, VIC 3086, Australia (e-mail:
P.Nguyen4@latrobe.edu.au).

This article has supplementary downloadable material available at XXX,
provided by the authors.

Colour versions of one or more of the figures in this article are available
online at XXX.

Digital Object Identifier XXX

computing [4]. Given a number of jobs (each job consists
of a sequence of operations) and a set of machines (each
operation can only be processed by a specific machine), the
purpose of JSS is to find an effective schedule which is an
allocation of the operations to time intervals on the machines.
Flexible JSS (FJSS) [5] is a common relaxation of JSS where
each operation can be processed on multiple machines. For
FJSS, we need to make two decisions simultaneously. One is
machine assignment (i.e. assign an operation to a particular
machine), and the other is operation sequencing (i.e. choose
an operation as the next operation to be processed by an
idle machine). Dynamic FJSS (DFJSS) focuses on optimising
the machine resources under a dynamic environment with
stochastic events, such as real-time new jobs arrivals [6], [7],
[8] and machine breakdown [9], [10].

DFJSS is an NP-hard problem [11] and cannot be handled
efficiently with exact optimisation methods, such as dynamic
programming [12] and integer linear programming [13]. Ap-
proximate solution optimisation methods, such as simulated
annealing [14], tabu search [15] and genetic algorithms [16],
which aim to find a near-optimal solution, have been widely
applied to JSS. These methods can obtain high-quality so-
lutions in a reasonable time. However, most of them can
hardly handle dynamic environments efficiently because the
re-optimisation process is too time-consuming to react in real-
time. Scheduling heuristics such as dispatching rules [17],
[18], [19], might be the most popularly used heuristics for
DFJSS. Scheduling heuristics make decisions according to
the priority values of machines or operations only at the
decision points. It is noted that a scheduling heuristic in DFJSS
consists of a routing rule (i.e. for machine assignment) and a
sequencing rule (i.e. for operation sequencing) in this paper.
There are two main reasons for the success of scheduling
heuristics in DFJSS [6], [7]. One is its ability to handle
large scale problems efficiently. The other is its efficiency to
make real-time decisions with dynamic events. However, the
scheduling heuristics, such as SPT (i.e. shortest processing
time) and some composite rules [20], are often manually
designed by experts. The designing process is time-consuming,
and the designed rules are typically too specific to be applied
to different scenarios.

Genetic programming (GP) [21], as a hyper-heuristic ap-
proach, has been successfully applied to evolve scheduling
heuristics automatically for JSS [8], [22], [23], [24], [25], [26].
The most advantageous feature of GP is its representation,

2

which makes it a natural fit for generating scheduling heuris-
tics. It is not necessary to define the structures of scheduling
heuristics in advance. In fact, we usually do not know what the
optimal structure is. However, the main drawback of GP is its
high computational cost since the evaluation of GP individuals
is time-consuming. Simulation [27] is a promising technique
to investigate the complex real-world problems such as health
care [28]. The simulation-based research in DFJSS further
increases the need for computing cost since more calculations
with GP individuals are involved to make decisions during the
process of simulation.

To the best of our knowledge, little is yet known to
improve the efficiency of GP in JSS. This paper groups the
existing works related to surrogate-assisted GP for JSS into
two categories according to the way of using the surrogate
model to estimate the fitness of an individual. One is to use
existing models such as KNN (i.e. K nearest neighbour) [29]
to estimate the fitness of individuals [30], [31] by finding the
most similar individual in the previous generation. The other
is to use a simplified simulation model as a surrogate model,
which is a problem approximation technique to estimate the
fitness of individuals [32], [33]. In [30], [31] and [32], the
surrogates are used in a pre-selection way that a larger number
of offspring are generated, and only the top individuals are
selected to be re-evaluated with real fitness evaluations. In
[33], surrogates with different fidelities are used to evaluate
the individuals directly by increasing the fidelity of applied
surrogate model gradually along with the search process.

In general, studies mentioned above all show the superiority
of introducing the surrogate technique in JSS. However, the
performance of the algorithms highly rely on the accuracy of
proposed surrogate models, either based on similar rules [30],
[31] or simplified models [32], [33]. In addition, pre-selection
is a way to speed up the convergence of an algorithm by
adding more evaluations but with the low computational cost
of extra individuals [30], [31], [32]. In fact, more evaluations
of GP individuals are involved. Last but not least, in [33],
although multi-fidelity surrogates are successfully introduced,
each surrogate is used independently at different generations.
On the one hand, the performance at a specific generation
is sensitive to the surrogate used in that generation. On the
other hand, it may not be an effective way since there is no
communication between surrogates with multi-fidelity. More
advanced techniques are worth investigating.

To address the above issues, this paper proposes to use
multiple surrogate models with different fidelities collabo-
ratively to improve the efficiency of GP without losing its
accuracy performance to evolve scheduling heuristics for
DFJSS automatically. Specifically, multi-fidelity surrogates are
built by simplifying the DFJSS problem to be solved in this
paper. Involving more surrogates aims to weaken the sensitive
relationship between the applied surrogate and the investigated
problem. In addition, an effective collaboration framework
with knowledge transfer is proposed to utilise the advantages
of surrogate models with different fidelities.

The goal of this paper is to develop an effective multi-
fidelity based surrogate models to improve the efficiency of GP
for evolving scheduling heuristics automatically in the DFJSS

problems. The proposed algorithm is expected to both speed up
the convergence and reduce the training time of GP for DFJSS.
Specifically, this work has the following research objectives:

1) Develop multiple surrogate models with different fideli-
ties by simplifying the problem expected to be solved
according to its characteristics.

2) Propose an effective collaboration framework with
knowledge transfer for the designed multi-fidelity based
surrogate models to solve the desired problem.

3) Analyse the efficiency and effectiveness of the proposed
algorithm in terms of the training time, the convergence
speed, and the performance of evolved rules.

4) Analyse how the proposed algorithm influences the
behaviour of GP in terms of the effect of the knowledge
transfer mechanism.

The rest of this paper is organised as follows. Section II
gives a background introduction. Section III gives a discussion
of the related studies. Detailed descriptions of the proposed
algorithm are given in Section IV. The experiment design is
shown in Section V, followed by results and discussions in
Section VI. Further analyses are conducted in Section VII.
Finally, Section VIII concludes the paper.

II. BACKGROUND

This section provides a brief introduction of DFJSS,
scheduling heuristics for DFJSS, and how to use GP for
solving the DFJSS problem.

A. Dynamic Flexible Job Shop Scheduling

In FJSS, n jobs J = {J1, J2, ..., Jn} need to be processed
by m machines M = {M1,M2, ...,Mm}. Each job Jj has a
sequence of operations Oj = (Oj1, Oj2, ..., Oji). Each opera-
tion Oji can only be processed by one of its optional machines
π(Oji) and its processing time δ(Oji) depends on the machine
that processes it. It implies that there are two decisions in FJSS
which are routing decision and sequencing decision. In DFJSS,
not only the two decisions need to be made simultaneously,
but also dynamic events are necessary to be taken into account
when making schedules. This paper focuses on one dynamic
event, i.e. dynamically and continuously arriving new jobs.
The jobs arrive at the job shop following a Poisson process
(i.e. its arrival time to the job shop is randomly generated from
a Poisson process). The information of a job (e.g. arrival time,
processing time and due date) is unknown until it arrives at
the shop floor. The following constraints must be satisfied in
the DFJSS problem:
• A machine can process at most one operation at a time.
• Each operation can be processed only by one of its

candidate machines.
• One cannot start processing an operation until all its

precedent operations have been processed.
• The processing of an operation cannot be stopped or

paused until it is completed.
The goal of DFJSS is to optimise certain objective functions
while satisfying all the above constraints. We consider three
commonly used objective functions which are shown as fol-
lows.

3

• Max-flowtime = max{C1 − r1, C2 − r2, ..., Cn − rn}
• Mean-flowtime =

∑n
i=1 {Ci−ri}

n

• Mean-weighted-flowtime =
∑n

i=1 wi∗{Ci−ri}
n

where Ci is the completion time of job Ji, ri is the release
time of Ji, and wi is the weight of Ji.

B. Scheduling Heuristics for DFJSS

In DFJSS, one job consists of a sequence of operations. The
operations of a job need to be processed one by one following
the sequence constraint. The completion of a job means that
all its operations have been processed. We use the term ready
operations to define the candidate operations for the routing
process. Naturally, two kinds of operations can become ready
operations. One is the first operation of a job when it arrives
at the job shop. This indicates that the jobs will be released
once they arrive at the job shop. The other is the subsequent
operation whose preceding operation is just finished.

In DFJSS, the decisions are only made at the decision points
by scheduling heuristics based on the current information of
the job shop. Once an operation becomes a ready operation
(routing decision point), it will be allocated to the most
prior machine according to the routing rule. When a machine
becomes idle, and its queue is not empty (sequencing decision
point), the sequencing rule will be applied to calculate the
priority value of each operation in its queue. The most prior
operation is then chosen as the next operation to be processed.
It is noted that the queues of the machines act as intermediate
storages. For a job, it will be moved to one of its candidate
machines, if its current operation is finished and its next
operation needs to be processed on another machine.

C. Genetic Programming Hyper-heuristics for DFJSS

A hyper-heuristic [34], [35], [36] is a heuristic search
method that seeks to select or generate heuristics to effi-
ciently solve hard computational search problems. The unique
characteristic is that hyper-heuristic works on heuristic search
space instead of solution search space. GP, as a hyper-heuristic
method [37], has been successfully applied to evolve infor-
mative scheduling heuristics for combinational optimisation
problems such as packing [38], [39], timetabling [40], [41],
and JSS [42], [43], [44]. GP can automatically generate
computer programs to solve problems without needing rich
domain knowledge. The flexible representation of GP makes it
natural to be a hyper-heuristic approach to evolving scheduling
heuristics in JSS. This means that we do not need to define
the structure of rules in advance. This is beneficial because we
usually do not know what the optimal structures of the rules
look like.

The pseudo-code of traditional GP to evolve scheduling
heuristics for DFJSS is shown in Algorithm 1. The input is
a problem, and the output is the evolved best routing and
sequencing rule. The three main components in GP are ini-
tialisation, evaluation, and evolution. We start with initialising
the population and evaluating all the GP individuals. If the
stopping criterion is not met, offspring are generated by the
genetic operators to form a new population. The best routing

Algorithm 1: Pseudo-code of GP to learn routing and sequencing
heuristics for DFJSS

Input : A problem
Output: The learned scheduling heuristics h∗ = (r∗, s∗)

1: Initialisation: Randomly initialise the population
2: set h∗ ← (null, null), fitness(h∗) ← +∞
3: gen← 0
4: while gen < maxGen do
5: // Evaluation: Evaluate the individuals in the population
6: for i = 1 to popsize do
7: Run a DFJSS simulation with hi to get the schedule

Schedulei
8: fitness(hi)← Obj(Schedulei)
9: end

10: if gen < maxGen− 1 then
11: Evolution: Generate a new population by crossover,

mutation, and reproduction
12: end
13: gen← gen+ 1
14: end
15: for i = 1 to popsize do
16: if fitness(hi) < fitness(h∗) then
17: h∗ ← hi

18: fitness(h∗) ← fitness(hi)
19: end
20: end
21: return h∗ = (r∗, s∗)

/

+ z

x y

/

+ z

1 y

fit(r|t=1)fit(r)

Fig. 1. An example of a routing rule for prioritising machines in a DFJSS
simulation.

and sequencing rules (r∗, s∗) in the last generation of a GP run
are the output of the algorithm. In Algorithm 1, each individual
is evaluated by applying it to a training instance to get the
objective value of the obtained schedule (from line 6 to line
9). During the DFJSS simulation, the GP individuals are used
as schedule heuristics including routing and sequencing rules
(i.e. priority functions) to prioritise machines and operations
to make a schedule.

Fig. 1 shows an example of a routing rule for prioritising
machines in a DFJSS simulation. The routing rule consists of
three terminals (i.e. x, y, and z) and two functions (i.e. + and
/), and it can be considered as a priority function x+y

z . Assume
there are 3 candidate machines (i.e. M1, M2, M3) for a job.
If the function values of M1, M2, M3 are 100, 300, and 200
according to the priority function, the job will be allocated to
M1 (i.e. A smaller function value leads to a higher priority).

Training and test are two phases of our research. In the
training phase, GP is used to train heuristics based on a set
of training instances. It is worth mentioning that the outputs
of the training phase are general heuristics (i.e. routing and
sequencing rules) rather than specific solutions in DFJSS. In
the test phase, the evolved heuristics obtained in the training
phase are tested on unseen test instances to generate the
corresponding schedules. According to the information of
schedules, the test performance of evolved heuristics (i.e.
objective value such as flowtime) can be measured.

4

III. SURROGATE MODELS IN GP FOR JSS

In the past decades, surrogate-assisted evolutionary com-
putation [45], [46], [47] has been widely studied to reduce
the computational cost of evolutionary algorithms. The basic
idea is to use computationally cheap surrogate models to
replace part of the computationally expensive evaluations of
individuals. The commonly used techniques for surrogate
models include radial basis function networks [48] and kriging
model [49]. However, there are some challenges which make
these kinds of surrogate techniques not directly applicable
in DFJSS. The task (i.e. prioritising operations or machines)
and the training instances in DFJSS are different from the
traditional machine learning tasks such as regression [50] and
numerical optimisation [51]. The training data in DFJSS are
dynamically generated along with the execution of simulation
while the training data are available in advance in traditional
machine learning tasks. In addition, although we can collect
data during the process of simulation, it is not trivial to decide
what kinds of information are useful for training the surrogate
model, and how to represent the collected data.

There is little research about surrogate-assisted GP for solv-
ing the JSS problems. Hildebrandt and Branke [30] proposed
to approximately estimate the fitness of individuals by finding
the most similar rule in the previous generation. However, the
best value in the last generation is an upper bound of estimated
fitness, which is not able to totally reflect the quality of a new
individual. The proposed surrogate approach was applied in
a pre-selection way in which a larger number of individuals
were generated to form an intermediate population, and only
the top individuals were selected into the next generation
for real fitness evaluations. Nguyen et al. [32] also used the
pre-selection way for the surrogate with a simplified model
based surrogate-assisted GP for dynamic JSS. The novelty of
this work lied on the surrogate models based on simplified
simulation models of the job shop. It showed the effectiveness
of using simplified simulation models. Zhang et al. [33] further
proposed to use an adaptive surrogate strategy with dynamic
fidelities of simulation models over generation to estimate the
fitness of individuals in the population directly rather than in
the intermediate population for DFJSS.

The works mentioned above show the superiority of using
surrogate-assisted GP to handle the JSS problems. However,
there are still some limitations. From the perspective of the
way to incorporate surrogate into GP, pre-selection technique
is commonly used to speed up the convergence of GP by
increasing the number of evaluations (i.e. cheap evaluation)
of extra individuals which is conducted in an intermediate
population [30], [32]. Then, only the individuals that achieve
good fitness which are estimated by the surrogate model, are
re-evaluated to get the real fitness. The other way is to use the
surrogate model to evaluate the fitness of individuals directly
[33]. Both ways are sensitive to the accuracy of surrogate
models. The surrogate models greatly affect which individuals
can be used to generate offspring for the next generation. It
will further affect the quality of individuals in the population.
A better way to apply the surrogate technique in JSS is worth
studying further.

Algorithm 2: Framework of the Proposed Algorithm

Input : k multi-fidelity surrogate models S1, S2, ... , Sk

Output: The best evolved heuristics with each surrogate model
ind∗1 , ind∗2 , ... , ind∗k

1: Initialisation: Randomly initialise the population with k
subpopulations

2: set ind∗1 , ind∗2 , ... , ind∗k ← null
3: set fitness(ind∗1), fitness(ind

∗
2), ... , fitness(ind∗k) ← +∞

4: gen← 0, |Subpops| ← k
5: while gen < maxGen do
6: // Evaluation: Evaluate the individuals in the population
7: for i = 1 to |Subpops| do
8: for j = 1 to |popsize| do
9: Run a DFJSS simulation with indj to get the

schedule Schedulej
10: fitness(indj)← Obj(Schedulej)
11: end
12: for j = 1 to |popsize| do
13: if fitness(indj) < fitness(ind∗i) then
14: ind∗i ← indj
15: fitness(ind∗i) ← fitness(indj)
16: end
17: end
18: end
19: Evolution: Generate offspring for each subpopulation by genetic

operators with the proposed knowledge transfer mechanism
20: gen← gen+ 1
21: end
22: return ind∗1 , ind∗2 , ... , ind∗k

IV. THE PROPOSED ALGORITHM

This paper develops a collaborative multi-fidelity based
surrogate-assisted GP to solve the DFJSS problem. This sec-
tion describes the framework of the proposed algorithm first.
Then, the key components of the proposed algorithm are given.

A. The Framework of the Proposed Algorithm

The key idea of this paper is to solve the desired problem
by utilising the advantages of surrogate models with differ-
ent fidelities. The problem with lower fidelity surrogates is
computationally cheaper but less accurate. On the contrary,
the problem with higher fidelity surrogates is computationally
more expensive but more accurate. This paper uses the degree
of simplification of the problem to indicate the fidelity of the
surrogate model. The smaller the scale of the problem, the less
fidelity of the surrogate.

The main framework of the proposed algorithm is presented
in Algorithm 2. The input is k designed surrogate models
with different fidelities. The output is a set of best evolved
rules obtained from subpopulations with different surrogate
models. There are three main differences compared with the
traditional GP for JSS, which is shown in Algorithm 1. At
the initialisation stage, the population is formed with multiple
subpopulations to incorporate multi-fidelity surrogate models
into GP (line 1). During the evaluation process, the individuals
in different subpopulations are evaluated with different sur-
rogate models, respectively (from line 6 to line 17). During
the evolution stage, the offspring of each subpopulation are
generated for the next generation according to the proposed
knowledge transfer mechanism.

According to the key idea of the proposed algorithm, there
are three research questions in this paper. The first is how to

5routing rule sequencing rule

S2 Sk

S1

Subpop2 Subpopk

Subpop1

. . .

BestRule1

BestRule2 BestRulek

Knowledge

transfer

. . .

Fig. 2. The evolutionary framework of the proposed algorithm.

design the evolutionary framework to make it possible to col-
laborate between surrogate models with different fidelity. The
second is how to define the representation of GP individuals
to evolve routing and sequencing rules simultaneously with
multi-fidelity surrogate models. The last is how to transfer
knowledge between different subpopulations that incorporat-
ing with different surrogate models. The details of these
three research questions with the corresponding principles and
design points are presented in the next subsections.

B. The Evolutionary Framework

Introducing multi-fidelity surrogate models implies that
some individuals are evaluated with the simpler surrogate, and
some individuals are evaluated with more complex surrogate.
This paper groups individuals to different surrogate models
by dividing the entire population into several subpopulations.
The individuals in the same or different subpopulation are
evaluated with the surrogate with the same or different fidelity.
From the perspective of the evolutionary process, the subpop-
ulations can be considered as several independent evolutionary
processes that are evolved simultaneously.

Fig. 2 shows the evolutionary framework of the proposed
algorithm. Assuming k surrogate models (S1, S2, ... , Sk) with
different fidelities from simple to complex are used to improve
the efficiency of GP to solve the problem with Sk which
is the desired problem to be solved in a collaborative way.
The population of GP is divided into k subpopulations (e.g.
Subpop1, Subpop2, ... , Subpopk) and each subpopulation
will evolve scheduling heuristics based on the corresponding
surrogate model. In addition, during the evolutionary process,
different subpopulations tend to assist with each other by
sharing their knowledge with others. It is noted that all the
populations are evolved in parallel. Therefore, the output of
a GP run consists of k best evolved rules (e.g. BestRule1,
BestRule1, ... , BestRulek). However, we only focus on the
best evolved rule BestRulek obtained from Subpopk with sk
since it is the problem we aim to solve.

There are some advantages of using the proposed evo-
lutionary framework to realise collaborative multi-fidelity

routing rule sequencing rule

S2 Sk

S1

Subpop2 Subpopk

Subpop1

. . .

BestRule1

BestRule2 BestRulek

Knowledge

transfer

. . .

Fig. 3. An example of an individual with multi-tree representation of GP for
DFJSS.

based surrogate-assisted GP for DFJSS. First, the evolutionary
framework facilitates the collaboration between the surrogate
models with different fidelities since they are in the same
population. In addition, the proposed algorithm is not sensitive
to the accuracy of one of the surrogate model since multiple
surrogate models with different fidelities are involved at each
generation. Finally, as a by-product, problems with different
scales are solved simultaneously rather than using a single run
to handle a problem at a time. It is an efficient way to make
use of computational resources, if one prefers to solve multiple
problems with different scales simultaneously.

C. Representation

According to the characteristics of DFJSS, a routing rule
and a sequencing rule are needed to make two decisions si-
multaneously. To date, there have been three main frameworks
to handle DFJSS. Tay et al. [3] proposed to use GP to only
evolve sequencing rule by fixing the routing rule as a manually
designed rule for FJSS. It is a straightforward way to solve
the FJSS problems with scheduling heuristics. Yska et al. [6]
introduced a cooperative coevolution framework with GP for
the first time to evolve routing and sequencing rules simultane-
ously by applying two subpopulations. The proposed method
showed its superiority due to the coevolution mechanism.
Zhang et al. [7] introduced GP with multi-tree representation
(MTGP) for evolving two rules within an individual in one
population. The method MTGP is promising in terms of
the effectiveness, efficiency, and the sizes of evolved rules.
Genetic expression programming with multi-chromosome was
also introduced to evolve two rules simultaneously [52]. This
paper conducts on the MTGP framework to evolve routing
and sequencing rules simultaneously. It is noted that this paper
does not choose the cooperative coevolution framework in [6]
or genetic expression programming with multi-chromosome
in [52] to evolve two rules simultaneously since it can make
the design of the algorithm a bit too complicated — there
are already multiple subpopulations for incorporating multi-
fidelity surrogate models in the proposed algorithm.

Fig. 3 shows an example of an individual with multi-tree
representation of GP for DFJSS. Each individual consists of
two trees. One is designed for evolving routing rule, and
the other is for evolving sequencing rule. The routing rule
and sequencing rule work together to make a schedule for a
specific job shop scenario. The fitness of an individual depends
on the performance of the schedule made by its routing and
sequencing rule.

6

D. Knowledge Transfer

The key idea of this paper is to introduce collaborative
mechanism to utilise the information of surrogate models with
multi-fidelity. “How” and “when” to transfer knowledge, and
“what” to transfer are important research questions in this
section [53], [54], [55]. In the field of transfer learning in GP,
based on “what to transfer” [56], there are two main schemas.
The first schema is called FullTree, which tends to migrate a
number of promising individuals at the last generation of the
source problem to the target problem. The second is named
as SubTree, which is implemented by randomly choosing a
subtree in each individual at the last generation in the source
problem. The selected subtrees are transferred at the first
generation as individuals for the target problem.

Different from the traditional transfer learning in GP, this
paper does not involve the source problem and the target prob-
lem. It implies that there is no knowledge extraction process
from the source problem in this paper. Therefore, transferring
full trees between the problems with multi-fidelity surrogates
is more likely to have negative transfer since individuals are
not well evolved without the source problem, especially at the
beginning of the evolutionary process of GP. On the contrary,
transferring subtrees can not only share knowledge between
different problems but also preserve the knowledge for the
current problem. Accordingly, this paper introduces knowledge
transfer based on subtrees rather than full trees. In addition,
to ensure the effectiveness of knowledge transfer between the
problems with different fidelity models, the transfer in this
paper is based on crossover rather than treating the subtrees
as individuals for other problems.

How and when to transfer. Crossover is an important
genetic operator in GP to produce offspring, which can be an
effective carrier for knowledge transfer. Crossover can occur
between individuals from the same subpopulation or different
subpopulations. The proposed knowledge transfer mechanism
is shown in Algorithm 3. We define a transfer ratio tr to
control when to transfer knowledge from other subpopulations
in each generation. A larger (smaller) tr value indicates the
knowledge transfer between different subpopulations is (not)
encouraged. If the knowledge transfer mechanism is triggered,
the first parent parent1 will be selected from the current
subpopulation (line 8). The other parent parent2 will be
selected from one of the other subpopulations (line 9). Only
the offspring derived from parent1 is kept in the current
subpopulation in the new generation (line 10 to line 13).
If the knowledge mechanism is not triggered, two parents
will be selected from the current subpopulation (i.e. the same
subpopulation) to produce two offspring for generating the
new subpopulation (from line 15 to line 23).

It is noted that the knowledge can not only be transferred
from simpler to more complex subpopulation with a higher
fidelity surrogate model but also from more complex to a
simpler subpopulation with a lower fidelity surrogate model.
From a knowledge transfer perspective, the subpopulation
with a lower fidelity (simpler problem) can find promising
individuals faster than the subpopulation with a higher fi-
delity (more complex problem). For a subpopulation with

Algorithm 3: Generating Offspring with Knowledge Transfer

Input : A population with k subpopulations
P{Subpop1, Subpop2, ..., Subpopk}

Output: A new population with k subpopulations
P

′{Subpop′
1, Subpop

′
2, ..., Subpop

′
k}

1: set P , P
′ ← null

2: gen← 0, |Subpops| ← k
3: while gen < maxGen do
4: // Evaluation: Evaluate the individuals in each subpopulation,

respectively
5: // Evolution
6: for i = 1 to |Subpops| do
7: if rand <= tr then
8: parent1 ← Select the first parent from Subpopsi
9: parent2 ← Select the second parent from Subpopsqi

10: point1: the crossover point of parent1
11: point2: the crossover point of parent2
12: offspring: replace point1 of parent1 by point2
13: Subpop

′
i ← Subpop

′
i ∪ offspring

14: else
15: parent1 ← Select the first parent from Subpopsi
16: parent2 ← Select the second parent from Subpopsi
17: point1: the crossover point of parent1
18: point2: the crossover point of parent2
19: offspring1: replace point1 of parent1 by point2
20: offspring2: replace point2 of parent2 by point1
21: Subpop

′
i ← Subpop

′
i ∪ offspring1 ∪ offspring2

22: end
23: P

′ ← P
′ ∪ Subpop

′
i

24: end
25: gen← gen+ 1
26: end
27: return P

′{Subpop′
1, Subpop

′
2, ..., Subpop

′
k}

high fidelity surrogate models, introducing knowledge from a
subpopulation with lower fidelity surrogate models can speed
up its convergence. For a subpopulation with lower fidelity
surrogate models, learning knowledge from a subpopulation
with a higher fidelity surrogate model can help to increase
the quality of individuals since the evolved rules with higher
fidelity surrogate models are more reliable. In general, the
collaboration with knowledge transfer is supposed to benefit
all of the involved problems.

What to transfer. It is critical to decide what kinds of
knowledge are useful to be transferred. Intuitively, the knowl-
edge carried by the promising individuals is beneficial. In this
paper, we use the knee point technique [57] to decide the set of
promising individuals. The individuals with smaller fitness val-
ues (i.e. our problem is minimising problem) than the fitness of
the knee point individual are selected as promising individuals.
Only the knowledge carried by the promising individuals is
allowed to be transferred to other subpopulations.

The pseudo-code of selecting promising individuals for
knowledge transfer is shown in Algorithm 4. Firstly, the
individuals in the population are sorted in ascending order
based on their fitness values (line 1). Secondly, one line (L) is
generated between the two points with maximal and minimal
fitness. Then, the distance between each individual and L
is calculated (from line 6 to line 12), and the knee point
which has the highest distance to L is detected. Finally, the
individuals whose fitness values are smaller than the fitness
of knee point are chosen as the promising individuals for
knowledge transfer (line 13 to line 17).

7

Algorithm 4: Pseudo-code of selecting promising individuals for
knowledge transfer

Input : The current subpopulation with a set of individuals Ind
Output: Promising individuals Ind∗ for knowledge transfer

1: sort(population)
2: minPoint(0, fitness(ind0)
3: maxPoint(popsize -1, fitness(indpopsize−1))
4: set maxDistance ← 0 and kneePointIdx← 0
5: get a line L based on minPoint and maxPoint points
6: for i = 0 to popsize− 1 do
7: calculate the distance (d) from Point(i, fitness(indi)) to

line L
8: if d > maxDistance then
9: maxDistance← d

10: kneePointIdx← i
11: end
12: end
13: for i = 0 to popsize− 1 do
14: if i <= kneePointIdx then
15: Ind∗ ← Ind[i]
16: end
17: end
18: return Ind∗

It is noted that the number of promising individuals varies in
different generations, which can capture promising individuals
efficiently. In addition, the number of selected promising indi-
viduals is not necessary to define in advance (i.e. parameter-
free) because Algorithm 4 can decide it adaptively.

E. Summary

Overall, involving lower fidelity surrogate models with
simplified DFJSS will reduce the computational cost of GP.
However, the evaluations of individuals with a less fidelity
surrogate model are often inaccurate. The proposed algorithm
deftly solve this conflicting issue by collaborating the surro-
gate models with different fidelities. An effective knowledge
transfer strategy realises the collaboration mechanism.

V. EXPERIMENT DESIGN

To investigate the efficiency (the training time) and effec-
tiveness (the test objective value) of the proposed algorithm
in DFJSS, a set of experiments have been conducted. This
section describes the simulation model, the comparison design,
and the parameter setting for GP.

A. Simulation Model

Simulation is a common method to investigate real-world
complex problems [27]. In this paper, we aim to solve a
range of problem instances/simulations with a sufficiently
large number of random jobs. In the DFJSS simulation,
there are 10 machines. We aim to estimate the steady-state
performance of the scheduling heuristics by considering two
factors. First, the simulation should be long enough so that the
performance becomes stable and not be changed by more job
arrivals. Second, the initial stage of the simulation should be
ignored, since the machines start with empty workload, and are
less busy at the beginning than the steady-state situation. To
address the first issue, we record 5000 completed jobs in the
simulation, as it is a sufficiently large number. To address the

second issue, we ignore the data of the first 1000 “warm-up”
completed jobs. We collect the data from the next 5000 jobs,
and the simulation stops when the 6000th job is finished. This
setting strategy has been commonly used in previous studies,
e.g. [30], [58], [59].

New jobs will arrive over time following a Poisson process
with rate λ. Each job consists of a different number of
operations that are randomly generated by a uniform discrete
distribution between 1 and 10. The number of candidate ma-
chines for an operation follows a uniform discrete distribution
between 1 and 10. The importance of jobs varies, which is
indicated by weights. The weights of 20%, 60%, and 20% of
jobs are set as one, two, and four, respectively. This is because
usually in practice 20% of jobs are less important jobs, 60% of
jobs are important median jobs, and 20% of jobs are significant
jobs [30]. The processing time of each operation is assigned
by a uniform discrete distribution with the range [1, 99].

To verify the robustness of the proposed algorithm, scenar-
ios with different settings (i.e. different objectives and utilisa-
tion levels) are examined. It is noted that the utilisation level is
an essential factor to simulate different scenario environments.
It is the proportion of time that a machine is busy. A larger
utilisation level leads to a busier job shop.

B. Comparison Design

The goal of this paper is to improve the efficiency of
GP with collaborative multi-fidelity based surrogate models
for DFJSS. Two algorithms are involved in this paper. The
GP with multi-tree representation [7] (MTGP) algorithm is
selected as the baseline algorithm because it can evolve
two rules simultaneously, and its framework is suitable for
applying collaborative multi-fidelity based surrogate models.
The proposed algorithm with collaborative multi-fidelity based
surrogate models, is named as M3GP since it involves multi-
population framework, multi-tree representation, and multi-
fidelity surrogate models. It is noted that MTGP works with
one population with 1024 individuals while M3GP operates
with two subpopulations with 1024 individuals (i.e. 512 indi-
viduals for each subpopulation). M3GP1 and M3GP2 can be
considered as the algorithms to measure the performance of
the evolved rules with the lower surrogate model S1 and the
original model S2 with the problem to be solved.

The performance of the proposed algorithm is first measured
by the comparison between MTGP and M3GP2 since we
mainly focus on solving the desired problem. The state-
of-the-art algorithms in [30] and [32], which is named as
SGP−K and SGP−H for convenience in this paper, are further
compared with the proposed algorithm with a fixed training
time. In addition, the proposed algorithm with more than two
surrogates with different fidelities is also studied. In order to
verify the effectiveness of the proposed knowledge transfer
mechanism for GP, the performance of M3GP1 without the
knowledge transfer and with the knowledge transfer is inves-
tigated. Similarly, the effectiveness of knowledge transfer on
M3GP2 is also further analysed.

In this paper, we focus on using the objective function and
the utilisation level to construct multiple problems because the

8

TABLE I
THE TERMINAL SET.

Notation Description

NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

PT Processing time of an operation on a specified machine
NPT Median processing time for the next operation
OWT The waiting time of an operation
WKR Median amount of work remaining for a job
NOR The number of operations remaining for a job

W Weight of a job
TIS Time in system

performance of evolved rules is influenced significantly by
these two factors. Max-flowtime, mean-flowtime and mean-
weighted-flowtime are three commonly used objectives. To
verify the effectiveness of the proposed algorithm, we expect
to test the proposed algorithm on complex scenarios. We set
utilisation level as 0.85 and 0.95, since they can lead to
complex job shop scenarios which can reflect the performance
of the proposed algorithm well. These two utilisation levels
have been commonly used in traditional studies on scheduling
rules [18], [30], [32]. The proposed algorithms are tested on
six different scenarios with these three objectives (e.g. max
flowtime, mean flowtime, and mean weighted flowtime) and
the two utilisation levels (e.g. 0.85 and 0.95). For the sake of
convenience, Fmax, Fmean, and WFmean are used to indicate
max flowtime, mean flowtime, and mean weighted flowtime,
respectively. In this study, all experiments are run on an Arch
Linux OS with an Intel (R) Core (TM) i7-4770 CPU at
3.40GHz, with 8-GB RAM. The algorithms are encoded with
the java programming language.

C. Parameter Setting

All the parameter values are set to the commonly used
values. In addition, all the same parameters of the compared
algorithms are set to the same to get a fair comparison. In
our experiment, the terminal set of GP is shown in Table I.
The features indicate the characteristics related to machines
(e.g. NIQ, WIQ, and MWT), operations (e.g. PT, NPT, and
OWT), and jobs (e.g. WKR, NOR, W, and TIS). The function
set is {+, −, ∗, /, max, min}, following the setting in [60].
The arithmetic operators take two arguments. The “/” operator
is protected division, returning one if divided by zero. The
max and min functions take two arguments and return the
maximum and minimum of their arguments, respectively.

The other parameter settings of GP are shown in Table II.
For simplicity, only two models with different fidelities are
mainly considered in this paper. Therefore, the population
of GP consists of two subpopulations and the number of
individuals are set to 512 for each subpopulation. Borrowing
the idea in [32], the designed surrogate model (S1) is generated
by creating a “half shop” job shop with 2500 (i.e. 5000 * 0.5
= 2500) jobs, which reduces the number of jobs to half of the
original model but without reducing the number of machines
to keep the characteristics of DFJSS. The other model (S2)
is designed by the job shop scenario with 5000 jobs, which

TABLE II
THE PARAMETER SETTING OF GP.

Parameter Value

Number of subpopulations 2
Subpopulation size 512

Method for initialising population ramped-half-and-half
Initial minimum/maximum depth 2 / 6

maximal depth of programs 8
Crossover/Mutation/Reproduction rate 80% / 15% / 5%

Parent selection Tournament selection
with size 7

Terminal/non-terminal selection rate 10% / 90%
The number of generations 51

Transfer Ratio tr 0.6
*The number of jobs in surrogate model S1 2500
*The number of jobs in original model S2 5000

* for M3GP only

is the original model (i.e. can be considered as a surrogate
model with 100% accuracy). The only difference of S1 and
S2 is the number of jobs, and the original model S2 is more
accurate than the surrogate model S1, since S2 reflects the
problem itself. We set the transfer ratio tr to 0.6 since it is
the best setting according to our preliminary work which will
be introduced in subsection VII-B.

In addition, the sizes of intermediate population of SGP−H,
SGP−K are set as two times of the population, as suggested
in [30]. The half shop surrogate model based on problem
approximation is set the same as in [32] but with the maximum
number of operations for a job as five for applying the idea
properly in the investigated problem in this paper. In addition,
the number of neighbours for KNN in SGP−K is set to 1.

VI. RESULTS AND DISCUSSIONS

Wilcoxon rank-sum test with a significance level of 0.05
is used to verify the performance of the algorithms with 30
independent runs. In the following results, “–”, “+”, and “≈”
indicate the corresponding result is significantly better than,
worse than or similar to its counterpart. It is worth mentioning
that this paper works on minimisation problems. The smaller
the value, the better the corresponding criterion is.

A. Training Time

The training time is an important criterion to measure the
efficiency of the algorithms. Less training time means that the
algorithm can get good solutions or models efficiently.

Table III shows the mean and standard deviation of the
training time of MTGP and M3GP based on 30 independent
runs in six DFJSS scenarios. The training time of the proposed
algorithm M3GP is significantly shorter than that of MTGP
in all examined scenarios. For example, the training time of
M3GP is reduced the most by 23.40% in scenario <Fmean,
0.95>. In general, M3GP is more efficient than its counterpart,
and the training time of M3GP is roughly 78.5% of that of
MTGP taking all scenarios into account.

Fig. 4 shows the curve of training time of MTGP and M3GP
during the training process in six different scenarios. It shows
that the training time of M3GP is shorter than its counterpart
at all generations in all scenarios. It indicates that the proposed

9

TABLE III
THE MEAN (STANDARD DEVIATION) OF THE TRAINING TIME (IN

MINUTES) OF MTGP AND M3GP ACCORDING TO 30 INDEPENDENT RUNS
IN SIX DFJSS SCENARIOS.

Scenario MTGP M3GP

<Fmax, 0.85> 64(9) 51(9)(–)
<Fmax, 0.95> 67(12) 53(9)(–)
<Fmean, 0.85> 61(11) 48(8)(–)
<Fmean, 0.95> 64(13) 49(6)(–)
<WFmean, 0.85> 62(13) 49(7)(–)
<WFmean, 0.95> 63(11) 49(6)(–)

●
●

●

●
●

●
●

●

●

●
●

●●●

● ●●●●●

●●●
●●

●●●●●
●●●●●

●●●
●

● ●●

●

●
●

●●●
●

●

●●
●

●●

●●
●●

●
●

●●●● ●●
●

●
●

●●●●● ●●

●●●
●●

●●

●

●

●
●●●

●

●

●●●
●

●

●
●

●
●

●
●

●●
●●●●● ●●

●●● ●●●●
● ●●

●●●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

● ●●●

●

●
●

●
●●

●
●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

● ●

●
●●

● ●
●

●●●

●●
●

●
● ●

●●
●●

●●
●●● ●●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●
●●

●
●

●
●●

●●
● ●

●

●●
●

●●
●

●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50
40

60

80

100

40

60

80

50

60

70

80

90

40

50

60

70

80

90

40

50

60

70

80

90

40

50

60

70

80

90

Generation

Tr
ai

ni
ng

 T
im

e

● MTGP M3 GP

Fig. 4. The curve of training time (in minutes) of MTGP and M3GP during
the training process over 30 independent runs in six DFJSS scenarios.

algorithm can successfully save more computational cost in the
whole evolutionary process. In addition, the training time of
M3GP is increasing more slowly than that of MTGP. As the
number of generation increases, the training time of M3GP
grows from 40 to 70 roughly in all scenarios. However, the
training time of MTGP increases from about 50 to 90 in the
scenarios with utilisation level as 0.85 (e.g. <Fmax, 0.85>,
<Fmean, 0.85> and <WFmean, 0.85>) while rises from 55 to
95 roughly in the scenarios with utilisation level as 0.95 (e.g.
<Fmax, 0.95>, <Fmean, 0.95> and <WFmean, 0.95>).

More training time is normally needed in the scenarios
with higher utilisation levels since the corresponding job shop
environments are more complicated as it shows with MTGP
in different scenarios. Specifically, compared with the training
time needed in scenarios with utilisation levels as 0.85, for
MTGP, more training time is needed in the scenarios with
utilisation levels as 0.95. However, this is not the case for
M3GP. This indicates that the training time of M3GP is not
sensitive to the utilisation level of the job shop. One possible

TABLE IV
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST

INSTANCES OF MTGP AND M3GP2 WITH THE SAME NUMBER OF
GENERATIONS OVER 30 INDEPENDENT RUNS IN SIX DFJSS SCENARIOS.

Scenario MTGP M3GP2

<Fmax, 0.85> 1235.73(41.27) 1232.39(31.70)(≈)
<Fmax, 0.95> 1967.24(65.18) 1932.22(42.22)(–)
<Fmean, 0.85> 384.55(1.04) 385.98(2.98) (≈)
<Fmean, 0.95> 555.32(9.91) 552.50(5.07)(≈)
<WFmean, 0.85> 831.30(7.32) 831.24(5.22)(≈)
<WFmean, 0.95> 1114.93(13.80) 1114.36(8.88)(≈)

reason is that the surrogate models with lower fidelities weaken
the relationship between utilisation level and training time
since the corresponding problem is simpler. The simpler
problem with even a higher utilisation level does not have
a significant impact on the training time.

B. The Performance of Evolved Rules

The goal of this paper is to improve the efficiency of GP
to evolve effective scheduling heuristics for DFJSS without
scarifying its performance. Table IV shows the mean and stan-
dard deviation of the objective values on unseen instances of
MTGP and M3GP2 with the same number of generations over
30 independent runs in six different scenarios. It shows that
there is no statistical difference in the performance between
MTGP and M3GP2 in five out of the six scenarios. In addition,
M3GP2 performs significantly better than its counterpart in
scenario <Fmax, 0.95>. This shows that M3GP2 can achieve
similar or even better performance than MTGP with a less
computational cost.

It is also interesting to know whether the performance of
M3GP2 can be better than MTGP if the same computational
time is given. To answer this question, we set a fixed training
time for all the algorithms. If the training time of the algorithm
exceeds the given computational time budget, we stop the run-
ning of the algorithm. In this case, the number of generations
in each run for one algorithm can be different, and we can not
compare with the algorithms based on generations any more.
To make a fair comparison, we process the results by choosing
the compared data properly before comparison. We aim to
choose data at the same or similar time points from each run
of the compared algorithms. In addition, the number of chosen
data in each run for all the compared algorithms is expected
to be equal. We use time to indicate the training time budget,
and the results are equally divided into k groups. The average
period time in each group is time

k , and the demarcation points
of training time of k groups are time

k ∗1, time
k ∗2, ..., time

k ∗k.
According to the demarcation points, the closest recorded time
is identified to map the compared data. Note that there are
inevitable errors to measure the performance of the algorithm
in this way since the compared data is not obtained with
exactly the same number of evaluations. Fortunately, these
data are still representative to measure the performance of the
algorithms since the sampling time is similar for different runs
of one algorithm and different algorithms.

We limit the training time to 80 minutes for MTGP and
M3GP since the training time of the baseline MTGP with

10

TABLE V
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST INSTANCES OF MTGP, SGP−H, SGP−K, AND M3GP2 WITH THE SAME

TRAINING TIME ACCORDING TO 30 INDEPENDENT RUNS IN SIX DFJSS SCENARIOS.

Scenario MTGP SGP−H SGP−K M3GP2

<Fmax, 0.85> 1225.58(44.21) 1267.49(40.76)(+) 1239.48(40.73)(≈) 1212.25(28.60)(–)(–)(–)
<Fmax, 0.95> 1963.85(61.53) 1981.81(52.60)(≈) 1956.72(29.60)(≈) 1925.87(28.98)(–)(–)(–)
<Fmean, 0.85> 384.20(0.93) 387.24(4.22)(+) 386.74(3.32)(+) 384.61(1.25)(≈)(–)(–)
<Fmean, 0.95> 554.62(9.79) 554.75(6.71)(≈) 554.07(8.18)(≈) 550.56(3.32)(–)(–)(–)
<WFmean, 0.85> 830.36(7.09) 834.79(8.13)(+) 830.40(5.52)(≈) 829.25(3.37)(–)(–)(≈)
<WFmean, 0.95> 1112.40(11.34) 1115.75(13.46)(≈) 1110.21(11.15)(≈) 1109.14(5.47)(≈)(–)(≈)

51 generations is about 80 minutes. We set the number of
groups k to 20 that can get enough data for investigating the
objective values along with training time of MTGP, SGP−H,
SGP−K, and M3GP2. The objective values around 80 minutes
are used to measure the performance of the involved algo-
rithms. Table V shows the mean and standard deviation of
the objective values on unseen instances of MTGP, SGP−H,
SGP−K, and M3GP2 over 30 independent runs in six sce-
narios. First, SGP−H, SGP−K, and M3GP2 are compared
with MTGP, respectively. Second, M3GP2 is compared with
SGP−H and SGP−K, respectively. With the same training
time, compared with MTGP, SGP−H and SGP−K perform
significantly worse in three and two scenarios, respectively.
However, M3GP2 can achieve significantly better performance
than MTGP in four out of six scenarios (e.g. <Fmax, 0.85>,
<Fmax, 0.95>, <Fmean, 0.95> and <WFmean, 0.85>). In
addition, M3GP2 is not worse than MTGP in other scenarios.
This verifies the effectiveness of the proposed algorithm.

Fig. 5 shows the curve of average objective values accord-
ing to 30 independent runs on unseen instances of MTGP,
SGP−H, SGP−K, and M3GP2 with the same training time
in six DFJSS scenarios. With the same training time, the
proposed algorithm M3GP2 can converge faster than its
counterparts in all the scenarios. The performance of M3GP2

becomes better than its counterparts after about 10 minutes
in scenario <Fmean, 0.85> and <Fmean, 0.95>. In addition,
M3GP2 performs better than its counterparts after 20 minutes
roughly in scenario <Fmax, 0.95> and <WFmean, 0.85>.
Note that SGP−H performs worse than SGP−K, which is
contrary to the conclusion in [32]. However, this is consistent
with our expectations since the evaluations with half shop
surrogate in [32] is more time consuming than the KNN
surrogate in [30].

Overall, the proposed algorithm can improve the efficiency
of GP in DFJSS by reducing the computational cost without
losing its performance, and thus speeding up its convergence.
Given the same training time, the proposed algorithm can
achieve significantly better performance than its counterparts
in most scenarios while no worse in all the scenarios.

C. The Effectiveness of Knowledge Transfer Mechanism

Multiple surrogate models with different fidelities are used
to improve the efficiency of GP in a collaborative way to
evolve scheduling heuristics for DFJSS. In order to examine
the effectiveness of the proposed knowledge transfer mecha-
nism, several experiments are conducted in this subsection.

●●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ●●
●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●● ● ● ● ●

●

●

●
●

●
●

● ●
●

● ● ● ● ● ● ●● ● ● ●
●

●
●

●
●

●
●

● ●
● ●

● ● ● ● ● ● ● ● ● ●

●

●
●

●
●

●
● ●● ● ● ● ● ● ● ● ● ● ● ● ●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80
1900

2000

2100

2200

2300

2400

550

570

590

610

1100

1200

1300

1200

1300

1400

1500

1600

385

390

395

400

830

840

850

860

870

880

Training Time

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● MTGP SGP_H SGP_K M3 GP_2

Fig. 5. The curve of average objective values according to 30 independent
runs on test instances of MTGP, SGP−H, SGP−K, and M3GP2 with the
same training time (in minutes) in six different scenarios.

We set the transfer ratio tr to zero in M3GP to per-
vert the knowledge transfer between different subpopula-
tions. M3GP1(without) and M3GP2(without) indicate that
there is no knowledge transfer between subpopulations while
M3GP1(with) and M3GP2(with) indicate that there is knowl-
edge transfer between subpopulations with a tr of 0.6.

Table VI shows the mean and standard deviation of the
objective values of M3GP without and with knowledge trans-
fer on test instances according to 30 independent runs in
the six DFJSS scenarios. With knowledge transfer, both the
performance of the evolved rules with different fidelity based
surrogate models are significantly better than its counterpart
without knowledge transfer in all examined scenarios. To
be specific, the performance of M3GP1(with) is better than
M3GP1(without) while the performance of M3GP2(with)
is better than M3GP2(without) in all the scenarios. This
indicates that the knowledge transfer can benefit both involved
problems with different complexities. The knowledge obtained
with the simpler surrogate model is useful for more complex

11

TABLE VI
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES OF M3GP1 AND M3GP2 WITH AND WITHOUT KNOWLEDGE TRANSFER WITH THE

SAME NUMBER OF GENERATIONS ON TEST INSTANCES ACCORDING TO 30 INDEPENDENT RUNS IN SIX DFJSS SCENARIOS.

Scenario M3GP1(without) M3GP1(with) M3GP2(without) M3GP2(with)

<Fmax, 0.85> 1201.44(60.42) 1170.31(29.48)(–) 1261.85(65.40) 1232.39(31.70)(–)
<Fmax, 0.95> 1815.72(76.82) 1758.22(34.88)(–) 2001.56(80.43) 1932.22(42.22)(–)
<Fmean, 0.85> 390.24(4.21) 388.14(2.98)(–) 387.98(4.10) 385.98(2.98)(–)
<Fmean, 0.95> 566.98(7.81) 561.28(5.30)(–) 558.10(7.38) 552.50(5.07)(–)
<WFmean, 0.85> 840.19(9.50) 835.37(5.21)(–) 836.31(9.29) 831.24(5.22)(–)
<WFmean, 0.95> 1149.64(25.43) 1135.75(9.23)(–) 1130.06(25.95) 1114.36(8.88)(–)

TABLE VII
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST

INSTANCES OF MTGP AND M3GP2(without) ACCORDING TO 30
INDEPENDENT RUNS IN SIX DFJSS SCENARIOS.

Scenario MTGP M3GP2(without)

<Fmax, 0.85> 1235.73(41.27) 1261.85(65.40)(+)
<Fmax, 0.95> 1967.24(65.18) 2001.56(80.43)(+)
<Fmean, 0.85> 384.55(1.04) 387.98(4.10)(+)
<Fmean, 0.95> 555.32(9.91) 558.10(7.38)(+)
<WFmean, 0.85> 831.30(7.32) 836.31(9.29)(+)
<WFmean, 0.95> 1114.93(13.80) 1130.06(25.95)(+)

surrogate model. The knowledge derived from complex surro-
gate model is beneficial to the simpler surrogate model. This
confirms the effectiveness of the proposed knowledge transfer
mechanism.

Table VII shows the mean and standard deviation of the
objective values on unseen instances of MTGP and M3GP2

without knowledge transfer according to 30 independent runs
in the six DFJSS scenarios. The results show that the perfor-
mance of M3GP2 without knowledge transfer is significantly
worse than that of MTGP in all scenarios. It verifies the
effectiveness of the proposed knowledge transfer mechanism.
In addition, it is in line with our expectation since more
computational resources are used for solving the desired
problem in MTGP. To be specific, without knowledge transfer,
the number of individuals for solving the desired problem in
M3GP2(without) is 512, which is only half of the number of
individuals in MTGP.

Fig. 6 shows the curve of average objective values on unseen
instances of M3GP1(without) and M3GP1(with) based on
30 independent runs in the six different DFJSS scenarios. It
is obvious that the performance of M3GP1(with) is better
than that of M3GP1(without) after generation 5 roughly in
the max-flowtime related scenarios (i.e. <Fmax, 0.85> and
<Fmax, 0.95>) and after about 10 generations in mean-
flowtime and weighted mean-flowtime related scenarios (i.e.
<Fmean, 0.85>, <Fmean, 0.95>, <WFmean, 0.85> and
<WFmean, 0.95>). It may be because the individuals in the
population before generation 5 or generation 10 have not
reached good quality yet, and the transferred knowledge does
not have sufficient contribution to the other subpopulation.
Fortunately, the transferred knowledge before generation 5 or
10 does not have a negative effect on the other subpopulation.
The same trend is also found between M3GP2(without) and
M3GP2(with), which is shown in Fig. 7.

●

●

●
●

●

●●

●●●

●●
●

●● ●●●
●● ●

●●●● ●●●●
● ●●●●● ●●●●

●
●●

●

●

●
●

●●
●

●
●

●●●●
●

●●●●
●

●●●● ●●●
●●

●●●●● ●●●●● ●●●●

●

●
●

●●
●

●●●●

●
●●

●●●
●

●●
●● ●●●●●

●●●●● ●●●●●
●●●●●

●
●

●●

●
●

●●
●●●

●●
●●●

●●
●●

● ●●●
●●

●●●●● ●●●●● ●
●●●●

●

●

●
●

●
●●●●

●
●

●

●●●
●●●●

● ●
●●●● ●●●

●

● ●●
●

●
● ●●

●

●
●

●●

●

●

●

●
●●●

●
●●●●

●
●●●●● ●●●●● ●●●●● ●

●●●● ●●●●● ●●●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

1800

1900

2000

2100

2200

560

580

600

620

1200

1300

1200

1300

1400

1500

388

392

396

400

404

840

850

860

870

880

890

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● M3 GP1(without) M3 GP1(with)

Fig. 6. The curve of average objective values on test instances of
M3GP1(without) and M3GP1(with) according to 30 independent runs
in six different DFJSS scenarios.

VII. FURTHER ANALYSIS

To deeply understand the effect of the proposed algorithm,
the proposed algorithm with more surrogate models with
different fidelities and the sensitivity analysis of knowledge
transfer ratio, are further analysed in this section.

A. Collaboration with More Surrogate Models

We have conducted an in-depth analysis of the proposed
algorithm. It is interesting to investigate whether the collabo-
ration between more models with different fidelities can benefit
problem-solving or not.

To ensure the performance of the algorithm for the problem
to be solved, half individuals in the population are kept for
optimising the desired problem. Other individuals are divided
equally for solving other simplified problems with different
surrogate models. The number of jobs between surrogate
models with different fidelities follows an arithmetic sequence
with an upper bound as 5000. M3GP2, M3GP3, M3GP4, and

12

●

●

●
●

●

●●

●●●

●●
●●● ●●●

●● ●
●●●● ●●●●● ●●●●● ●●●●● ●

●

●

●

●
●

●●
●

●
●

●●●●
●

●●●● ●●●●● ●●●
●●

●●●●● ●●●●● ●●●●

●

●
●

●●
●

●●●●

●
●●●●●

●
●●

●● ●●●●●
●●●●● ●●●●● ●●●●●

●
●

●
●

●
●

●
●

●●●
●●

●●● ●
●●●

● ●●●
●●

●●●●
● ●●●●● ●

●●●●

●

●

●
●

●
●●●●

●
●

●

●●●
●●●●● ●●●●● ●●●

●

● ●●
●

●
● ●●

●

●●
●●

●

●

●

●
●●

●●
●●●●

●
●●●●● ●●●●● ●●

●●● ●●●●● ●●●●● ●●●●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50

2000

2100

2200

2300

2400

560

580

600

620

1150

1200

1250

1300

1350

1200

1300

1400

1500

1600

390

395

400

830

840

850

860

870

880

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● M3 GP2(without) M3 GP2(with)

Fig. 7. The curve of average objective values on test instances of
M3GP2(without) and M3GP2(with) according to 30 independent runs
in six different DFJSS scenarios.

TABLE VIII
THE SETTINGS OF THE NUMBER OF INDIVIDUALS/JOBS OF THE PROPOSED

ALGORITHM WITH ONE, TWO, THREE, AND FOUR SURROGATES.

Algorithm Subpop1 Subpop2 Subpop3 Subpop4 Subpop5

M3GP2 512/2500 512/5000 – – –
M3GP3 256/1667 256/3333 512/5000 – –
M3GP4 170/1250 171/2500 171/3750 512/5000 –
M3GP5 128/1000 128/2000 128/3000 128/4000 512/5000

M3GP5 can be considered as the corresponding algorithms
on the desired problem, respectively. Table VIII shows the
settings of the number of individuals and jobs of the proposed
algorithm with one, two, three, and four surrogates.

Table IX shows the mean and standard deviation of the train-
ing time of the involved algorithms with the same number of
generations according to 30 independent runs in six different
scenarios. Compared with M3GP2, as the number of surrogate
models increases, the training time of M3GP3, M3GP4, and
M3GP5 has no significant difference in most scenarios.

Table X shows the mean and standard deviation of the
objective values of M3GP2, M3GP3, M3GP4, and M3GP5

on unseen instances with the same number of generations
according to 30 independent runs in six different scenarios.
In terms of the objective values on unseen data, there is
no significant difference among the compared algorithms in
most scenarios. In one of the scenarios of M3GP3, M3GP4,
and M3GP5, the performance is significantly worse than that
of M3GP2. In terms of the mean and standard deviation,
the performance of M3GP2 is better than other compared
algorithms in half of the scenarios (e.g. <Fmax, 0.95>,

TABLE IX
THE MEAN (STANDARD DEVIATION) OF THE TRAINING TIME (IN

MINUTES) OF THE INVOLVED ALGORITHMS WITH THE SAME NUMBER OF
GENERATIONS BASED ON 30 INDEPENDENT RUNS IN SIX SCENARIOS.

Scenario M3GP2 M3GP3 M3GP4 M3GP5

<Fmax, 0.85> 51(9) 48(9)(≈) 46(8)(≈) 48(8)(≈)
<Fmax, 0.95> 53(9) 48(7)(–) 47(7)(–) 49(7)(–)
<Fmean, 0.85> 48(8) 43(4)(–) 47(8)(≈) 47(7)(≈)
<Fmean, 0.95> 49(6) 47(7)(≈) 48(6)(≈) 46(7)(≈)
<WFmean, 0.85> 49(7) 48(7)(≈) 48(6)(≈) 47(8)(≈)
<WFmean, 0.95> 49(6) 47(9)(≈) 47(8)(≈) 47(7)(≈)

<Fmean, 0.95>, and <WFmean, 0.95>) as shown in bold.
In addition, the examined problems are not very sensitive to
the number of surrogates as the performance of the proposed
algorithm with different number of surrogates achieve similar
performance.

Overall, the results show that the proposed algorithm with
two surrogates achieves the best performance with the settings
in this paper. A possible reason is that the additional surrogate
models in the experiments were not accurate enough, and thus
introduced more noise than the first two surrogate models. The
accuracy of surrogates can be different for different problem
complexities, such as utilisation levels. In our case, we observe
that two surrogate models is a proper choice. There are several
interesting but challenging questions are worth studying in the
future. First, how to decide the optimal number of surrogates.
Second, how to design efficient surrogate models according to
the domain knowledge or information from the evolutionary
process. Last but not least, how to design effective knowledge
transfer mechanisms for a large number of surrogates since
the interaction between more surrogates is even complex.
However, this is out of the scope of this study, and we would
like to investigate it in the future.

B. The Sensitivity Analysis of Knowledge Transfer Ratio

The transfer ratio which decides the frequency to transfer
knowledge between different problems at each generation is
further analysed in this subsection.

Fig. 8 shows the curve of average objective values on unseen
instances of M3GP2 with different transfer ratios according
to 30 independent runs in six different scenarios. The per-
formance of M3GP2 with different transfer ratios is almost
the same in scenario <Fmax, 0.95>, <WFmean, 0.85>,
and <WFmean, 0.95>. In scenario <Fmax, 0.85>, <Fmean,
0.85>, and <Fmean, 0.95>, there are some slight differences
between the algorithms with different transfer ratios. From
an overall perspective, M3GP2 with transfer ratio as 0.6 has
slightly better performance than its counterparts. Therefore,
this paper sets the transfer ratio to 0.6 to M3GP to compare
with other algorithms, as we mentioned earlier. However, in
general, the performance of M3GP2 is not sensitive to the
transfer ratio.

VIII. CONCLUSIONS

The goal of this paper was to develop an effective strat-
egy that collaborates multi-fidelity based surrogate models to

13

TABLE X
THE MEAN (STANDARD DEVIATION) OF THE OBJECTIVE VALUES ON TEST INSTANCES OF M3GP2 , M3GP3 , M3GP4 , AND M3GP5 WITH THE SAME

NUMBER OF GENERATIONS ACCORDING TO 30 INDEPENDENT RUNS IN SIX DFJSS SCENARIOS.

Scenario M3GP2 M3GP3 M3GP4 M3GP5

<Fmax, 0.85> 1232.39(31.70) 1228.03(37.98)(≈) 1222.44(29.73)(≈) 1230.54(33.47)(≈)
<Fmax, 0.95> 1932.22(42.22) 1948.53(45.67)(≈) 1960.67(120.22)(≈) 1954.50(68.28)(≈)
<Fmean, 0.85> 385.98(2.98) 385.33(2.06)(≈) 384.93(1.73)(≈) 385.59(3.11)(≈)
<Fmean, 0.95> 552.50(5.07) 553.43(5.30)(≈) 554.02(4.84)(≈) 555.82(6.76)(+)
<WFmean, 0.85> 831.24(5.22) 830.83(6.50)(≈) 831.36(6.56)(≈) 830.79(4.27)(≈)
<WFmean, 0.95> 1114.36(8.88) 1119.21(15.79)(+) 1122.82(17.39)(+) 1117.59(12.98)(≈)

● ●

●

●
●

●
●

● ●
●

● ● ●

●

●

●

●

●
●

●
●

● ● ●

● ●
● ●

●

●

●

●

●
●

●
●

● ●
● ●

● ●

●

●

●
●

●

●
●

●
● ●

●
● ● ●

●

●
●

●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●
●

● ● ● ●

<WFmean, 0.85> <WFmean, 0.95>

<Fmean, 0.85> <Fmean, 0.95>

<Fmax, 0.85> <Fmax, 0.95>

10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50

10 20 30 40 50 10 20 30 40 50

2000

2100

2200

560

570

580

1125

1150

1175

1250

1300

1350

1400

1450

387

390

393

396

830

840

850

860

Generation

A
ve

ra
ge

 O
bj

ec
tiv

e
V

al
ue

 o
n

Te
st

 In
st

an
ce

s

● M3 GP2(0.0)

M3 GP2(0.6)

M3 GP2(0.2)

M3 GP2(0.8)

M3 GP2(0.4)

M3 GP2(1.0)

Fig. 8. The curve of average objective values on test instances of M3GP2

with different transfer ratios over 30 independent runs in six DFJSS scenarios.

improve the efficiency of GP to evolve scheduling heuristics
automatically for DFJSS. The goal was successfully achieved
by proposing an effective collaboration framework in GP that
made multiple surrogates can learn from each other, and an
effective knowledge transfer mechanism.

The results show that the proposed algorithm M3GP2 can
dramatically reduce the computational time of GP without
losing its performance. Within the same training time, M3GP2

can achieve significantly better performance in most of the
scenarios, while no worse than its counterpart in all the scenar-
ios. The efficiency and effectiveness of the proposed algorithm
are verified by comparing the training time, the performance
with both the same number of generations and training time,
and the analysis of knowledge transfer mechanism. In general,
the proposed algorithm M3GP2 can successfully improve the
efficiency of GP, and achieve effective scheduling heuristics
automatically for DFJSS. The proposed algorithm shows its
superiority compared with the state-of-the-art algorithms re-
lated to surrogate for the job shop scheduling problems.

Some interesting directions can be further investigated in the

near future. We plan to apply the proposed algorithm to the
same problem but with more different objectives and exper-
imental factors such as various processing time distributions
or other problems such as vehicle routing and timetabling. It
is still not clear what is the optimal number of the surrogate
models with multi-fidelity for one specific problem, and how to
effectively define different multi-fidelity surrogate models. In
addition, what kinds of knowledge are transferred, and how the
problems help each other. We also would like to investigate the
effects of different representations on the proposed algorithm.
Last but not least, we plan to further improve our simulation
based on the investigation of the industry practice to make it
closer to the real-world applications.

REFERENCES

[1] A. S. Manne, “On the job-shop scheduling problem,” Operations Re-
search, vol. 8, no. 2, pp. 219–223, 1960.

[2] C. D. Geiger, R. Uzsoy, and H. Aytuğ, “Rapid modeling and discovery of
priority dispatching rules: An autonomous learning approach,” Journal
of Scheduling, vol. 9, no. 1, pp. 7–34, 2006.

[3] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[4] S. Bennett, S. Nguyen, and M. Zhang, “A hybrid discrete particle swarm
optimisation method for grid computation scheduling,” in Proceedings
of the IEEE Congress on Evolutionary Computation. IEEE, 2014, pp.
483–490.

[5] P. Brucker and R. Schlie, “Job-shop scheduling with multi-purpose
machines,” Computing, vol. 45, no. 4, pp. 369–375, 1990.

[6] D. Yska, Y. Mei, and M. Zhang, “Genetic programming hyper-heuristic
with cooperative coevolution for dynamic flexible job shop scheduling,”
in European Conference on Genetic Programming. Springer, 2018, pp.
306–321.

[7] F. Zhang, Y. Mei, and M. Zhang, “Genetic programming with multi-tree
representation for dynamic flexible job shop scheduling,” in Proceedings
of the Australasian Joint Conference on Artificial Intelligence. Springer,
2018, pp. 472–484.

[8] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Guided subtree selection
for genetic operators in genetic programming for dynamic flexible job
shop scheduling,” in European Conference on Genetic Programming.
Springer, 2020, pp. 262–278.

[9] J. Xiong, L.-n. Xing, and Y.-w. Chen, “Robust scheduling for multi-
objective flexible job-shop problems with random machine breakdowns,”
International Journal of Production Economics, vol. 141, no. 1, pp. 112–
126, 2013.

[10] J. Park, Y. Mei, S. Nguyen, G. Chen, and M. Zhang, “Investigating
a machine breakdown genetic programming approach for dynamic
job shop scheduling,” in Proceedings of the European Conference on
Genetic Programming. Springer, 2018, pp. 253–270.

[11] Y. N. Sotskov and N. V. Shakhlevich, “Np-hardness of shop-scheduling
problems with three jobs,” Discrete Applied Mathematics, vol. 59, no. 3,
pp. 237–266, 1995.

[12] H. Chen, C. Chu, and J.-M. Proth, “An improvement of the lagrangean
relaxation approach for job shop scheduling: a dynamic programming
method,” IEEE Transactions on Robotics and Automation, vol. 14, no. 5,
pp. 786–795, 1998.

14

[13] F. Y.-P. Simon et al., “Integer linear programming neural networks
for job-shop scheduling,” in Proceedings of the IEEE International
Conference on Neural Networks. IEEE, 1988, pp. 341–348.

[14] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

[15] F. Glover and M. Laguna, “Tabu search,” in Handbook of combinatorial
optimization. Springer, 1998, pp. 2093–2229.

[16] G. V. Conroy, “Handbook of genetic algorithms,” The Knowledge
Engineering Review, vol. 6, no. 4, pp. 363–365, 1991.

[17] M. Durasevic and D. Jakobovic, “A survey of dispatching rules for
the dynamic unrelated machines environment,” Expert Systems with
Applications, vol. 113, pp. 555–569, 2018.

[18] F. Zhang, Y. Mei, and M. Zhang, “Evolving dispatching rules for multi-
objective dynamic flexible job shop scheduling via genetic programming
hyper-heuristics,” in Proceedings of the IEEE Congress on Evolutionary
Computation. IEEE, 2019, pp. 1366–1373.

[19] X. Li and L. Gao, “Gep-based reactive scheduling policies for dynamic
fjsp with job release dates,” in Proceedings of the Effective Methods
for Integrated Process Planning and Scheduling. Springer, 2020, pp.
405–428.

[20] M. Jayamohan and C. Rajendran, “New dispatching rules for shop
scheduling: a step forward,” International Journal of Production Re-
search, vol. 38, no. 3, pp. 563–586, 2000.

[21] J. R. Koza, Genetic programming: A paradigm for genetically breeding
populations of computer programs to solve problems. Stanford Uni-
versity, Department of Computer Science Stanford, CA, 1990, vol. 34.

[22] K. Miyashita, “Job-shop scheduling with genetic programming,” in
Proceedings of the 2nd Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc., 2000, pp. 505–512.

[23] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Genetic program-
ming for evolving due-date assignment models in job shop environ-
ments,” Evolutionary Computation, vol. 22, no. 1, pp. 105–138, 2014.

[24] F. Zhang, Y. Mei, and M. Zhang, “A two-stage genetic programming
hyper-heuristic approach with feature selection for dynamic flexible
job shop scheduling,” in Proceedings of the Genetic and Evolutionary
Computation Conference. IEEE, 2019, pp. 347–355.

[25] Y. Zhou, J.-J. Yang, and L.-Y. Zheng, “Multi-agent based hyper-
heuristics for multi-objective flexible job shop scheduling: A case study
in an aero-engine blade manufacturing plant,” Ieee Access, vol. 7, pp.
21 147–21 176, 2019.

[26] J. Lin, L. Zhu, and K. Gao, “A genetic programming hyper-heuristic
approach for the multi-skill resource constrained project scheduling
problem,” Expert Systems with Applications, vol. 140, p. 112915, 2020.

[27] J. P. Davis, K. M. Eisenhardt, and C. B. Bingham, “Developing theory
through simulation methods,” Academy of Management Review, vol. 32,
no. 2, pp. 480–499, 2007.

[28] G. Lamé and M. Dixon-Woods, “Using clinical simulation to study
how to improve quality and safety in healthcare,” BMJ Simulation and
Technology Enhanced Learning, 2018.

[29] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p.
1883, 2009.

[30] T. Hildebrandt and J. Branke, “On using surrogates with genetic pro-
gramming,” Evolutionary Computation, vol. 23, no. 3, pp. 343–367,
2015.

[31] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Selection schemes
in surrogate-assisted genetic programming for job shop scheduling,”
in Asia-Pacific Conference on Simulated Evolution and Learning.
Springer, 2014, pp. 656–667.

[32] S. Nguyen, M. Zhang, and K. C. Tan, “Surrogate-assisted genetic pro-
gramming with simplified models for automated design of dispatching
rules,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2951–2965,
2017.

[33] F. Zhang, Y. Mei, and M. Zhang, “Surrogate-assisted genetic program-
ming for dynamic flexible job shop scheduling,” in Proceedings of the
Australasian Joint Conference on Artificial Intelligence. Springer, 2018,
pp. 766–772.

[34] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated design
of production scheduling heuristics: A review,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 1, pp. 110–124, 2016.

[35] S. Nguyen, Y. Mei, and M. Zhang, “Genetic programming for production
scheduling: a survey with a unified framework,” Complex & Intelligent
Systems, vol. 3, no. 1, pp. 41–66, 2017.

[36] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving scheduling
heuristics via genetic programming with feature selection in dynamic
flexible job shop scheduling,” IEEE Transactions on Cybernetics, 2020.
Doi: 10.1109/TCYB.2020.3024849.

[37] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational Intelligence. Springer, 2009, pp. 177–
201.

[38] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward, “A genetic
programming hyper-heuristic approach for evolving 2-d strip packing
heuristics,” IEEE Trans. Evolutionary Computation, vol. 14, no. 6, pp.
942–958, 2010.

[39] M. R. Hyde, “A genetic programming hyper-heuristic approach to
automated packing,” Ph.D. dissertation, University of Nottingham, UK,
2010.

[40] M. B. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling
heuristics using a grammar-based genetic programming hyper-heuristic
framework,” Memetic Computing, vol. 1, no. 3, pp. 205–219, 2009.

[41] N. Pillay and W. Banzhaf, “A genetic programming approach to the gen-
eration of hyper-heuristics for the uncapacitated examination timetabling
problem,” in Proceedings of the Portuguese Conference on Aritficial
Intelligence, 2007, pp. 223–234.

[42] F. Zhang, Y. Mei, and M. Zhang, “A new representation in genetic
programming for evolving dispatching rules for dynamic flexible job
shop scheduling,” in Proceedings of the European Conference on Evo-
lutionary Computation in Combinatorial Optimization. Springer, 2019,
pp. 33–49.

[43] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic pro-
gramming via iterated local search for dynamic job shop scheduling,”
IEEE Transactions on Cybernetics, vol. 45, no. 1, pp. 1–14, 2015.

[44] M. Durasevic and D. Jakobovic, “Evolving dispatching rules for opti-
mising many-objective criteria in the unrelated machines environment,”
Genetic Programming and Evolvable Machines, vol. 19, no. 1-2, pp.
9–51, 2018.

[45] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, 2011.

[46] X. Sun, D. Gong, Y. Jin, and S. Chen, “A new surrogate-assisted
interactive genetic algorithm with weighted semisupervised learning,”
IEEE Transactions on Cybernetics, vol. 43, no. 2, pp. 685–698, 2013.

[47] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang, “Surrogate-
assisted evolutionary deep learning using an end-to-end random forest-
based performance predictor,” IEEE Transactions on Evolutionary Com-
putation, vol. 24, no. 2, pp. 350–364, 2019.

[48] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-
function networks,” Neural computation, vol. 3, no. 2, pp. 246–257,
1991.

[49] T. Chugh, Y. Jin, K. Miettinen, J. Hakanen, and K. Sindhya, “A
surrogate-assisted reference vector guided evolutionary algorithm for
computationally expensive many-objective optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 22, no. 1, pp. 129–142, 2018.

[50] Q. Chen, M. Zhang, and B. Xue, “Structural risk minimization-driven
genetic programming for enhancing generalization in symbolic regres-
sion,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 4,
pp. 703–717, 2019.

[51] K. Chen, B. Xue, M. Zhang, and F. Zhou, “Novel chaotic grouping
particle swarm optimization with a dynamic regrouping strategy for
solving numerical optimization tasks,” Knowledge-Based Systems, p.
105568, 2020.

[52] Y. Zhou, J.-j. Yang, and Z. Huang, “Automatic design of scheduling
policies for dynamic flexible job shop scheduling via surrogate-assisted
cooperative co-evolution genetic programming,” International Journal
of Production Research, vol. 58, no. 9, pp. 2561–2580, 2020.

[53] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[54] M. Iqbal, B. Xue, H. Al-Sahaf, and M. Zhang, “Cross-domain reuse of
extracted knowledge in genetic programming for image classification,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp.
569–587, 2017.

[55] K. Chen, B. Xue, M. Zhang, and F. Zhou, “An evolutionary
multitasking-based feature selection method for high-dimensional
classification,” IEEE Transactions on Cybernetics, 2020. Doi:
10.1109/TCYB.2020.3042243.

[56] T. T. H. Dinh, T. H. Chu, and Q. U. Nguyen, “Transfer learning
in genetic programming,” in Proceedings of the IEEE Congress on
Evolutionary Computation. IEEE, 2015, pp. 1145–1151.

[57] X. Zhang, Y. Tian, and Y. Jin, “A knee point-driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 19, no. 6, pp. 761–776, 2015.

15

[58] T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Towards improved dis-
patching rules for complex shop floor scenarios: a genetic programming
approach,” in Proceedings of the Annual Conference on Genetic and
Evolutionary Computation. ACM, 2010, pp. 257–264.

[59] Y. Mei, S. Nguyen, B. Xue, and M. Zhang, “An efficient feature selection
algorithm for evolving job shop scheduling rules with genetic pro-
gramming,” IEEE Transactions on Emerging Topics in Computational
Intelligence, vol. 1, no. 5, pp. 339–353, 2017.

[60] Y. Mei, M. Zhang, and S. Nguyen, “Feature selection in evolving job
shop dispatching rules with genetic programming,” in Proceedings of
the Genetic and Evolutionary Computation Conference. IEEE, 2016,
pp. 365–372.

Fangfang Zhang (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees from Shenzhen
University, Shenzhen, China, in 2014 and 2017,
respectively. She is currently pursuing the Ph.D.
degree in computer science with the School of Engi-
neering and Computer Science, Victoria University
of Wellington, Wellington, New Zealand.

She has over 20 journal and conference papers.
Her current research interests include evolutionary
computation, hyper-heuristic, job shop scheduling,
and multitask optimization.

Ms. Zhang is a member of the IEEE Computational Intelligence Society
and Association for Computing Machinery, and has been severing as reviewers
for top international journals such as the IEEE Transactions on Evolutionary
Computation and the IEEE Transactions on Cybernetics, and conferences
including the Genetic and Evolutionary Computation Conference and the IEEE
Congress on Evolutionary Computation. She is also a committee member of
the IEEE NZ Central Section.

Yi Mei (M’09-SM’18) received the B.Sc. and Ph.D.
degrees from the University of Science and Tech-
nology of China, Hefei, China, in 2005 and 2010,
respectively.

He is currently a Senior Lecturer with the School
of Engineering and Computer Science, Victoria Uni-
versity of Wellington, Wellington, New Zealand.
He has more than 100 fully referred publications,
including the top journals in EC and Operations
Research, such as IEEE Transactions on Evolution-
ary Computation, IEEE Transactions on Cybernetics,

Evolutionary Computation, European Journal of Operational Research, and
ACM Transactions on Mathematical Software. His research interests include
evolutionary scheduling and combinatorial optimization, machine learning,
genetic programming, and hyperheuristics.

Dr. Mei serves as a Vice-Chair of the IEEE CIS Emergent Technologies
Technical Committee and a member of the Intelligent Systems Applications
Technical Committee. He is an Editorial Board Member/Associate Editor of
three international journals, and a Guest Editor of a special issue of the Genetic
Programming and Evolvable Machines journal. He serves as a reviewer of over
30 international journals.

Su Nguyen (M’13) received his Ph.D. degree in
Artificial Intelligence and Data Analytics from Vic-
toria University of Wellington, New Zealand, in
2013.

He is a Senior Research Fellow and an Algorithm
Lead with CDAC, La Trobe University, Melbourne,
VIC, Australia. His expertise includes evolutionary
computation (EC), simulation optimization, auto-
mated algorithm design, interfaces of AI/OR, and
their applications in logistics, energy, and transporta-
tion. He has more than 70 publications in top EC/OR

peer-reviewed journals and conferences. His current research focuses on novel
people-centric artificial intelligence to solve dynamic and uncertain planning
tasks by combining the creativity of evolutionary computation and power of
advanced machine-learning algorithms.

Dr. Nguyen was the Chair of IEEE Task Force on Evolutionary Scheduling
and Combinatorial Optimisation from 2014 to 2018 and is a member of the
IEEE CIS Data Mining and Big Data Technical Committee. He delivered
technical tutorials about EC and AI-based visualization at Parallel Problem
Solving from Nature Conference in 2018 and IEEE World Congress on
Computational Intelligence in 2020. He served as an Editorial Member
of Complex and Intelligence Systems and the Guest Editor of the special
issue on Automated Design and Adaption of Heuristics for Scheduling and
Combinatorial Optimization in Genetic Programming and Evolvable Machines
journal.

Mengjie Zhang (M’04-SM’10-F’19) received the
B.E. and M.E. degrees from Artificial Intelligence
Re- search Centre, Agricultural University of Hebei,
Baoding, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively.

He is currently a Professor of Computer Science,
the Head of the Evolutionary Computation Research
Group, and the Associate Dean (Research and In-
novation) with the Faculty of Engineering, Victoria
University of Wellington, Wellington, New Zealand.

His current research interests include evolutionary computation, particularly
genetic programming, particle swarm optimization, and learning classifier
systems with application areas of image analysis, multiobjective optimization,
feature selection and reduction, job shop scheduling, and transfer learning. She
has published over 500 research papers in refereed international journals and
conferences.

Prof. Zhang was the Chair of the IEEE CIS Intelligent Systems and Appli-
cations Technical Committee, the IEEE CIS Emergent Technologies Technical
Committee, and the Evolutionary Computation Technical Committee, and
a member of the IEEE CIS Award Committee. He is a Vice-Chair of the
Task Force on Evolutionary Computer Vision and Image Processing and
the Founding Chair of the IEEE Computational Intelligence Chapter in New
Zealand. She is also a Committee Member of the IEEE NZ Central Section. He
is a Fellow of the Royal Society of New Zealand and an IEEE Distinguished
Lecturer.

