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Abstract
Combining and analyzing data collected at multiple locations is critical for a wide variety of appli-
cations, such as detecting and diagnosing malicious attacks or computing an accurate estimate of
the popularity of Web sites. However, legitimate concerns about privacy often inhibit participation
in collaborative data-analysis systems. In this paper, we design, implement, and evaluate a practi-
cal solution for privacy-preserving collaboration among a large number of participants. Scalability
is achieved through a “semi-centralized” architecture that divides responsibility between a proxy
that obliviously blinds the client inputs and a database that identifies the (blinded) keywords that
have values satisfying some evaluation function.

Our solution leverages a novel cryptographic protocol that provably protects the privacy of both
the participants and the keywords. In the example of Web servers collaborating to detect source
IP addresses responsible for denial-of-service attacks, our protocol would not reveal the traffic mix
of the Web servers or the identity of the “good” IP addresses. We implemented a prototype of our
design, including an amortized oblivious transfer protocol that substantially improves the efficiency
of client-proxy interactions. Our experiments show that the implementation scales linearly with the
computing resources, making it easy to improve performance by adding more cores or machines.
For collaborative diagnosis of denial-of-service attacks, our system can handle millions of suspect
IP addresses per hour when the proxy and the database each run on two quad-core machines.

1 Introduction

Many important data-analysis applications must combine and analyze data collected by multiple
parties. Such distributed data analysis is particularly important in the context of security. For
example, victims of denial-of-service (DoS) attacks know they have been attacked but cannot easily
distinguish the malicious source IP addresses from the good users who happened to send legitimate
requests at the same time; since compromised hosts in a botnet often participate in multiple such
attacks, victims could potentially identify the bad IP addresses if they combined their measurement
data [33]. Cooperation is also useful for Web clients to recognize they have received a bogus DNS
response or a forged self-signed certificate, by checking that the information they received agrees
with that seen by other clients accessing the same Web site [29, 37]. Collaboration is also useful
to identify popular Web content by having Web users, or proxies monitoring traffic for an entire
organization, combine their access logs to determine the most frequently accessed URLs [1]. In this
paper, we present the design, implementation, and evaluation of an efficient, privacy-preserving
system that supports these kinds of data-analysis operations.



Today, these kinds of distributed data-analysis applications lack privacy protections. Existing
solutions often rely on a trusted (typically centralized) aggregation node that collects and analyzes
the raw data, thereby learning both the identity and inputs of participants. There is good reason
to believe this inhibits participation. ISPs and Web sites are notoriously unwilling to share op-
erational data with one another, because they are business competitors and are concerned about
compromising the privacy of their customers. Many users are understandably unwilling to install
software from Web analytics services such as Alexa [1], as such software would otherwise track and
report every Web site they visit. Unfortunately, even good intentions do not necessarily translate
to good security and privacy protections, only too-well demonstrated by the fact that large-scale
data breaches have become commonplace [30]. As such, we believe that many useful distributed
data-analysis applications will not gain serious traction unless privacy can be ensured.

Fortunately, many of these collaborative data-analysis applications have a common pattern,
such as computing set intersection, finding so-called icebergs (items with a frequency count above
a certain threshold), or identifying items that in aggregate satisfy some other statistical property.
We refer to this problem as privacy-preserving data aggregation (PDA). Namely, each participant
pj has an input set of key-value tuples, 〈ki,j , vi,j〉, and the protocol outputs a key ki if and only
if some evaluation function f(∀j|vi,j) is satisfied. For example, the problem of finding icebergs—
keys that occur more than some threshold τ times across the n ≥ τ parties—for example, the
botnet anomaly-detection application would have the suspect IP addresses as keys and all one’s
as values, with f defined as

∑n
j=1 vi,j ≥ τ (implemented, in fact, as simply keeping a running

sum per key). In other words, such a protocol performs the equivalent of a database join (union)
across each participants’ input (multi)set, and outputs those keys that appear more than τ times.
In our system, keys can either be arbitrary-length bitstrings or can also be drawn from a limited
domain (e.g., the set of valid IP addresses). However, we restrict our consideration of values to
those drawn from a more restricted domain—such as an alphanumeric score from 1 to 10 or A to
F—a limitation for privacy reasons we expand later. This f could as easily perform other types
of frequency analysis on keys, such as median, mode, or dynamically setting the threshold τ based
on the set of inputs—for example, if there exists some appropriate “gap” between popular and
unpopular inputs—as opposed to requiring τ be set a priori and independent of the inputs.

Informally, PDA should provide two privacy properties: (1) Keyword privacy requires that no
party should learn anything about ki if its corresponding values do not satisfy f . (2) Participant
privacy requires that no party should learn which key inputs (whether or not the key remains
somehow blinded prior to satisfying f) belongs to which participant. In our example of collaborating
DoS victims, keyword privacy means nobody learns the identity of good IP addresses or which Web
sites they frequent, and participant privacy means a Web site need not worry that its mix of clients
would be revealed. In our example of collaborating Web clients, the privacy guarantees mean
that a Web user need not worry that other users know what Web sites he accesses, or whether he
received a bogus DNS response or a forged certificate. We believe these privacy properties would
be sufficient to encourage participants to collaborate, to their mutual benefit, without concern that
their privacy, or the privacy of their clients, would be compromised. Our goal, then, is to design a
system that provably guarantees these properties, and is efficient enough to be used in practice.

Ideally, we would like a system that can handle hundreds or thousands of participants generating
thousands of key-value tuples. Unfortunately, fully-distributed solutions do not scale well enough,
and fully-centralized solutions do not meet our privacy requirements. Simple techniques like hashing
input keys [2, 12], while efficient, cannot ensure keyword and participant privacy. In contrast, the
secure multi-party computation protocols from the cryptographic literature [3, 9, 10, 11, 20, 21, 23,
26, 39] would allow us to achieve our security goals, but are not practical at the scale we have in
mind. Moreover, few of these systems have ever been implemented [3, 13, 23], let alone operate in
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the real world [4] and at scale. So, a meta-goal of our work is to help bring multi-party computation
to life.

In this paper, we propose, implement, and evaluate a viable alternative—a “semi-centralized”
system architecture, and associated cryptographic protocols, that provides privacy-preserving data
aggregation without sacrificing efficiency. Rather than having a single aggregator node, the data
analysis is split between two separate parties—a proxy and a database. The proxy plays the role
of obliviously blinding client inputs, as well as transmitting blinded inputs to the database. The
database, on the other hand, builds a table that is indexed by the blinded key. For each row of this
table whose values satisfy f , the database shares this row with the proxy, who unblinds the key.
The database subsequently publishes its non-blinded data for that key.

The resulting semi-centralized system provides strong privacy guarantees provided that the proxy
and the database do not collude. In practice, we imagine that these two components will be managed
either by the participants themselves that do not wish to see their own information leaked to others,
perhaps even on a rotating basis, or even third-party commercial or non-profit entities tasked with
providing such functionality. For example, in the case of cooperative DoS detection, ISPs like
AT&T and Sprint could jointly provide the service, or, perhaps even better, third-party entities
like Google (which already plays a role in bot and malware detection [15]) or the EFF (which has
funded anonymity tools such as Tor [7]), which themselves have no incentive to collude. Such a
separation of trust appears in several cryptographic protocols [6], and even in some natural real-
world scenarios, such as Democrats and Republicans jointly comprising election boards in the U.S.
political system. It should be emphasized that the proxy and database are not treated as trusted
parties—we only assume that they will not collude. Indeed, jumping ahead, our protocol does not
reveal sensitive information to the proxy or to the database.

Using a semi-centralized architecture greatly reduces operational complexity and simplifies the
liveness assumptions of the system. For example, clients can asynchronously provide their key-
value tuples without our system requiring any complex scheduling. Despite these simplifications,
the cryptographic protocols necessary to provide strong privacy guarantees are still non-trivial.
Specifically, our solution makes use of oblivious pseudorandom functions [11, 16, 27], amortized
oblivious transfer [17, 25], and homomorphic encryption with re-randomization. We formally prove
that our system guarantees keyword and participant privacy. Our proofs are in the honest-but-
curious model, where, informally, each party can perform local computation on its own view in
an attempt to break privacy, but still faithfully follows the protocol. The protocol does, however,
preserve privacy in the face of collusion between either party and any number of clients (e.g., the
database impersonating a client).

The remainder of the paper is organized as follows. Section 2 defines our system goals and
discusses why prior techniques are not sufficient. Section 3 describes our PDA protocols and sketches
the proofs of their privacy guarantees. Section 4 describes our implementation, and Section 5
evaluates its performance. We conclude the paper in Section 6 with a discussion of future research
directions.

2 Design Goals and the Status Quo

This section defines our goals for a practical system for large-scale privacy-preserving data aggre-
gation (PDA), and we discuss how prior proposals failed to meet these requirements. We then
expand on our security assumptions and privacy definitions to set the stage for the presentation of
our protocol in the next section.

3



2.1 Design Goals

In the private data aggregation problem, a collection of participants (or clients) may autonomously
make observations about values (vi) associated with keys (ki). These observations may be, for
example, the fact that an IP address is suspected to have performed some type of attack (through
DoS, spam, phishing, and so forth), or the number of participants that associate a particular
credential with a server. The system jointly computes a two-column input table T. The first “key”
column of T is a set comprised of all unique keys belonging to all participants. The second “value”
column is comprised of a value T[ki] that is the aggregation or union of all participant’s values for
ki. The system then defines a particular function f to be evaluated over each row’s value(s). For
simplicity, we focus our discussion on the simple problem of over-threshold set intersection for f :
If clients’ inputs of the form 〈ki, 1〉 are aggregated as T[ki]← T[ki] + 1, is T[ki] ≥ τ?

A practical PDA system should provide the following:

• Keyword privacy: We say a system satisfies keyword privacy if, given the above aggregated
table T, at the conclusion of the protocol all involved parties learn only (1) all keys ki whose
corresponding aggregate value T[ki] ≥ τ and (2) all values T[ki] (i.e., the entire value column
of T). As an example, for over-threshold set intersection, everybody learns a histogram over
all keys, in addition to keys (and their correspond total) that have appeared in at least τ
clients’ inputs. We discuss later in this section why we reveal the keyless “histogram” in
addition to those over-threshold keys.

• Participant privacy: We say a system satisfies participant privacy if, at the conclusion
of the protocol, nobody can learn the inputs {〈ki,j , vi,j〉} of participant pj other than pj

himself (except for information which is trivially deduced from the output of the function).
This is formally captured by showing that the protocol leaks no more information than an
ideal implementation that uses a trusted third party. This convention is standard in secure
multi-party computation; further details can be found in [14].

• Efficiency: The system should scale to large numbers of participants, each generating and
inputting large numbers of observations (key-value tuples). The system should be scalable
both in terms of the network bandwidth it consumes (communication complexity), as well
as the computational resources needed to execute private data aggregation (computational
complexity).

• Flexibility: There are a variety of computations one might wish to perform over each key’s
values T[ki], other than a simple threshold test. These may include finding the maximum
value for a given key, or checking if the median of a row exceeds a threshold. Rather than
design a new protocol for each function f , we prefer to have a single protocol that works for
a wide range of functions.

• Lack of coordination: Finally, the system should operate without requiring that all par-
ticipants coordinate their efforts to jointly execute some protocol at the same time, or even
all be online around the same time. Furthermore, no set of participants should be able to
prevent others from executing the protocol and computing their own results (i.e., a liveness
property).

As we discuss next, existing approaches fail to satisfy one or more of these goals.
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Keyword Participant Lack of
Approach Privacy Privacy Efficiency Flexibility Coordination

Private Set Intersection Yes Yes Poor No No
Garbled-Circuit Evaluation Yes Yes Very Poor Yes No

Hashing Inputs No No Very Good Yes Yes
Network Anonymization No Yes Very Good Yes Yes

This paper Yes Yes Good Yes Yes

Table 1: Comparison of proposed schemes for private data aggregation

2.2 Limitations of Existing Approaches

Having defined these five goals for PDA, we next consider several possible solutions from the
literature. We see that prior secure multi-party computation protocols achieve strong privacy at the
cost of efficiency, flexibility, or easy coordination. Simple hashing or network-layer anonymization
approaches fail to satisfy our privacy requirements, on the other hand. Our protocol, which leverages
insights from both approaches, combines the best of both worlds. Table 1 summarizes the discussion
in this section.

Set-Intersection Protocols. Freedman et al. [10] proposed a specially-designed secure multi-
party computation protocol to compute set intersection between the input lists of two parties. It
represented each parties’ inputs as the roots of an encrypted polynomial, and then had the other
party evaluate this encrypted polynomial on each of its own inputs. While asymptotically optimized
for this setting, our own careful protocol implementation found two sets of 100 items each took a
full 213 seconds to execute (on a 3 Ghz Intel machine) [13]. Kissner and Song [20] extended and
further improved this polynomial-based protocol for a multi-party decentralized setting, yet their
computational complexity remains O(n`2) and communication complexity of O(n2`), where n is
the number of participants and ` is the number of input elements per party. Furthermore, after
a number of pairwise interactions between participants, the system needed to coordinate a group
decryption protocol between all parties. Hence, this prior work on set-intersection faces scaling
challenges on large sets of inputs or participants, and it also requires new protocol design for each
small variant of the set-intersection or threshold set-intersection protocol.

Secure Multi-Party Computations using Garbled Circuits. In 1982, Yao [39] proposed
a general technique for computing any two-party computation privately, by building a “garbled
circuit” in which one party encodes the function to be executed and his own input, and the other
party obliviously evaluates her inputs on this circuit. Very recently, the Fairplay system [3, 23]
provided a high-level programming language for automatically compiling specified functions down
into garbled circuits and generating network protocol handlers to execute them. While such a
system would provide the privacy properties we require and offer the flexibility that hand-crafted
set-intersection protocols lack, this comes at a cost. These protocols are even more expensive in
both computation and communication, requiring careful coordination as well.

Hashing Inputs. Rather than building fully decentralized protocols—with the coordination
complexity and quadratic overhead (in n) this entails—we could aggregate data and compute
results using a centralized server. One approach is to simply have clients first hash their keys
before submitting them to the server (e.g., using SHA-256), so that a server only sees H(ki), not
ki itself [2]. While it may be difficult to find a pre-image of a hash function, brute force attacks
are still always possible: In our collaborating intrusion detection application, for instance, a server
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can simply compute the hash values of all four billion IP addresses and build a simple lookup
table. Thus, while certainly efficient, this approach fails to achieve either of our privacy properties.
An alternative that prevents such a brute-force attack would be for all participants (clients) to
coordinate and jointly agree on some secret key s, then use instead a keyed pseudorandom function
on the input key, i.e., Fs(ki). This would satisfy keyword privacy, until a single client decides to
share s with the server, a brittle condition for sure.

Network Anonymization through Proxying. In the previous proposal, the server received
inputs directly from clients. Thus, the server was always able to associate a row of the database
with a particular client, whether or not its key is known. One solution would be to simply proxy a
client’s request through one or more intermediate proxies that hides the client’s identity (e.g., its
own IP address), as done in onion routing systems such as Tor [7]. Of course, this solution still
does not achieve keyword privacy.

Although the prior approaches have their limitations, they also offer important insights that in-
form our design. First, a more centralized aggregation architecture avoids distributed coordination
and communication overhead. Second, proxying can add participant privacy when interacting with
a server. And third, a keyed pseudorandom function (PRF) can provide keyword privacy. Now, the
final insight to our design is, rather than have all participants jointly agree on this PRF secret s,
let it be chosen by and remain known only to the proxy. After all, the proxy is already trusted not
to expose a client’s identity to the server (database), so let’s trust it not to expose this secret s to
the database as well. Thus, prior to proxying (roughly) the tuple 〈Fs(ki), vi〉, the proxy executes a
protocol with a client to blind its input key ki with Fs. This blinding occurs in such a way that the
client does not learn s and the proxy does not learn ki.1 This completes the loop, having a proxy
play a role in providing both keyword and participant privacy, while the database offers flexibility
in any computation over a key’s values T[ki] and scalability through traditional replication and
data-partitioning techniques (e.g., consistent hashing [19]).

2.3 Security Assumptions and Privacy Definitions

We now motivate and clarify some design decisions related to our security assumptions and privacy
definitions.

Honest-but-Curious Parties. In our model, parties are expected to act as honest-but-curious
(also called semi-honest) participants. That is, each party can perform local computation on its
own view in an attempt to break privacy, but is assumed to still faithfully follow the protocol when
interacting with other parties. We believe this model is very appropriate for our semi-centralized
system architecture. In many deployments, the database and proxy may be well-known and trusted
to act on their good intentions to the best of their abilities, as opposed to simply another participant
amongst a set of mutually distrustful parties. Still, other than fully compromising a server-side
component and secretly replacing it with an actively malicious instance, data breaches are not
really possible, as participants never see privacy-comprising data in the first place. In addition, the
honest-but-curious model is one of the two standard security models in multi-party computation
protocols—the other being the (obviously stronger) assumption of full malicious behavior. Unfor-
tunately, security against fully malicious behavior comes at a great cost, as each party needs to
prove at each step of the protocol that it is faithfully obeying it. For example, the proxy would
need to prove that it does not omit any submitted inputs while proxying, nor falsely open blinded

1We note that oblivious pseudorandom function evaluation had been previously used in the set intersection context
in [11] and [16] as well.
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keys at the end of the protocol; the database would need to prove that it faithfully aggregates
submitted values, nor omit any rows in T that satisfy f . These proofs, typically done in zero-
knowledge, greatly complicate the protocol and impact efficiency. As such, this paper focuses on
honest-but-curious adversaries.

Security against Coalitions. Another important aspect of security is the ability to preserve
privacy even when several adversarial players try to break security by sharing the information they
gained during the protocol. In this aspect, we insist on gaining security against any coalition that
consists of an arbitrary number of participants together with the database. This is essential as
otherwise the database can perform a Sybil attack [8], i.e., create many dummy participants and
use their views together with his own view to reveal sensitive information. Similarly, we require
security against any coalition of the proxy and the participants. On the other hand, in order to have
a highly efficient and scalable system, we are willing to tolerate vulnerability against a coalition
of the database and the proxy. While not ideal, this relaxation does not introduce the problem of
Sybil attacks, as the proxy and database are distinct players. As mentioned earlier, we imagine
that the proxy and database are run by competing agents, or by two randomly chosen participants.
This presumably reduces the chances of adversarial collaboration between these parties.

Releasing the Value Column. The functionality that we securely compute includes the entire
value column (T[ki],∀i), even for those values whose corresponding keys ki are not exposed. This
serves practical purpose, as it may be hard to fully specify f a priori to collecting clients’ inputs.
Specifically, how should an anomaly detection system choose the appropriate frequency threshold
τ? In some attacks, 10 observations about a particular IP address may be high (e.g., suspected
phishing), while in others, 1000 observations may be necessary (e.g., for bots participating in
multiple DoS attacks). Furthermore, a dataset may naturally expose a clear gap between frequency
counts of normal and anomalous behavior; the very reason data operators like to “play” with raw
data in the first place.

However, in some settings releasing the entire value column (T[ki],∀i) may be considered to
be an information “leakage”. In such cases, one may modify our protocol such that the database
does not publish this information. This is only a partial solution as the database still learns this
column. In particular, when the domain D of possible values is large, a client can collaborate
with the database and “mark” a key k by submitting it together with an uncommon value w ∈ D.
Then, the database can identify the blinded version of k′ by searching for the T[k′] that includes
w. This way, the database can discover other clients’ values for that same key. This problem
does not arise when the domain is relatively small (e.g., when values are grades over some limited
scale). We mention that the leakage of the value column can be completely eliminated by asking
the participants to encrypt their values under both, the proxy and the database public keys, and
then by using additional cryptographic protocols for the aggregation of the values. While these
tools are relatively expensive, the structure of our system allows us to employ them only for the
two-party case (for the proxy and database) which results in a significant efficiency improvement
over other non-centralized solutions.

3 Private Keyword Aggregation Protocol

3.1 Overview

We begin with a high level (and slightly simplified) description of our protocol. We focus on
the specific case of threshold set-intersection problem. Recall that in addition to the participants
(clients), we will have two distinct parties: the proxy and database (DB). These special parties are

7



Par$cipant  Proxy  Database 

0. Par'cipant 
has input k  1. Proxy learns 

EDB(Fs(k));  
Par'cipant nothing 

2. Proxy sends 
batch of blinded 
inputs to DB 

3. DB recovers  
Fs(k); increments 

its count 

4. Proxy releases 
k when count ≥ τ   

Figure 1: High-level system architecture and protocol. Fs is a keyed hash function whose secret
key s is known only to the proxy.

somehow chosen either among the participants or as third-party entities, and we assume that these
two parties do not collude in order to break privacy. These parties may try to cheat, however, by
colluding with one or more participants.

The basic approach is to blind all participants’ input keys k1, . . . , k` to some pseudorandom
inputs Fs(k1), . . . , Fs(k`), and let the DB learn the union of all these blinded inputs. The DB
aggregates these blinded inputs and counts their frequencies. Then, the DB can identify which of
the blinded inputs appear over the threshold. We have to define some revealing mechanism that
allows the DB to “unblind” entries which appear over the threshold, but let us ignore this issue for
now.

Recall also that we wish to maintain certain privacy properties: (1) The DB should be unable
to compute the mapping ki ← Fs(ki). (2) The DB should be unable to identify which party sent
each blinded input Fs(ki). (3) The participants themselves should not learn the blinded value of
their own inputs (as otherwise, a coalition of the DB and participants can break privacy).

We achieve this by making a novel use of the proxy. Specifically, we let the proxy choose the
blinding scheme (by choosing a key s for a pseudorandom function F ). In addition, the proxy
will hide the identity of the participants from the DB by passing their blinded inputs to the DB.
However, this introduces a new problem: Knowing both the secret mapping s and the blinded value
Fs(ki) allows the proxy to break the security of the protocol.

To solve this problem, we leverage another cryptographic tool. We employ a public-key encryp-
tion scheme E, and assume that the DB chooses a public/private key pair (db,db−1) and publishes
the public-key db. The protocol proceeds as follows, as shown in Figure 1. (1) For each input k,
each participant invokes a cryptographic sub-protocol with the proxy such that, at the end of the
protocol, the proxy learns an encryption of Fs(ki) under the DB’s key db, while the participant
learns nothing. (2) The proxy sends the value Edb(Fs(ki)) to the DB. (3) The DB decrypts this
value and increments a counter for Fs(ki). If the counter is greater or equal than the threshold τ ,
(4) the DB and proxy execute some revealing mechanism in order to reveal ki.

Security (sketch). We now argue that the protocol is secure at an intuitive level. (A formal
proof is omitted due to space limitations.) First, note that the DB sees only a blinded list of
inputs encrypted under his public key db, without being able to relate the blinded entries to their
owners. Hence, the DB learns nothing but the frequency table of the inputs (i.e., the T[ki]’s for
all ki’s). Furthermore, this is true even if the DB participates in the protocol as a participant, or
more generally if the DB colludes with some subset of the participants (excluding the proxy), as
the participants did not see the blinded version of their inputs either. On the other hand, the proxy
learns nothing as well, as it only sees entries which are encrypted under the public key of the DB.
Again, this is true for any coalition that includes the proxy but does not include the DB.
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3.2 Formal Description

We now formally describe our protocol for the general case, where keys are released based on some
general computation f which is applied to the aggregated values T[ki]. We postpone the description
of the main input-blinding sub-protocol between participant and proxy until Section 3.3.

• Parties: Participants, Proxy, DB.

• Cryptographic Primitives: A pseudorandom function F , where Fs(ki) denotes the value
of the function on the input ki with a key s. A public-key encryption E, where EK(x) denotes
an encryption of x under the public key K.

• Public Inputs: The proxy’s public key prx, the DB’s public key db.

• Private Inputs. Participant: A list of key-value pairs 〈ki, vi〉. Proxy: key s of PRF F and
secret key for prx; DB: secret key for db.

1. Each participant interacts with the proxy as follows. For each entry 〈ki, vi〉 in the participant’s
list, the participant and the proxy run a sub-protocol such that the proxy learns Edb(Fs(ki))
and the participant learns nothing (see Section 3.3). In addition, the participant sends the
pair Edb(vi) and Edb(Eprx(ki)). The proxy adds this triple to a list and waits until all
participants send their inputs. Then the proxy randomly permutes the list and sends the
result to the DB.2

2. The DB uses its private key to decrypt each of the three encrypted values. Now, it holds
a list of triples of the form

〈
Fs(ki), vi, Eprx(ki)

〉
. The DB inserts these values into a table

which is indexed by the (blinded) key Fs(ki). At the end, the DB has a table of entries of the
form

〈
Fs(ki),T[ki], Eprx(k)

〉
, where T[ki] is (in general) a list of all the vi’s that appeared

with this key (or simply the number of times a client inputted ki in the case of threshold set
intersection).

3. The DB uses some predefined function f to partition the table into two parts: R, which
consists of the rows whose keys should be revealed, and H, which consists of the rows whose
keys should remain hidden. Then, it publishes the two-tuples 〈T[ki], Eprx(ki)〉 in R and simply
the values T[ki] in H.

4. The proxy goes over the table R and replaces all the encrypted Eprx(ki) entries with their
decrypted key ki.

An alternative realization of Steps 3 and 4 is for the database to query the proxy directly and have
it decrypt the Eprx(ki)’s in R. And then the database can publish all tuples 〈ki,T[ki]〉 ∈ R and
T[ki] ∈ H itself.

Remark. In some cases, it might be useful to hide the T[ki] value of R and H from the participants
(except of the DB) and instead reveal only the keys of R. This can be easily done by modifying
Step 3 and letting the DB send only Eprx(ki) for all k in R. Then, the proxy (or database) can
publish only the decryption of these values.

Also, note that in the case where the values are always one, i.e., the participants only want to
increment a counter for some key, the table R simply consists of keys and their frequencies, and H

2In fact, given participant asynchrony, the proxy can continuously accept participant inputs, buffering them only
until some queue is filled or some time period passes, rather than waiting for all participants to submit inputs.
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is simply a frequency table of all the unrevealed keys. So at least in this case, it seems that this
additional information is not typically harmful.

Eliminating subliminal channels. Public-key encryption schemes use randomness (in addition
to the public key) to encrypt a message. This randomness can be used as a subliminal channel
between the participants to the database or to the proxy. To solve this problem, we use an en-
cryption scheme that supports re-randomization of ciphertexts; that is, given an encryption of x
with randomness b, it should be possible to recompute an encryption of y under fresh randomness
b′ (without knowing the private key). Now we can eliminate the subliminal channel by asking the
proxy to re-randomize the ciphertexts which are encrypted under the DB’s public key (at Step 1),
and similarly ask the DB to re-randomize the ciphertexts which are encrypted under the Proxy’s
public key in Step 3.

3.3 Concrete Instantiation of the Cryptographic Primitives

In the following section, we assume that the input keys are represented by m-bit strings. We assume
that m is not very large (e.g., less than 192–256); otherwise, one can hash the input keys and apply
the protocol to resulting hashed values.

Public Parameters. Our implementation mostly employs Discrete-Log based schemes. In the
following, g is a generator of a multiplicative group G of prime order p for which the decisional
Diffie-Hellman (DDH) assumption holds. We publish (g, p) during initialization and assume the
existence of algorithms for multiplication (and thus also for exponentiation) in G. We let Z∗

p

denote the multiplicative group modulo p, that is, the set {1, . . . , p− 1} with the group operation
multiplication modulo p.

ElGamal Encryption. We will use ElGamal encryption over the group G. The private key is a
random element a from Z∗

p , and the public key is the pair (g, h = ga). To encrypt a message x ∈ G,
we choose a random b from Z∗

p and compute gb, x · hb. To decrypt the ciphertext (A,B), compute
B/Aa = B · A−a (where −a is the multiplicative inverse of a in Z∗

p). We will also need the ability
to re-randomize the ciphertext; that is, given an encryption of x with randomness b, it should be
possible to recompute an encryption of y under fresh randomness b′. This is done as follows: Given
(A,B), choose a random b′ ∈ Z∗

p and compute (A · gb′
, B · hb′

).

Naor-Reingold PRF [27]. The key s of the function Fs : {0, 1}m → G contains m values
(s1, . . . , sm) chosen randomly from Z∗

p . Given m-bit string k = x1 . . . xm, the value of Fs(k) is

g
Q

xi=1 si , where the exponentiation is computed in the group G.

Oblivious-Transfer [25, 31]. To implement the sub protocol of Step 1, we will need an additional
cryptographic tool called Oblivious Transfer (OT). In an OT protocol, we have two parties: sender
and receiver. The sender holds two strings (α, β), and the receiver has a selection bit c. At the
end of the protocol, the receiver learns a single string: α if c = 0, and β if c = 1. In addition, the
sender learns nothing (in particular, it does not know the value of the selector c).

3.3.1 Client-proxy protocol to blind input keys

Our construction is inspired by a protocol for oblivious evaluation of the PRF F , which is explicit
in [11] and implicit in [25, 26]. We believe that this construction might have further applications.

• Parties: Participant, Proxy.
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• Inputs. Participant: a single m-bit string k = (x1 . . . xm); Proxy: a secret key s =
(s1, . . . , sm) of Naor-Reingold PRF F .

1. Proxy chooses m random values u1, . . . , um from Z∗
p and an additional random r ∈ Z∗

p . Then
for each 1 ≤ i ≤ m, the proxy and the participant invoke the OT protocol where proxy is the
sender with inputs (ui, si · ui) and receiver uses xi as his selector bit. That is, if xi = 0, the
participant learns ui and otherwise it learns si ·ui. The proxy also sends the value ĝ = gr/Πui .
(All these steps can be applied in parallel.)

2. The participant multiplies together the values received in the OT stage. Let M denote this
value. Then, it computes ĝM = (gΠxi=1si)r = Fs(k)r. Finally, the participant chooses a
random element a from Z∗

p and encrypts Fs(k)r under the public key db = (g, h) of the
database. The participant sends the result (ga, Fs(k)r · ha) to the proxy.

3. The proxy raises the received pair to the power of r′, where r′ is the modular inverse of r
modulo p. It also re-randomizes the resulting ciphertext.

Correctness. Recall that G has a prime order p. Hence, when the pair (ga, Fs(x)r · ha) is raised
to the power of r′ = r−1, the result is (gar′

, Fs(k) · har′
), which is exactly Edb(Fs(k)). Thus, the

protocol is correct.

Privacy. All the proxy sees is the random tuple (u1, . . . , um, r) and Edb(Fs(k)r). This view
gives no additional information except of Edb(Fs(k)). (Formally, the view can be perfectly simu-
lated given Edb(Fs(k)).) On the other hand, we claim that all the participant sees is a sequence
of random values and therefore it also learns nothing. Indeed, the participant sees the vector
(sx1

1 · u1, . . . , s
xm
m · um), whose entries are randomly distributed over G, as well as the value

ĝ = (g1/Πui)r. Since r is randomly and independently chosen from Z∗
p , and since G has a prime

order p, the element ĝ is also uniformly and independently distributed over G.3

3.3.2 Implementing Oblivious Transfer

In general, oblivious transfer is an expensive public-key operation (e.g., it may take two exponen-
tiations per single invocation). In the above protocol, then, we execute an OT protocol for each bit
of the participants input k (which would result, for example, in 64 exponentiations just to input a
single IP address). However, Ishai et al. [17] show how to reduce the amortized cost of OT to be as
fast as matrix multiplication. This “batch OT” protocol uses a standard OT protocol as building
block. We implemented this batch OT protocol on top of the basic OT protocol of [25].

3.4 Efficiency of our Protocol

The round complexity of the protocol is constant, and the communication complexity is linear in
the number of items. The computational complexity of the protocol is dominated by cryptographic
operations. For each m-bit input key, we have the following amortized complexity: (1) The par-
ticipant who holds the input key computes 4 exponentiations, as well as m modular multiplication
/ symmetric-key operations. (2) The proxy computes 5 exponentiations, as well as m modular
multiplication / symmetric-key operations. (3) The database computes 4 exponentiations.

3This is true as long as g1/Πui 6≡ 1 (mod p), which happens with all but negligible probability.
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Figure 2: Distributed proxy and database architecture

4 Distributed Architecture and Implementation

In our system, both the proxy and database logical components can be physically replicated in a
relatively straightforward manner. In particular, our design can scale out horizontally to handle
higher loads, by increasing the number of proxy and/or database replicas, and then distributing
requests across these replicas. Our distributed architecture is shown in Figure 2.

4.1 Proxy: Client-Facing Proxies and Decryption Oracles

One administrative domain can operate any number of proxies. Each proxy’s functionality may be
logically divided into two components: handling client requests, and serving as decryption oracles
for the database when a particular key should be exposed. None of these proxies need to interact,
other than having all client-facing proxies use the same secret s to key the pseudorandom function
F and all decryption-oracle proxies use the same public/private key prx. In fact, these two proxies
play different logical roles in our system and could even be operated by two different administrative
domains. In our current implementation, all proxies register with a single group membership
server, although a distributed group membership service could be implemented for additional fault
tolerance [5, 38].

To discover a client-facing proxy, a client contacts this group membership service, which returns
a proxy IP address in round-robin order (this could be replaced by any technique for server selection,
including DNS, HTTP redirection, or a local load balancer). To submit its inputs, a client connects
with this proxy and then executes an amortized Oblivious Transfer (OT) protocol on its input
batch. This results in the proxy learning

〈
Edb(Fs(ki)), Edb(vi), Edb(Eprx(ki))

〉
for each input

tuple, which it pushes onto an internal queue. (While the Section 3.3 only described the use of
ElGamal encryption, its special properties are only needed for Edb(Fs(ki)); the other public-key
operations can be RSA, which we use in our implementation.) When this queue reaches a certain
length (10000 in our implementation), the proxy randomly permutes (shuffles) the items in the
queue, and sends them to a database server.

The database, upon determining that a key ki’s value satisfies f , sends Eprx(ki) to a proxy-
decryption oracle. The proxy-decryption oracle decrypts Eprx(ki) and returns ki to the database
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for storage and subsequent release to other participants in the system.

4.2 Database: Front-end Decryption and Back-end Storage

The database component can also be replicated. Similar to the proxy, we again separate database
functionality into two parts: the front-end module that handles proxy submissions and decrypts
inputs, and a back-end module that serves as a storage layer. Each logical module can in turn be
replicated in a similar fashion as the proxy.

The servers comprising the front-end database tier do not need to interact, other than being
configured with the same public/private keypair db. Thus, any front-end database can decrypt the
Edb(Fs(ki)) input supplied by a proxy, and the proxies can load balance input batches across these
database servers.

The back-end database storage, on the other hand, needs to be more tightly coordinated, as
we ultimately need to aggregate all Fs(ki)’s together, no matter which proxy or front-end database
processed them. Thus, the back-end storage tier partitions the keyspace of all 1024-bit strings over
all storage nodes (using consistent hashing [19]). All such front-end and back-end database instances
also register with a group membership server, which the front-end servers contact to determine the
list of back-end storage nodes. Upon decrypting an input, the front-end node determines which
back-end storage node is assigned the resulting key Fs(ki), and sends the tuple

〈
Fs(ki), vi, Eprx(ki)

〉
to this storage node.

As these storage nodes each accumulate a horizontal portion of the entire table T , they test the
value column for their local table to see if any keys satisfy F . For each such row, the storage node
sends the tuple

〈
Fs(ki), T [ki], Eprx(ki)

〉
to a proxy-decryption oracle.

4.3 Prototype Implementation

Our design is implemented in roughly 5,000 lines of C++. All communication between system
components—client, front-end proxy, front-end database, back-end database storage, and proxy-
decryption oracle—is over TCP using BSD sockets. We use the GnuPG library for large numbers
(bignums) and cryptographic primitives (e.g., RSA, ElGamal, and AES). The Oblivious Transfer
protocol (and its amortized variant) were implemented from scratch, and comprised a total of 625
lines of code. All RSA encryption used a 1024-bit key, and ElGamal used a corresponding 1024-bit
group size. AES-256 was used in the batch OT and its underlying OT primitive. The back-end
database simply stores table rows in memory, although we plan to replace this with a durable
key-value store (e.g., BerkeleyDB [28]).

5 Performance Evaluation

We wish to evaluate our system along three primary dimensions: (a) given fixed computing re-
sources, what is the throughput of our system as a function of the size of the input set? (b) what
are the primary factors limiting throughput? and (c) how does the throughput scale with increasing
computing resources? In each case, we are concerned with both (1) how long it takes for clients to
send key-value pairs to the proxy during the OT phase (proxy throughput) and (2) how long it takes
for the DB to decrypt and identify keys with values that satisfy the function f (DB throughput).
We have instrumented our code to measure both. For a given experiment requiring the proxy to
process n keys, proxy throughput is defined as n divided by the time it takes between when the
first client contacts any client-facing proxy and when the last key is processed by some client-facing
proxy. Similarly, database throughput is defined as the number of keys processed between when the
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Figure 3: Scaling: Effect of (a) number of keys, (b) number of participants, and (c) number of
proxy/database replicas.

first client-facing proxy forwards keys to some database front-end and when the database back-end
storage processes the last submitted keys.

Our experiments were run on multiple machines. The servers (proxy and DB) were operated
on HP DL160 servers (quad-core Intel Xeon 2.00 Ghz machines with 4 GB RAM running CentOS
Linux). These machines can perform 1024-bit ElGamal encryption in 2.2 ms, ElGamal decryption
in 2.5 ms, RSA encryption in 0.5 ms, and RSA decryption in 2.8 ms. Due to resource limitations,
the clients were run on different machines depending on the experiment. The machines used for
the clients were either of the same configuration as the servers, or on either (A) Sun SunFire X4100
servers with two dual-core 2.2 GHz Opteron 275 processors (four 64-bit cores) with 16GB RAM
running CentOS, or (B) Dell PowerEdge 2650 servers with two 2.2 GHz Intel Xeon processors and
5 GB of memory, also running Linux.

5.1 Scaling and Bottleneck Analysis

Effect of number of keys (Figure 3a). The input trace to our system is parameterized by
the number of clients and by the number of keys they each submit. In Figure 3a we measure the
throughput of our system as a function of the number of keys. More precisely, we run a single
client, a single proxy, and a single DB in order to measure single-CPU-core proxy throughput and
single-CPU-core DB throughput. The top curve shows proxy throughput when the proxy and client
utilize the amortized OT protocol, the middle curve shows DB throughput, and the bottom partial
curve shows proxy throughput when the proxy and client utilize only the standard OT primitive,
which does not include our amortization-based extensions. The throughput of the OT primitive is
exceedingly low (less than one key per second), which is why it was not evaluated on the full range
of x-values.

Proxy throughput scales well with the number of incoming keys when the client and proxy utilize
the amortized OT protocol. Throughput increases with increasing numbers of keys because the
amortized OT calls the primitive OT a fixed number of k times regardless of the number of input
addresses n. With small n (e.g., up to 1000), the cost of these calls to the primitive OT dominate
overall execution time and leave the proxy underutilized. However, as the size of the input set
increases, the cost of encrypting keys on the client becomes the primary bottleneck, which is why
there is a minimal increase in throughput above n = 8000.

DB throughput, on the other hand, does not scale with the number of keys. The reason for this
is that the intensive work on the DB is decryption, which is performed in batch, and it is therefore
entirely CPU limited. The DB becomes CPU limited at 10 keys and hence remains CPU limited
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Global Within amortized OT
wait encrypt wait pow AES arith rand other OT primitive
60% 1% 0% 16% 4% 4% 4% 2% 7%

Table 2: Breakdown of proxy resource usage

at 10,000 keys (i.e., latency goes up and throughput remains constant). We noted earlier that the
machines the DB and proxy run on require 2.5 milliseconds per decryption. Since the DB has to
perform 3 decryptions per key, the DB therefore has a maximum throughput of 135 keys per second
on a single CPU core (assuming no queuing delays and no other computation). Figure 3a shows
that our DB implementation achieves throughput of roughly 90 keys per second.

The amortized OT introduces a trade-off between the proxy-client message overhead and mem-
ory consumption. In fact, the amortized OT protocol is the only component of our system whose
memory footprint can be nontrivial. In particular, the memory footprint of the OT protocol is es-
sentially determined by the size of the y matrix in [17], which requires precisely n×32×2×1024/8 =
8196n bytes (i.e., we assume 32 bits per key, the 2 values for the OT primitive, 1024-bit keys, and
8 bits per byte). For n = 10, 000 keys, for example, this requires 82 MB. The proxy computes this
matrix and then sends it to the client. It can therefore either compute it in one batch or split it up
and send the rows individually. Computing it in batch is faster but more memory intensive. For
subsequent experiments we chose to send up to 5,000 keys at a time because Figure 3a shows that
there is little to gain from larger batch sizes (and memory is very affordable), but this parameter
is trivially configurable if another setting is desired.

Effect of number of participants (Figure 3b). Here we evaluate the throughput of our system
as a function of the number of clients sending keys. In this experiment we limit the proxy and DB
to one server machine each. Four client-facing proxy processes are launched on one machine and
four front-end DB processes are launched on the other. They can therefore potentially utilize all
eight cores on these two machines. Figure 3b shows that the proxy scales well with the number
of clients. Proxy throughput increases by nearly a factor of two between 8 and 32 clients. This
tells us that when communicating with a single client, a proxy spends a substantial fraction of its
time idling. The four proxies in this experiment are not CPU limited until they are handling 32
clients, at which the throughput approaches 900 keys per second. The DB, on the other hand, is
CPU-bound throughout. It has a throughput of approximately 350 keys per second independent
of the number of clients.

Effect of number of replicas (Figure 3c). Finally, we wish to analyze how our distributed
architecture scales with the available computing resources. In this experiment we provide up to 8
cores across two machines to each of the proxy and DB front-ends. While the proxy is evaluated
on 64 clients, computing resource constraints meant that the DB is evaluated on 32 clients.

Both our proxy and DB scale linearly with the number of CPU cores allocated to them.
Throughput for the DB with 2 cores when handling 32 clients was over 173 keys per second whereas
at 8 cores the throughput was 651 keys per second—a factor of 3.75 increase in throughput for a
factor of 4 increase in computing resources. The proxy has throughput of 1159 keys per second
when utilizing 4 cores and 2319 when utilizing 8 cores—an exact factor of 2 increase in throughput
for an equal increase in computing resources. This clearly demonstrates that our protocol, archi-
tecture, and implementation can scale up to handle very large data sets. In particular, our entire
system could handle input sizes on the order of millions of keys in hours.

Micro-benchmarks. To gain a deeper understanding of the factors limiting the scalability of
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Global Within amortized OT
wait encrypt wait pow AES arith rand other OT primitive
0% 40% 31% 16% 2% 1% 0% 3% 7%

Table 3: Breakdown of client resource usage

our design, we instrumented the code to account for how the client and proxy were spending their
CPU cycles. While the DB is entirely CPU bound due only to decryptions (i.e., its limitations are
known), the proxy and client engage in the oblivious OT protocol whose bottlenecks are less clear.
In Tables 2 and 3, we therefore show the fraction of time the client and proxy, respectively, spend
performing various tasks needed for their exchange. In this experiment we have a single client send
keys to a single proxy at the maximum achievable rate.

At the highest level, we split the tasks performed into (a) waiting (called “wait”), (b) encrypting
or decrypting values (“encrypt”), or (c) engaging in the amortized OT protocol. We further split
work within the amortized OT protocol into time spent waiting, performing power modulo (“pow”
or powmod), calling AES256, performing basic arithmetic such as multiplication, division, or finding
multiplicative inverses (“arith”), generating random numbers (“rand”), calling the OT primitive,
and any other necessary tasks (“other”) such as XOR’ing numbers, allocating or de-allocating
memory, etc.

Table 2 shows that when communicating with a single client, the client-facing proxy spends
more than 60% of its time idling while waiting for the client—it is more than 60% because some
part of the 7% of time spent within the OT primitive is also idle time. The 60% idle time is
primarily due to waiting for the client to encrypt ki and Fs(ki). The single largest computational
expense for the proxy is performing powmods at 16%; the remaining non-OT tasks add up to 15%.
[60+16+15+7=98% is not equal to 100% probably due to time spent in automatic destructors (in
particular, the matrices used for the amortized OT) and rounding issues.] In order to make the
proxy more efficient, therefore, utilizing a bignum library with faster powmod and basic arithmetic
would be advantageous.

The client also spends a non-trivial amount of time waiting—31% of total execution time—but
substantially less than the proxy. It spends 40% of its time encrypting values. The reason this 40%
does not match up with the 60% idle time of the proxy is because the proxy finishes its portion
of the amortized OT before the client does its. That is, 20 out of the proxy’s 60% idle time is
due to the client parsing the proxy’s y matrix (notation consistent with [17]) and 40 is due to the
client encrypting its values. As with the proxy, the client would benefit from faster powmods, but
encryption is clearly the major bottleneck. We noted before that the cryptographic library we use
(GnuPG) performed public-key operations in approximately 2.5–2.8 ms. On the same servers, we
benchmarked the Crypto++ library to provide RSA decryption in only 1.2 ms, fully 230% faster.
Thus, we are currently changing our implementation to use these libraries, and we fully expect a
similar gain in overall system throughput.

5.2 Feasibility of Supporting Applications

In this section, we revisit several potential applications of our system, and consider our results in
light of their potential demands on request rate—the number of requests per unit time that must be
satisfied, the number of keys which must be stored in the system, and the number of participants.

Anomaly detection. Network operators commonly run systems to detect and localize anomalous
behavior within their networks. These systems dynamically track the traffic mix, for example the
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volume of traffic over various links, or the degree of fanout from a particular host, and detect
behavior that differs substantially from the statistical norm. For example, Mao et al. [24] found
that most DDoS attacks observed within a large ISP were sourced by fewer than 10,000 source IPs,
and generated 31,612 alarms over a four-week period (0.8 events per hour). In addition, Soule et
al. [35] found that volume anomalies occurred at a rate of four per day on average, most of which
involved fewer than several hundred source IPs. Finally, Ramachandran et al. [32] found were able
to localize 4,963 Bobax-infected host IPs sending spam from a single vantage point. We envision
our system could be used to improve accuracy of these techniques by correlating anomalies across
ISP boundaries. We found our system could handle 10,000 IP addresses as keys, with a request
rate of several hundred keys per second, even with several hundred participants. Given our system
exceeds the requirements of anomaly detection, our system may enable the participants to “tune”
their anomaly detectors to be more sensitive, and reduce false positive rates by leveraging other
ISPs’ observations.

Cross-checking certificates. Multiple vantage points may be used to validate authenticity of
information (such as a DNS reply or ssh certificate [29, 37]) in the presence of “man-in-the-middle”
attacks. Such environments present potentially larger scaling challenges due to the potentially large
number of keys that could be inserted. According to [18], most hosts execute fewer than 15 DNS
lookups per hour, and according to [34], ssh hosts rarely authenticate with more than 30 remote
hosts over long periods of time. Here, we envision our system could simplify the deployment of such
schemes, by reducing the amount of information revealed about clients’ request streams. Under
this workload (15 key updates per hour, with 30 keys per participating host), our system scales to
support several hundred hosts with only a single proxy. Extrapolating out to larger workloads, our
system can handle tens of thousands of clients storing tens of thousands of keys with under fifty
proxy/database pairs.

Distributed ranking. Search tools such as Alexa and Google Toolbar collect information about
user behavior to refine search results returned to users. However, such tools are occasionally labeled
as spyware as they reveal information about the contents of queries performed by users. Our tool
may be used to improve privacy of user submissions to these databases. It is estimated that Alexa
Toolbar has 180,000 active users, and it is known that average web users browse 120 pages per
day. Here, the number of participants is large, but the number of keys they individually store
in the system is smaller. Extrapolating our results to 180,000 participants, and assuming several
thousands of keys, our system can still process several hundred requests per second (corresponding
to several hundred thousand clients) per proxy/database pair.

6 Conclusions

In this paper, we presented the design, implementation, and evaluation of a collaborative data-
analysis system that is both scalable and privacy preserving. Since a fully-distributed solution would
be complex and inefficient, our design divides responsibility between two independent parties—a
proxy that obliviously blinds the client inputs and a database that identifies the (blinded) keys
that have values satisfying an evaluation function. The functionality of both the proxy and the
database can be easily distributed for greater scalability and reliability. Experiments with our
prototype implementation show that our system performs well under increasing numbers of keys,
participants, and proxy/database replicas. The performance is well within the requirements of our
motivating applications, such as collaborating to detect the malicious hosts responsible for DoS
attacks or to validate the authenticity of information in the presence of man-in-the-middle attacks.
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As part of our ongoing work, we plan to evaluate our system in the context of several real
applications—first through a trace-driven evaluation and later by extending our prototype to run
these applications. In addition, we plan to explore opportunities to deploy our system in practice.
A promising avenue is distributed Internet monitoring infrastructures such as NetDimes [36] and
the new M-Lab (Measurement Lab) initiative [22]. We believe our system could lower the barriers
to collaborative data analysis over the Internet, enabling a wide range of new applications that
could improve Internet security, performance, and reliability.
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