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his paper examines whether interpersonal networks help explain two widely documented patterns of

knowledge diffusion: (1) geographic localization of knowledge flows, and (2) concentration of knowledge
flows within firm boundaries. I measure knowledge flows using patent citation data, and employ a novel
regression framework based on choice-based sampling to estimate the probability of knowledge flow between
inventors of any two patents. As expected, intraregional and intrafirm knowledge flows are found to be stronger
than those across regional or firm boundaries. I explore whether these patterns can be explained by direct and
indirect network ties among inventors, as inferred from past collaborations among them. The existence of a tie is
found to be associated with a greater probability of knowledge flow, with the probability decreasing as the path
length (geodesic) increases. Furthermore, the effect of regional or firm boundaries on knowledge flow decreases
once interpersonal ties have been accounted for. In fact, being in the same region or firm is found to have
little additional effect on the probability of knowledge flow among inventors who already have close network
ties. The overall evidence is consistent with a view that interpersonal networks are important in determining

observed patterns of knowledge diffusion.
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1. Introduction

Acquisition of knowledge can be crucial for economic
success of firms and for innovativeness and growth
of geographic regions (Grossman and Helpman 1991).
However, knowledge acquisition is not easy. Even
though ideas are intangible in nature, they can be
extremely hard to transmit across regional or firm
boundaries. In particular, two patterns of knowledge
diffusion have been documented. First, knowledge
flows are geographically localized (Jaffe et al. 1993).
Second, knowledge diffuses more easily within a firm
than between firms (Kogut and Zander 1992). In this
paper, I formally examine interpersonal networks as
the driver behind these patterns. Although other fac-
tors such as institutions, norms, language, culture,
or incentives could also influence how knowledge
diffuses, I estimate how much of the empirical pat-
tern of knowledge diffusion can be explained sim-
ply by the fact that people within a region or a firm
have close interpersonal ties. Although the main focus
of this paper is to study the role of interpersonal
networks in determining knowledge diffusion pat-
terns, its contributions to the literature also include
an improved methodology for analyzing microlevel
knowledge flows, a richer data set than is typically
employed in studies on knowledge diffusion, and a
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separate identification of the impact of direct versus
indirect ties on knowledge flow.

Extending existing research methodology for using
patent citation data to measure knowledge flows (e.g.,
Jaffe and Trajtenberg 2002), I employ a novel regres-
sion framework based on choice-based sampling to
estimate the probability of knowledge flow between
inventors of any two patents. Consistent with past
research, I find that knowledge flows are stronger
within than between regions or firms. In particular,
even after carefully controlling for technological spe-
cialization of regions (Thompson and Fox-Kean 2005),
knowledge flow between two inventors from the
same region is found to be 66% more likely than that
between two inventors from different regions. Like-
wise, all else being equal, knowledge flow between
two inventors is three times as likely within than be-
tween firms.

A rich literature in sociology has emphasized infor-
mation flow through interpersonal networks (Ryan
and Gross 1943, Coleman et al. 1966, Granovetter
1973, Burt 1992, Rogers 1995). This has motivated
the current study investigating whether such inter-
personal networks are behind the observed patterns
of knowledge diffusion mentioned above. Whereas it
can be difficult to obtain large-scale systematic data
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on interpersonal relations, we can infer such relations
indirectly by studying secondary data on collabora-
tions between individuals (Cockburn and Henderson
1998, Newman 2001, Fleming et al. 2004). Follow-
ing this approach, I use collaboration information for
patents registered with the United States Patent and
Trademark Office (USPTO) to construct a rich longi-
tudinal database of interpersonal relations among all
inventors recorded by USPTO since 1975. This forms
the basis of constructing a social proximity graph for
over 1 million inventors, which is then used to mea-
sure the social distance between any two inventors.
I capture both direct and indirect interpersonal rela-
tions. For example, if individual X has a direct tie
with individual Y, and Y has a direct tie with Z,
I allow the possibility that Z might learn indirectly
about X’s work through his or her tie with Y. In
the analysis, collaborative ties between inventors are
found to be an important determinant of the proba-
bility of knowledge flow, with this probability falling
with increase in social distance. For example, for
inventors with direct collaborative ties the probabil-
ity of knowledge flow is four times that for inventors
who are not connected, and it is 3.2 times that for
inventors who have no direct tie, but who have an
indirect tie through past collaboration.

The main analysis of the paper studies whether the
above interpersonal networks help explain the pat-
terns of knowledge diffusion discussed earlier. I find
that the effect of being in the same region or the
same firm on the probability of knowledge flow does
decrease once collaborative networks have been taken
into account. Although the decrease is nontrivial
in magnitude and statistically highly significant, the
magnitude of this effect is not as large as one might
expect: Once interpersonal ties have been controlled
for, there is a 17% decrease in the effect of geographic
colocation on probability of knowledge flow, and a
12% decrease in the effect of being within the same
firm on the probability of knowledge flow. However,
because only a subset of all interpersonal relations
are captured by a network constructed exclusively
from patent collaboration data, these results should be
viewed as a lower bound on the importance of inter-
personal networks. This interpretation is strengthened
by the additional finding that geographic proximity
and firm boundaries have little additional effect on
the probability of knowledge flow between inventors
who are already closely connected in the collaboration
network. The regional and firm boundaries continue
to matter more for knowledge flow between inven-
tors with no ties or with only very indirect ties. As
explained in §5, this is consistent with a view that
interpersonal networks are actually quite important in
causing the more intense intraregional and intrafirm
knowledge flows, and that the detected effects are

of relatively small magnitude simply because patent
collaborations capture only a fraction of all relevant
interpersonal ties.

This paper is organized as follows. Section 2 moti-
vates my formal hypotheses. Section 3 describes the
data on patent citations and on inventors. Section 4
introduces my citation-level regression framework
for estimating probability of knowledge flow, and
describes how I measure interpersonal ties. Section 5
reports and explains the empirical findings. Section 6
discusses some open empirical issues and possible
future extensions. Section 7 offers implications and
concluding thoughts.

2. Hypotheses

The analysis in this paper comprises three main parts,
as summarized in Figure 1. The first part formally
establishes that intraregional and intrafirm knowl-
edge flows are indeed more intense than the knowl-
edge flows between different regions or firms. The
second part tests the extent to which existence and
directness of interpersonal ties between individu-
als determines the probability of knowledge flow
between them. The third part, which is the crux of
this paper, combines the constructs from the first two
parts to examine the extent to which interpersonal
networks help explain the intense intraregional and
intrafirm knowledge flows.

Although previous work has documented geo-
graphic localization of knowledge flow (e.g., Jaffe
et al. 1993), recent work raises methodological con-
cerns that could have led to overestimation of this
phenomenon (Thompson and Fox-Kean 2005). There-
fore, before trying to explain the result on intra-
regional knowledge flows, I first test if the result
does indeed continue to hold even when using a new
empirical approach (as detailed in §4) that addresses
some of these concerns:

Figure 1 Summary of Hypotheses

(a) Hypotheses 1 and 2

IM—. Greater probability of
y knowledge flow
Same firm |[—

(b) Hypotheses 3 and 4

Close collaborative links
between individuals

Greater probability of
knowledge flow

(c) Hypotheses 5 and 6

_—M Close collaborative links
between individuals

Greater probability of
knowledge flow
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HyrotuEsis 1. The probability of knowledge flow
within a region exceeds that between different regions, even
after accounting for technological specialization of regions.

The second pattern of knowledge diffusion I study
demonstrates that knowledge diffuses more effec-
tively within a firm than would be possible through
a market-mediated mechanism (Kogut and Zander
1992). Before examining collaborative networks as a
possible driver for this phenomenon, I formally repro-
duce this result by testing the following:

HyprotHEsis 2. The probability of knowledge flow
within a firm exceeds that between different firms, even
after accounting for technological specialization of firms.

Mobility of individuals has been shown to be
an important mechanism through which knowledge
diffuses (Saxenian 1994, Almeida and Kogut 1999,
Rosenkopf and Almeida 2003). However, even in the
absence of direct mobility of individuals, information
can diffuse through interpersonal networks (Zander
and Kogut 1995, Zucker et al. 1998, Shane and Cable
2002, Stuart and Sorenson 2003, Uzzi and Lancaster
2003). In this paper, I focus specifically on direct and
indirect interpersonal ties that arise from patent col-
laborations between inventors.! The next hypothesis
is that such ties do enhance transmission of knowl-
edge:

HyrotHEsis 3. The probability of knowledge flow is
greater between inventors with a direct or indirect collabo-
rative tie than between inventors who are not connected in
the collaborative network.

Close network links are potentially more useful for
transferring knowledge that is complex and not eas-
ily codifiable (Ghoshal et al. 1994, Uzzi 1996, Hansen
1999). The codified part of such knowledge (e.g.,
description of an innovation as recorded in a patent
description) may represent just the tip of the ice-
berg, with the rest being tacit (Polanyi 1966, Nelson
and Winter 1982, Kogut and Zander 1992). Trans-
mission of such knowledge might therefore be eas-
ier between individuals with close ties (Allen 1977,
Nonaka 1994, Szulanski 1996). In addition, direct rela-
tionships induce more trust, improving willingness
of individuals to share knowledge (Tsai and Ghoshal
1998, Levin and Cross 2004). Thus, transmission of
complex technical knowledge should become more
difficult as the social distance, or the number of inter-
mediaries needed to pass knowledge from the source

! Stolpe (2001) uses a sample of patents on liquid crystal display
technology to study knowledge diffusion through just direct col-
laborative links, but finds no evidence of it. Possible explanations
could be that this technology is unusual (e.g., easier to codify), or
simply that the number of collaborations in this sample was too
small.

to the destination, increases.” This suggests the fol-
lowing hypothesis:

HyprotHEsis 4. The probability of knowledge flow
between individuals is a decreasing function of the social
distance between them.

Now I come to the main hypotheses of this paper,
which involve studying the extent to which the results
from Hypotheses 1 and 2 can be explained by the
interpersonal networks from Hypotheses 3 and 4. Sev-
eral empirical studies, such as that by Kono et al.
(1998), have established that spatial propinquity facil-
itates relationship formation. Sorenson and Stuart
(2001) show that such localized interpersonal ties in
the venture capital community lead to localized flow
of information regarding investment opportunities,
which in turn results in geographic localization of
venture capital investments. Analogously, I test if the
geographic localization of technological knowledge
flows can also be explained by the fact that close
direct or indirect collaborative ties are more likely to
exist between inventors from the same region. This
gives the following formal hypothesis:

HyrotHEs1s 5. Accounting for collaborative networks
leads to a significant drop in the effect of geographic colo-
cation of inventor teams on the probability of knowledge
flow between them.

An alternate hypothesis could be that geographic
concentration of knowledge flows is driven not by
collaborative networks, but by other mechanisms
such as informal interaction (“ideas in the air”) or
region-specific factors such as local infrastructure,
institutions, regional publications, communication
channels, norms, culture, and government policies.
Another plausible reason why patent-based collabo-
rative networks might explain only a small portion of
the intraregion knowledge flows could simply be that
patent collaborations reveal only a subset of actual
interpersonal networks.

Analogous to studying why intraregional knowl-
edge flows are strong is the question why knowledge
flows are stronger within than between firms. I follow
Simon (1991) and Grant (1996) in taking individuals
as the unit of analysis for studying knowledge flows

2 Granovetter (1973) and Burt (1992) suggest that nonredundancy of
resulting information flow determines the usefulness of a network
tie. As a referee correctly pointed out, my social distance measure is
defined using only the shortest network path between two teams of
inventors, and hence does not capture alternate paths between two
nodes or nonredundancy of information flow. Therefore, Hypothe-
sis 4 should not be interpreted as a direct test of Granovetter and
Burt’s theories. This issue is studied by Hansen (1999), who shows
that weak and nonredundant ties are better when searching for
simple information, whereas strong ties are better for transfer of
complex knowledge.
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even within organizations. This allows me to use a
unified network framework to study both interfirm
and intrafirm knowledge flows. Specifically, I explore
how much of a firm’s ability to transfer knowledge
between its employees can be explained simply by
the fact that it is a tightly knit social community in
the specific sense of having a dense collaborative net-
work. This gives my final hypothesis:

HyproTHESIS 6. Accounting for collaborative networks
leads to a significant drop in the effect of firm boundaries
on the probability of knowledge flow between two teams of
inventors.

An alternate hypothesis could be that intrafirm
knowledge flows are driven not by interpersonal net-
works, but by organizational routines and processes,
confidentiality requirements, and different incentives
for sharing knowledge with fellow employees ver-
sus outsiders. Once again, another plausible reason
why networks based on patent collaborations might
explain only some of the intrafirm knowledge flows is
that patent collaborations surely capture only a frac-
tion of all relevant interpersonal ties. Yet another rea-
son why the measured knowledge flows are greater
within firms could be that the role of patent citations
in determining patent scope and litigation behavior
makes incentives for intrafirm citations very different
from those for interfirm citations (Jaffe and Trajten-
berg 2002).

3. Patent Data

3.1. Patent Citations as Measure of
Knowledge Flow

Patent citations leave behind a trail of how an
innovation potentially builds on existing knowledge.
Unlike in academic papers, there is an incentive not
to include superfluous patent citations because that
might reduce the scope of an inventor’s own patent.
An inventor is legally bound to report relevant prior
art, with the patent examiner performing an objec-
tive check, however. Nevertheless, not all citations
reflect knowledge flows. Citations might be included
for strategic reasons (e.g., to avoid litigation). Also, a
firm’s lawyer or a patent examiner might add cita-
tions that the original inventor did not know about
(Thompson 2004, Alcacer and Gittelman 2004). Nev-
ertheless, recent studies comparing citation data with
direct surveys of inventors show that the correla-
tion between patent citations and actual knowledge
flows is high, although it is not perfect (Jaffe and
Trajtenberg 2005, Duguet and MacGarvie 2005).

I merged patent data from the USPTO with that
from Jaffe and Trajtenberg (2002). The data set had
to be further enhanced to correctly identify each
patent’s owner, because some of a firm’s patents are

often listed under the name of a subsidiary instead
of the parent firm. I performed a parent-subsidiary
match using Stopford’s Directory of Multinationals,
Dun and Bradstreet’s Who Owns Whom directories,
Compustat identifiers from Jaffe and Trajtenberg
(2002), and Internet sources. About 3,300 major firms
and organizations were identified, accounting for
about half of USPTO patents.® The rest of the patents
were dropped, with one third of them having only
individual owners and no assignees and the rest being
spread among more than 100,000 assignees. The sam-
ple was further restricted to be from years 1986 to
1995, because the parent-subsidiary match used data
sources from this period.

The geographic region of a patent was taken as
one of the 337 Metropolitan Statistical Areas (MSA)
or Primary Metropolitan Statistical Areas (PMSA) in
the United States, as determined by the first inven-
tor’s address. An MSA or PMSA consists of a clus-
ter of adjacent counties with close economic and
social relationships.* Because I do not have systematic
fine-grained geographic information for innovations
arising outside the United States, all patents with
a non-U.S. address were dropped. Even within the
United States, not all inventors live in a metropolitan
area, or, even if they do, the patent-area mapping is
sometimes unavailable because of data errors. These
two reasons led around 20% of U.S.-based patents to
be dropped, as well. As a robustness check, I repeated
the analysis for all U.S.-based patents using the state
as the unit of analysis. The main results were very
similar and are therefore not reported in the paper.

3.2. Inventors
Fleming et al. (2003, 2004) present evidence from field
interviews that collaborations recorded on patent doc-
uments meaningfully (though not perfectly) capture
personal and professional interpersonal ties between
inventors. Because patents are nontrivial innovations
by definition, coinventors of a patent typically collab-
orate intensively over an extended time period, and
often maintain close interpersonal contact even years
after filing the patent.

A challenge in using secondary data on collabo-
rations is correctly identifying when two different

% For some patents, different inventors could have different employ-
ers. However, I only have information on the first assignee, and
hence had to assume that all inventors of a patent have the same
employer. For brevity, I occasionally use the word firm to refer to
firms as well as to other organizations. Nonfirm entities (such as
universities, research institutes, and government bodies) own about
10% of the patents, and the results do not change even if I drop
these.

*I thank Lee Fleming for allowing me access to his mapping
between patents and metropolitan areas, which is based on
metropolitan area information available from ZipInfo (http://www.
zipinfo.com/products/z5msa/z5msa.htm).
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patent records refer to the same person. I experi-
mented with several methods to find a compromise
between too many “false positives” (different individ-
uals being incorrectly identified as the same) and too
many “false negatives” (different records of the same
inventor misclassified as having different inventors).
Finally, I arrived at an algorithm that took two inven-
tors as the same if and only if all of the following
conditions hold:

1. The first and last names matched exactly.

2. The middle initials, if available, were the same.

3. When the middle initial field was blank in at
least one of the two records, the records also over-
lapped on at least one of their technology sub-
categories.

Using only the first two conditions would have
identified 1.3 million or so distinct inventors since
1975. The third condition makes the matching cri-
teria more stringent, leading to around 1.7 million
inventors. The definition of a technology subcategory
is derived from Jaffe and Trajtenberg (2002), who
group the 418 USPTO technology classes into 38 sub-
categories. I tried to rule out more false positives
by requiring a finer technological classification for
match across patents in the third condition, and also
by looking for an overlap of citations across patents.
However, imposing either of these two conditions
caused too many false negatives, because the overlap
in either case was quite low even for records from
the same inventor. I also considered requiring a match
for street address or assignee firm, or both, as used
by Fleming et al. (2003). However, I decided against
it because studying interaction of network ties with
geography and firm boundaries is a central focus of
this paper, and using these for matching might have
unpredictably biased the results. Also, as Fleming
et al. (2003) report, forcing these requirements makes
the match too conservative, an issue they handle
by not requiring the rule for relatively uncommon
last names. Irrespective of the algorithm used, there
would be some errors in any matching process. How-
ever, unless there is a reason to believe that the match-
ing is producing systematic errors, it should just lead
to an attenuation bias that only makes it harder to
detect an effect of collaborative networks on the prob-
ability of knowledge diffusion.

4. Empirical Methodology

4.1. Choice-Based Sampling

My empirical model estimates the probability of
knowledge flow between two innovations that do end
up as patents. In other words, I estimate a citation
function Pr(K, k), that specifies the probability that
a patent K cites a patent k. Imagine a population of all
such patent pairs (K, k). In principle, we could draw

a random sample from this population, and define a
dependent variable y to equal 1 for pairs of patents
with a citation, and 0 for others. Assuming that the
citation function takes a logistic functional form, y
takes a value 1 for observation i with the probability

1

Pr(y=1 |X:Xi):A(xiﬁ):m’

where x; is the vector of covariate values, and 3 is the
vector of parameters to be estimated.

Unfortunately, an estimation approach based on
random sampling is not practical because citations
between random patents are very rare: There are only
a few realized citations for every 1 million potential
citations, making meaningful estimation impossible
even with large samples. From an informational point
of view, it would be desirable to have a greater frac-
tion of observations with y =1. This can be achieved
by using a choice-based sampling procedure: The
sample is formed by taking a fraction « of the patent
pairs with y =0 and a fraction y of the patent pairs
with ¥ =1 from the population, with a being much
smaller than vy. Because this stratification is done on
the dependent variable, using the usual logistic esti-
mates would lead to a selection bias. A technique
that overcomes this problem is the weighted exoge-
nous sampling maximum-likelihood (WESML) estimator
suggested by Manski and Lerman (1977). Intuitively,
the idea is to weight each sample observation by
the number of population elements it represents to
make the choice-based sample simulate a random
exogenous sample. Formally, the WESML estimator
is obtained by maximizing the following weighted
pseudo-likelihood function:

1 1
InL, =—- > In(A)+— > In(1-A)
o
[%21] [%20}

= — > w;In(1 + 2%y,

i=1

where w; = (1/y)y; + (1/a)(1 — y;). The appropri-
ate estimator of the asymptotic covariance matrix is
White’s robust sandwich estimator used in pseudo-
maximum-likelihood estimation. Furthermore, be-
cause the same citing patent can occur in multiple
observations, the standard errors should be calcu-
lated without assuming independence across these
observations.®

®An online appendix accompanying this paper (available at
http://mansci.pubs.informs.org/ecompanion.html) gives technical
details. Please refer to Amemiya (1985, pp. 319-338) or King and
Zeng (2001) for more discussion on WESML, and to Sorenson and
Fleming (2004) for an earlier application of similar methodology
for predicting patent citations.
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4.2, Sample Construction

The basic WESML approach samples all y =0 obser-
vations with equal probability a. Because technologi-
cal similarity of two patents is a strong determinant of
the probability of citation, estimation efficiency can be
improved by matching each patent pair having a cita-
tion (i.e., with y =1) with a set of control pairs (i.e.,
with y = 0) such that the citing and cited patent in
each control pair belong to the same respective tech-
nology class as those in the original citation.® I fol-
lowed this approach in matching each of the 323,820
actual citations among patents in my sample with
five control pairs. In addition, to ensure that pairs
of technology classes with no citations between them
were also represented in the sample, I drew a random
y = 0 observation for each such class pair. These two
steps led to a total of 2,217,171 control citations for
the 323,820 actual citations, giving an overall sample
size of 2,540,991 actual and potential citations. As the
online appendix accompanying this paper (see foot-
note 5) shows, the WESML approach should now be
generalized by noting that the sampling rate « varies
by the technology class of citing and cited patents.
Specifically, the weight attached to a y =0 observa-
tion is now defined as the ratio of the number of y =0
elements in the population to the number of y =0
observations in the sample for any given pair of tech-
nology classes. In addition, each y =1 element simply
has a weight of 1 because I include all actual citations
from the population in the sample (i.e., y=1).

4.3. Control Variables for Probability of Citation

To account for the fact that technologically similar
patents have a greater probability of citation, exist-
ing literature typically controls for whether the 3-digit
technological class of the citing and cited patents are
the same. However, this can still lead to biased esti-
mates, because there can be large heterogeneity in
technology within a 3-digit class. For example, the
class “aeronautics” includes 9-digit subclasses as di-
verse as “spaceship control” and “aircraft seat belts.”
To take this into account, I define dummy variables
not just to control for cases with the same broad tech-
nological category (1 out of 6), the same technological
subcategory (1 out of 36) and the same 3-digit pri-
mary class (1 out of 418), but also for the same 9-digit
primary class (1 out of 150,000). Furthermore, because
the designation of a subclass as primary can some-
times be ad hoc, I also include a dummy variable that
captures overlap along secondary subclasses for the
citing and cited patent. Although even these technol-
ogy controls might not be perfect, these are the most
fine-grained level possible with USPTO data, and are

Sorenson and Stuart (2001) use a similar research design for esti-
mating probability of venture capital funding.

much more detailed than the coarse controls used in
most studies.” I also account for other factors that
affect the probability of patent citation by including
fixed effects for the time lag (in years) between the
citing and cited patent, and for the application year
and technological category of the citing patent.

4.4. Measuring Social Distance Between
Innovating Teams

To measure the existence and directness of collabo-
rative ties between two teams of inventors, I define
social distance as the minimum number of interme-
diaries needed to pass knowledge from the source
team to the destination. This is analogous to measur-
ing degrees of separation in recent studies on small
worlds (Watts and Strogatz 1998, Newman 2001).
In using collaboration data, it is common practice
to assume that an observed collaboration marks the
beginning of a tie between the individuals, which per-
sists beyond the recorded collaboration date (Stolpe
2001, Breschi and Lissoni 2002, Agrawal et al. 2003).
This assumption is also shown to hold for patent col-
laboration in field evidence reported by Fleming et al.
(2003), and is therefore followed here. In inferring net-
work ties that exist as of any year ¢ (t being any year
between 1986 and 1995), I include all inventors that
have patented between 1975 and t (including even
those not in the United States, and those not asso-
ciated with the 3,300 assignees used for analyzing
knowledge flows).?

Data on inventors and inventing teams can be rep-
resented using an affiliation matrix A = {a;}, where
a; is 1 if the ith inventor is on the collaborating team
for the jth patent, and 0 otherwise (Wasserman and
Faust 1994). Figure 2 gives an example, with seven
inventors A, B, C, D, E, E and G, and seven patents
P1, P2, P3, P4, P5, P6, and P7. A value of 1 for ele-
ment (A, P1) and 0 for element (C, P1), for example,
implies that A is one of the inventors for patent P1,
but C is not. The first step for studying collabora-
tive links between inventors is to construct a social
proximity graph. The graph for year t includes as
nodes all innovations made by year ¢, with an edge
between patenting teams X and Y if and only if the

7 Some regression-based studies use the number of citations as the
dependent variable, and include a measure of average technological
distance between citing and cited sets of patents using only a 2 or
3-digit technology classification (e.g., Jaffe and Trajtenberg 2002).
The issue of bias remains: Sets with a greater fraction of patent
pairs with the same 9-digit technology have a greater probability
of citation and also of colocation of patents.

8 The small worlds literature (Watts and Strogatz 1998, Newman
2001) uses network nodes to represent individuals instead of teams,
with edges between individuals that have collaborated. For this
paper, it is more natural to define the collaborating teams as nodes,
because measured knowledge flows are from one patenting team
to another.
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Figure 2 An Affiliation Network Figure 4 Social Distance Between Two Nodes
Innovating team (patent) Destination
Inventor | P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 7
A 1 1 0 0 0 0 0 Pl | — 0 1 0 2 00 3
P2 | — — 0 1 1 00 2
B 1 0 0 1 0 0 0
P3| — — 2 0 00 1
€ 0 1 1 0 0 0 0 Source P4 | — — — — 3 00 4
D |0 0 1 0 1 0 0 sl — — 3 _ e 0
E 0 0 0 0 1 0 1 Pl — — — %o o — o0
F 0 0 0 0 1 0 0 S
G 0 0 0 0 0 1 1
Note. Because knowledge flows only make sense from an innovation that
Year 1986 1987 1988 1989 1989 1989 1990

two teams have a common inventor. If there is a cita-
tion between two patents sharing a common inventor,
such as patents P1 and P2 in Figure 3(a), it can be seen
as an inventor citing his or her own previous work.
Because self-citations by individuals do not represent
real knowledge flow, the actual sample used in the
regression analysis in §5 does not include such pairs
of patents.

The really interesting case is where two patents do
not have a common inventor, but have a direct or
indirect collaborative tie. For example, in Figure 3(b)
knowledge from P1 can flow to P3 indirectly via the
path P1 — P2 — P3 by being passed from A to C,

Figure 3 Social Proximity Graphs

(a) 1987

Patent P2 (1987)
Inventors: A, C

A
-
7

(b) 1988

happens earlier to one that happens later, social distance is left undefined for
P2 — P1,P3 — P1,P1 — P1, P2 — P2, etc.

because A and C have a collaborative link as evi-
denced by P2. I define social distance as the num-
ber of intermediate nodes on the minimum path (the
geodesic) between any two nodes in the social prox-
imity graph. Thus, the social distance is 1 for the P1 —
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Table 1 Definition of Variables

Citation
patents, 0 otherwise.

Within same region

The binary dependent variable, which equals 1 if there is actually a citation between the potentially citing and cited

Indicator variable that is 1 if the citing and cited patents originate from inventors located in the same region, i.e., the

same metropolitan area within the United States.

Within same firm
Same tech category

Indicator variable that is 1 if the citing and cited patents are owned by the same parent firm.
Indicator variable that is 1 if both the citing and the potentially cited patent belong to the same broad industry category

(1 of 6) as defined in the Jaffe and Trajtenberg (2002) database.

Same tech subcategory

Indicator variable that is 1 if both the citing and the potentially cited patent belong to the same broad technical

subcategory (1 of 36) as defined in the Jaffe and Trajtenberg (2002) database.

Same primary tech class

Indicator variable that is 1 if both the citing and the potentially cited patent belong to the same 3-digit primary

technology class (one of about 450) as defined in the USPTO classification system.

Same primary subclass

Indicator variable that is 1 if both the citing and the potentially cited patent belong to the same 9-digit primary

technology subclass (1 of about 150,000) as defined in the USPTO classification system.

Secondary subclass overlap

Indicator variable that is 1 if at least one of the secondary 9-digit subclasses of one patent is the same as a primary or

secondary subclass of the other patent in the dyad.

Past collaboration

Indicator variable that is 1 if there is no common inventor between the two patents, but at least one inventor of the

citing patent has collaborated with an inventor of the cited patent in the past. This corresponds to a social distance of 1.

Common collaborator

Indicator variable that is 1 if there is no past collaboration, but there is a common collaborator who has worked with an

inventor of the citing patent and an inventor of the cited patent in the past. This corresponds to a social distance of 2.

Collaborators with ties

Indicator variable that is 1 if neither of the last two cases hold, but at least one former collaborator of someone from the

citing team has in the past collaborated with a former collaborator for someone from the citing team. This corresponds

to a social distance of 3.
Indirect social link

Indicator variable that is 1 if none of the last three cases hold, but the two patents still belong to the same connected

component of the social proximity graph. This corresponds to social distance of > 3 but finite.

No social link

Indicator variable that is 1 if there is no network path between the citing and the cited teams, i.e., the two are in

different connected components of the social proximity graph. This corresponds to social distance of infinity.

is a path P2 — P1 — P4. Does this make sense even
though P1 precedes P2 in time? As discussed above,
a collaboration between A and B for P1 is the begin-
ning of a relationship between the two. Thus, B (who
is also the inventor of P4) can indeed build on knowl-
edge of P2 that B can gain through his or her ongo-
ing tie with A. Thus, knowledge can flow “backward
in time” along the link P1 — P2, and then on to
P2 — P4. Likewise, knowledge from P3 can be passed
by C to A, and then on to B through the chain P3 —
P2 — P1 — P4, making the social distance P3 — P4
equal to 2.

Naturally, the social proximity graph evolves over
time. Therefore, I actually use separate social proxim-
ity graphs for years t = 1986 through t = 1995 to cover
all the years for which I analyze knowledge flows. To
measure social distances for innovating teams from
year t, I use a graph of collaborative ties already in
place by t. For example, the correct value of social
distance from P3 to P6 is infinity (because P6 took
place in 1989, and P3 and P6 are not even in the same
connected component in 1989) and not 2 (as an incor-
rect interpretation of the 1990 graph might suggest).’

Because the social distance measure might not be comparable
across years, I use year fixed effects in the regressions described
in §5. An alternate approach could have been to use a rolling time
window (e.g., use collaborations from year t —7 to t in defining the
graph for year f) instead of using the entire history of collaborations
for any year .

Because of the large graph size, computing exact
pairwise social distances is practically impossible.
Fortunately, it is still practical to classify all observa-
tions with a nonzero social distance into five mutually
exclusive and exhaustive categories based on whether
the social distance is 1, 2, 3, any finite value greater 3,
or infinity (i.e.,, no social links). As the definition
of variables in Table 1 shows, I capture these five
cases using indicator variables past collaboration, com-
mon collaborator, collaborators with ties, indirect social
link, and no social link, respectively, in the analysis that
follows.!

5. Results

5.1. Intraregional and Intrafirm Knowledge Flows
Table 2 formally tests Hypotheses 1 and 2, ie,
that knowledge flows are particularly strong within

1" Wasserman and Faust (1994) suggest computing pairwise dis-
tances as follows: Define element x;; of a matrix X as 1 if there is an
edge between nodes i and j, 0 otherwise. The distance between i
and j is then the smallest number p such that the pth power matrix
of X has a nonzero entry (i, j). Unfortunately, such an approach is
impractical for very large graphs (Cormen et al. 1990). Instead, I
explicitly find all pairs with a social distance of 1, 2, or 3 by cal-
culating the first few power matrices as they are computationally
manageable. I then distinguish between having an indirect social
link and no social link by finding all connected components of the
graph.
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Table 2 Intraregion and Intrafirm Knowledge Flows

(1) ) (3)

Within same region 1.428* 0.886* 0.656*
(0.049) (0.019) (0.030)
[15.71] [9.75] [7.22]
Within same firm 3.277* 2.432% 1.964*
(0.043) (0.021) (0.029)
[36.05] [26.75] [21.60]
Technological relatedness
Same tech category 0.797+ 1.261*
(0.020) (0.020)
Same tech subcategory 1.911 2.403*
(0.018) (0.019)
Same primary tech class 4.320% 4,822
(0.014) (0.020)
Same primary subclass 6.415*
(0.127)
Secondary subclass overlap 0.942+
(0.059)
Number of observations 2,540,991 2,540,991 2,540,991

Notes. This table shows that the probability of knowledge flow is greater
between two patenting teams from the same region or firm, even after
accounting for technological relatedness of the citing and cited patents. It
also shows that inadequate controls for technology, as used in existing liter-
ature, can bias the knowledge spillover results.

A weighted logit regression is used, with the dependent variable being 1
if there is a citation between two patents and 0 otherwise. Robust standard
errors are in parentheses, with clustering on citing patent. Marginal effects
are in square brackets after multiplication with 1,000,000. Fixed effects were
included for technological category, application year, and time lag, but are
not reported here.

*Significant at 5%; **significant at 1%.

the same region or the same firm. The weighted
logit framework described above is used to estimate
the probability of citation between patents, with the
dependent variable being 1 when a patent pair has a
citation, 0 otherwise. Column (1) finds positive and
significant estimates for within same region and within
same firm. However, this could result simply from
technological specialization of regions and firms (Jaffe
et al. 1993). As Column (2) shows, including controls
for technological relatedness (at the level of a 3-digit
technological class) between patents reduces but does
not eliminate the estimated coefficients for within same
region and within same firm. However, Thompson and
Fox-Kean (2005) have shown that even the 3-digit
technological controls, though extensively used, are
insufficient. To address this, Column (3) uses addi-
tional controls based on a detailed 9-digit primary
and secondary technological classification of patents.
The estimates for within same region and within same
firm fall further, but still remain significant. Because
statistical significance could result merely from hav-
ing a large sample size, I now turn to the magnitude
of these effects.

The marginal effects for the weighted logit model
are shown in square brackets in Column (3) of Table 2,

after being multiplied by a million for readability,
because citations are rare events.! The predicted cita-
tion rate between two random patents turns out to be
about 11 in a million. Therefore, the reported marginal
effect of 7.22 for within same region implies that patents
from the same region are 66% more likely to have a
citation than are patents from different regions that
are otherwise similar. Similarly, the marginal effect of
21.6 for within same firm implies that patents from the
same firm are around 3 times as likely to have a cita-
tion as are patents from different firms. This is con-
sistent with Hypotheses 1 and 2.

5.2. The Effect of Social Distance on Probability
of Knowledge Flow

As already discussed, indicator variables past collab-
oration, common collaborator, collaborators with ties, and
indirect social link capture a social distance of 1, 2,
3, and greater than 3 (but finite). Pairs of patents
with a common inventor (i.e., a social distance of 0)
have already been dropped from the sample because
self-citations by inventors do not signify knowledge
flow. As a result, if two patents belong to the same
connected component in the social proximity graph,
exactly one of the above four dummy variables has
a value of 1. Table 3(a) reports summary statistics for
these variables in the sample. The fraction of patent
pairs with no social link is only 41.7% for pairs with
citations, and 50.2% for pairs with no citation. This
is consistent with Hypothesis 3 that connectedness
leads to greater probability of citation. The inequality
holds even for the subsample without self-citations by
firms, where the fraction of pairs with no social link
is only 46.1% for pairs with citations, and 51.1% for
pairs with no citation. Table 3(b) gives simple corre-
lation of the social distance measures with indicator
variables for having a citation, being within the same
region and being within the same firm. Because these
are just raw correlations from a choice-based sample,
the interpretation of these numbers is limited. Nev-
ertheless, a fact that emerges quite strikingly is that
having a smaller social distance is correlated with a
greater probability of patent citation, as well as with
a greater probability of being within the same region
or the same firm.

Table 4 reports regression analysis to test Hypothe-
ses 3 and 4, i.e., the impact of collaborative links
on probability of patent citation. As a comparison of
Columns (1) and (2) shows, carefully controlling for
technological relatedness of patents is again impor-
tant because teams with collaborative links are also
more likely to be technologically related. Therefore,

" For logit, the marginal effect of a variable j can be shown to be
B;AXB)[1 — A(xB)]. I substitute the mean predicted probability for
A(xPB) into this expression to get an estimate of the marginal effect.
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Table 3(a) Summary Statistics for Social Distance Measures
Entire sample (%) No self-citations by firms (%)
Citations Controls Citations Controls
(N=323,820) (N=2217,171) (N=240,724) (N=2,110,421)

Past collaboration 718 0.35 1.05 0.04
(Social distance = 1)

Common collaborator 4.41 0.58 1.04 0.13
(Social distance = 2)

Collaborators with ties 2.82 0.78 1.1 0.34
(Social distance = 3)

Indirect social link 43.88 48.11 50.72 48.42
(Social distance > 3 but finite)

No social link 41.71 50.18 46.08 51.08

(Social distance = infinity)

Note. This table gives the mean value, expressed as a percentage, of each social distance variable in the sample

indicated by the column corresponding to each entry.

Table 3(b) Sample Correlations of Social Distance Measures with Other Variables
Citation Within same region Within same firm

Past collaboration 0.207 0.225 0.345
(Social distance = 1)

Common collaborator 0.124 0.186 0.290
(Social distance = 2)

Collaborators with ties 0.067 0.140 0.216
(Social distance = 3)

Indirect social link —0.028 —0.042 —0.076
(Social distance > 3 but finite)

No social link —0.057 —0.074 —0.103

(Social distance = infinity)

Column (2) is the preferred regression specification.
Consistent with Hypothesis 3, interpersonal ties are
found to be important, as indicated by the estimates
for past collaboration, common collaborator, collaborators
with ties, and indirect social link being all positive and
significant. The joint hypothesis that these social dis-
tance measures do not matter is easily rejected even
at the 1% significance level, with a y*(4) statistic of
3,372.0. The reference group for comparison in these
regressions is patent pairs with no social link.
Although statistical significance could result sim-
ply from large sample sizes, the effects are also large
in magnitude. If two patents are related via a past
collaboration (social distance = 1), the probability of
citation is about four times that for unrelated patents.
If they are related via a common collaborator (social
distance = 2), the probability of citation is about
3.2 times. Similarly, if they are related only because
they have had collaborators that have worked with
each other in the past (social distance = 3), the proba-
bility of citation is about 2.7 times. Finally, if none of
these cases occur but there still exists an even more
indirect collaborative link between two patents, the
probability of citation is merely 4% greater than that
for unrelated patents. A statistical test of equality for
the estimates of different social measures is easily

rejected. Thus, consistent with Hypothesis 4, the prob-
ability of citation falls as the social distance for pairs
of patents increases.

5.3. Collaborative Networks and Patterns of
Knowledge Flows

In this section, I test Hypotheses 5 and 6 (i.e., that
knowledge flows are more intense within the same
region and the same firm because social distances
are smaller). In other words, I explore the extent to
which denser collaborative networks can be seen as
the mechanism driving more intense knowledge flows
within regions and firms.

The analysis appears in Table 5. For easy compari-
son, Column (1) reproduces the intraregion and intra-
firm results from Column (3) of Table 1. Column (2)
adds the social distance measures to the economet-
ric model. Upon doing so, the coefficient estimate
for within same region drops from 0.656 to 0.544, with
its marginal effect falling from 7.22 to 5.98. In other
words, once social distance has been accounted for,
the incremental effect of geographic colocation on
probability of citation falls from 65.6% to 54.4%.'
Likewise, the coefficient estimate for within same firm

2Normally, in nonlinear models, one should only compare
marginal effects and not coefficient estimates across models.
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Table 4 Effect of Social Distance on Probability of Citation Table 5 Does Social Distance Help Explain Intraregional and Intrafirm
Between Patents Knowledge Flows?
M @) M (@) 3)
Past collaboration 6.801* 3.018+ Within same region 0.656** 0.544* 0.868*
(Social distance = 1) (0.051) (0.078) (0.030) (0.035) (0.037)
[74.81] [33.20] [7.22] [6.98] [9.55]
Common collaborator 4.984* 2170 Within same firm 1.964** 1.726* 2.034*
(Social distance = 2) (0.082) (0.075) (0.029) (0.027) (0.038)
[54.82] [23.87] [21.60] [18.99] [22.37]
Collaborators with ties 3527 1.674* Past collaboration 1.340=  3.364™
(Social distance = 3) (0.114) (0.047) (Social distance = 1) (0.079) (0.121)
[38.80] [18.41] Common collaborator 0.561* 2.447+
Indirect social link 0.115% 0.043* (Social distance = 2) (0.078)  (0.069)
(Social distance > 3 but finite) (0.016) (0.015) Collaborators with ties 0.376* 1.495*
[1.27] [0.47] (Social distance = 3) (0.048) (0.084)
Techn0|0gica| relatedness Indirect social link 0.010 0.095*
Same tech category 1.322* (SOCial distance > 3 but flnlte) (001 5) (001 6)
(0.018) Within same region —0.697*
Same tech subcategory 2.478 * Past collaboration (0.171)
' (0.020) Within same region —1.220~
Same primary tech class (gggg) « Common collaborator (0.152)
. ol Within same region —0.930*
Same primary subclass (g?gg) * Collaborators with ties (0.092)
Secondary subclass overlap 0.938* Within s_ame reg ign . —0.183=
(0.063) * Indirect social link (0.046)
. Within same firm —2.141*
Number of observations 2,540,991 2,540,991 « Past collaboration (0.166)
Notes. This table shows that the probability of knowledge flow increases as Within same firm —1.743*
the social distance between two teams of inventors decreases, even after * Common collaborator (0.097)
technological similarity of the citing and cited patents has been accounted for. Within same firm —_1.007*
_ A weighted logit regression is used, with the dependent variable being 1 « Collaborators with ties (0.102)
if there is a citation between_two paten_ts and O_ptherW|se. Robus_:t standard Within same firm 0,450+
errors are in parentheses, with clustering on citing patent. Marginal effects « Indirect social link (0.045)
are in square brackets after multiplication with 1,000,000. Fixed effects were ) ]
Number of observations 2,540,991 2,540,991 2,540,991

included for technological category, application year, and time lag but are not
reported here.
*Significant at 5%; **significant at 1%.

drops from 1.964 to 1.726, with the marginal effect
falling from 21.6 to 19.0. Put differently, once social
distance has been controlled for, the incremental effect
of being in the same firm on the probability of citation
falls from 196% to 173%. To summarize, accounting
for collaborative ties diminishes the result of local-
ized knowledge flows as well as intrafirm knowledge
flows. Not only is the decrease nontrivial in magni-
tude for both cases, it is also found to be statisti-
cally significant.’® However, the decrease turns out
to be much smaller than one would expect if social

However, for rare events, the marginal effect 8;A(XxB)[1 — A(xB)]
can be approximated as 8;A(xp), making B, directly interpretable
as the fractional change in probability of citation when binary vari-
able j goes from 0 to 1.

B To test statistical significance, the coefficients of within same region
in Columns (1) and (2) were interpreted as means of samples drawn
from normally distributed populations. A t-test was then used to
test the hypothesis that the two means could arise from the same
population. An analogous test was done for within same firm.

Notes. This table studies if interpersonal ties help explain the greater proba-
bility of knowledge flow between two patenting teams from the same region
or firm. Column (1) reproduces the results from Column (3) of Table 2. Col-
umn (2) shows that accounting for social distance reduces the within same
region and within same firm estimates for probability of patent citation. Col-
umn (3) shows that there are important interaction effects.

A weighted logit regression is used, with the dependent variable being 1
if there is a citation between two patents and 0 otherwise. Robust standard
errors are in parentheses, with clustering on citing patent. Marginal effects
are in square brackets after multiplication with 1,000,000. Fixed effects were
included for technological category, application year, technological related-
ness, and time lag between patents but are not reported here.

*Significant at 5%; **significant at 1%.

networks were the main driver of knowledge diffu-
sion. As discussed earlier in the theoretical discussion
of Hypotheses 5 and 6, a culprit for not having a
stronger effect is probably that a network constructed
using only patent collaborations captures just a frac-
tion of all relevant network ties.

To investigate this further, Column (3) of Table 5
considers a richer regression model that allows the
possibility that direct and indirect ties do not operate
similarly for transferring knowledge. In other words,
there might be interaction effects between social
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distance and geographic colocation, and between
social distance and firm boundaries, in determining
probability of knowledge flow. Because Column (3)
includes both these sets of interaction variables, the
direct coefficients for within same region and within
same firm now should be interpreted only as the effects
for the reference case where the citing and cited
patents have no social link. Interestingly, the interac-
tion effects for within same region with past collabora-
tion, common collaborator, and collaborators with ties
are similar in magnitude but opposite in sign as com-
pared with the direct effect for within same region. In
other words, conditional on the social distance being
small (i.e., 1, 2, or 3), geographical colocation has a rel-
atively small unexplained net effect on citation proba-
bility. For example, conditional on having a social dis-
tance of 1, the difference in net coefficient for patent
pairs within the same region versus those that are not
is given by (0.868 —0.697) = 0.171. This translates into
just a 17% increase in citation probability from being
in the same region conditional on already having a
social distance of 1. Statistically, this is in fact indistin-
guishable from having no unexplained effect of colo-
cation once the standard errors have been taken into
account. For patents that are connected only through
indirect social links or are not connected at all, how-
ever, geographic colocation continues to affect citation
probability significantly. For example, for patent pairs
with no social link, the difference in net coefficient for
pairs that arise within the same region versus those
that do not is 0.868, which translates into an 87%
difference in estimated citation probability between
inventor teams that are geographically colocated ver-
sus those that are not. One possible explanation is
that, for teams with no close ties apparent from col-
laboration data on patents, there might still exist miss-
ing ties that are both geographically concentrated and
beneficial for knowledge flow. These could, for exam-
ple, be collaborations that did not lead to patents, and
hence did not get captured in patent data. These could
also be fundamentally different kinds of professional
and social interaction, such as meeting at conferences
and professional get-togethers, or at golf clubs and
coffee shops.

Analogously, the interaction effects for within same
firm with past collaboration, common collaborator,
and collaborators with ties are all quite large in mag-
nitude and opposite in sign to the main effect for
within same firm. In other words, for patent pairs with
a small social distance of 1, 2, or 3, being in the same
firm matters much less for the citation probability. In
fact, a formal hypothesis that the effect is 0 for the
case of social distance of 1 cannot be rejected. Like-
wise, the net incremental effect of being within the
same firm is much smaller for other cases of relatively
short social distance (29% for social distance of 2, and

81% for social distance of 3) than it is for cases with
indirect social link (158%) or no social link (203%). In
other words, being in the same firm affects knowl-
edge flows more in cases where close interpersonal
links do not exist. Once again, this could possibly be
a result of interpersonal ties not captured in patent
collaboration data.

6. Limitations and Future Research
This paper takes network ties as exogenous. However,
interpersonal ties could arise endogenously as a result
of deliberate steps taken by rational actors (Coleman
1988, Glaeser et al. 2002). If tie formation is more
likely in settings where more knowledge flows are
expected, regression estimates could overstate the true
causal influence of collaborative links on knowledge
flows. Similarly, if inventor X who has cited inven-
tor Y is also more likely to cite Y’s work in the future
while also trying to develop a collaborative relation-
ship with Y, we might observe a correlation between
collaborations and citations that need not signify a
causal relationship. Addressing such causality issues
would require explicitly modeling the tie formation
process in an empirical framework.

Whereas adopting a network perspective allows a
study of within-firm and cross-firm knowledge flows
in a single framework, it does not do full justice to
a broader view of organizational knowledge (Levitt
and March 1988, Huber 1991, Kogut and Zander 1992,
Nonaka 1994). Another issue in studying intrafirm
knowledge flows is that patent citations could be
more common within firms simply because a firm
does not lose anything by making citations to itself.
The most conservative interpretation of my results is
therefore to view the within same firm variable only as
a control, and to interpret the results as being about
geographic localization of knowledge flow.

Regarding methodology for using patent citations
to measure knowledge flows, the measure could in
principle be improved by omitting citations added by
patent examiners and not by inventors (Thompson
2004, Alcacer and Gittelman 2004). However, doing so
was not practical for me because USPTO has started
making the distinction between citations by patent
examiners versus citations by inventors only since
2001, and even those data are not easily available in
a machine-readable form.

Another issue is that patent collaborations cap-
ture only a subset of relevant interpersonal relations.
An extension could be to supplement patent col-
laboration data with additional data sources regard-
ing interpersonal ties (e.g., collaboration on research
papers or projects), and to see if patterns of knowl-
edge flow can be explained more completely as a
result. On the theoretical side, one could try to go
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beyond the social distance measure based on min-
imum path length, and to capture more nuanced
network structural effects such as the role of non-
redundancy of information flow (Granovetter 1973,
Burt 1992, Ahuja 2000). Another interesting direction
of research would be exploring how the role of dif-
ferent kinds of network ties differs across technolo-
gies with differences in complexity and codifiability
of knowledge (Hansen 1999, Sorenson et al. 2004).

7. Implications and Conclusion

An extensive literature has emphasized that knowl-
edge diffusion tends to be restricted by regional
and firm boundaries. This paper rigorously exam-
ines why this happens, suggesting distribution of
interpersonal networks as an explanation. I find evi-
dence that interpersonal networks are quite impor-
tant in determining patterns of intraregional and
intrafirm knowledge flow, even though their full
impact might be hard to measure because collab-
orations on patents represent only a small portion
of the overall set of social relations. The impor-
tance of studying the interplay of social networks
and geography is echoed in other ongoing research
efforts. For example, Agrawal et al. (2003) show that
patents from inventors who move from one region
to another continue to be cited by their former col-
laborators, reflecting that direct ties from past col-
laborations facilitate knowledge flow across regions.
Likewise, Breschi and Lissoni (2002) find the associ-
ation between patent citations and geographic colo-
cation in Italy to be greater for socially connected
patent teams than others, suggesting important inter-
action effects between geographic colocation and col-
laborative links. The focus of this paper has been to
enrich this stream of research through a rigorous mea-
surement of the extent to which collaborative net-
works help explain observed patterns of intraregional
and intrafirm knowledge flow. In the process, I also
introduce an improved methodology for studying
microlevel knowledge flows, a much more exhaustive
data set than is typically used by any study of this
kind, and an analysis that allows separate estimation
of the impact of direct versus indirect interpersonal
ties in collaborative networks.

This paper has important implications for man-
agement. The results emphasize that interpersonal
networks are crucial for management of complex
knowledge, despite growing emphasis on formal
knowledge management systems. Furthermore, geog-
raphy matters for knowledge diffusion, at least in part
because interpersonal networks tend to be regional in
nature. This suggests that an important component of
a firm’s human resource management should be not
only to track the knowledge base of its employees, but

also to understand their participation in key interper-
sonal networks that span regional and firm bound-
aries. Furthermore, a firm could learn more from its
environment by encouraging its employees to build
external collaborative links rather than merely open-
ing divisions close to “hi-tech” clusters with a hope
that knowledge gains would follow on their own.
The analysis on interaction between social distance
and geographic colocation shows that, for inventors
connected via short path lengths, geographic colo-
cation has a smaller residual effect on the probabil-
ity of knowledge flow. This suggests that geographic
constraints can be overcome by fostering interper-
sonal links across regions, an issue explored further by
Singh (2005).

However, two puzzles still remain regarding firm
strategy. First, if the knowledge gains from locating
in a geographic region depend on the extent to which
a firm’s employees are connected in the broader net-
work, how does a firm capture at least a part of
the rents from knowledge spillovers rather than these
accumulating completely to employees in the form
of higher wages? Second, because collaborative links
with outsiders can lead to not just knowledge inflows,
but also knowledge outflows (Singh 2004), how does
a firm prevent loss of its competitive position result-
ing from leakage of its own knowledge to competi-
tors? The answer to both these puzzles probably lies
in the firm’s ability to employ unique complemen-
tary assets that make some of the knowledge more
valuable inside the firm than when used by its com-
petitors. However, this is an issue worth future explo-
ration.

The findings on intrafirm knowledge flow have
important implications, as well. For example, the
analysis on interaction between social distance and
firm boundaries shows that firm boundaries per se
need not constrain knowledge flow if strong collab-
orative links can be established with outsiders. Even
mergers or acquisitions might not be sufficient for
knowledge flow if the employee networks of the
two former firms fail to be integrated. Likewise, the
success of alliances and joint ventures as a means
for knowledge transfer also depends on fostering
close interpersonal ties between employees from the
two sides, an argument consistent with findings of
Mowery et al. (1996), Rosenkopf and Almeida (2003),
and Gomes-Casseres et al. (2005).

The results should also be of interest to a policy
maker interested in a region’s economic develop-
ment. For example, incentives given to encourage out-
side firms only to open a local division may not be
enough in themselves to ensure knowledge spillovers
to local firms. Such knowledge flows can be enhanced
through deliberate cultivation of interpersonal net-
works, for example, by encouraging mobility and
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interaction of people across firm and regional bound-
aries. By influencing the structure of networks, a pol-
icy maker might be able to influence not just the
knowledge flows, but also ultimately the capacity of
regions to innovate (Fleming et al. 2004). Although
firms might not be open to direct interference in such
matters, regional leaders can have indirect influence
over regional interpersonal networks through policy
instruments, e.g., through lax implementation of non-
compete agreements, and through subsidies for joint
research and development (R&D) projects and joint
regional conferences.

The finding that collaborative networks can help
overcome geographic distance is particularly impor-
tant for developing regions and countries. This sug-
gests that, besides trying to entice advanced firms
from elsewhere to open local subsidiaries, regions can
also take an active approach toward external learn-
ing by directly tapping into foreign collaborative net-
works. For example, overseas movement of people
(brain drain) from developing countries need not be
welfare reducing, and location of R&D laboratories
overseas by local firms should not been seen as ero-
sion of local technical base. Instead, governments
might even consider setting up incentives and mech-
anisms for their well-trained emigrants to continue to
maintain close interpersonal ties with the country’s
citizens, and encourage local firms to use foreign sub-
sidiaries to access foreign knowledge by tapping into
foreign interpersonal networks.

An online appendix to this paper is available at
http://mansci.pubs.informs.org/ecompanion.html.
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