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Abstract—In this paper, collaborative representation is pro-
posed for anomaly detection in hyperspectral imagery. The
algorithm is directly based on the concept that each pixel in
background can be approximately represented by its spatial neigh-
borhoods, while anomalies cannot. The representation is assumed
to be the linear combination of neighboring pixels, and the collab-
oration of representation is reinforced by ℓ2-norm minimization
of the representation weight vector. To adjust the contribution of
each neighboring pixel, a distance-weighted regularization matrix
is included in the optimization problem, which has a simple and
closed-form solution. By imposing the sum-to-one constraint to the
weight vector, the stability of the solution can be enhanced. The
major advantage of the proposed algorithm is the capability of
adaptively modeling the background even when anomalous pixels
are involved. A kernel extension of the proposed approach is also
studied. Experimental results indicate that our proposed detector
may outperform the traditional detection methods such as the
classic Reed–Xiaoli (RX) algorithm, the kernel RX algorithm, and
the state-of-the-art robust principal component analysis based and
sparse-representation-based anomaly detectors, with low compu-
tational cost.

Index Terms—Anomaly detection, collaborative representation,
kernel collaborative representation, hyperspectral imagery (HSI),
sparse representation.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI), a 3-D “image cube,”

provides a wealth of spectral information to uniquely

identify various materials by their reflective spectrum, which

makes it possible to distinguish different objects of interest

based on their spectral signatures. Target detection in remote

sensing community seeks to discriminate uncommon observa-

tions, such as man-made objects, which usually have signif-

icantly different spectral signatures from natural background

materials. Over the last two decades, target detection in HSI has

drawn lots of attention due to its importance in many military

and civilian applications [1]–[4].

Based on a priori target knowledge availability, target de-

tection algorithms can be generally grouped into two cate-
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gories: supervised and unsupervised. When the target spectral

signature is known, the matched filtering strategy is usually

considered. Spectral matched filter (SMF) [5] is a well-known

detection approach using the known target spectral characteris-

tics. The approach estimates the background covariance matrix

and maximizes the signal-to-background ratio to distinguish

targets of interest from the background. Its extension, called

regularized SMF, has been introduced in [6]. Similar techniques

include subspace-based methods, such as matched subspace

detector [7] and adaptive subspace detector [8]. Some classifiers

have also been modified for target detection, such as one-

class support vector machine [9], sparse-representation-based

detection [10]–[12], etc.

When the target spectral signature is unknown, anomaly

detection has to be applied, which is to find anomalous pixels

whose spectral signatures are different from their surround-

ings. The Reed–Xiaoli (RX) detector, which was introduced in

[13], is built on the concept that a hypothesis testing can be

formulated for a pixel vector and the conditional probability

density functions (pdfs) under the two hypotheses (without and

with anomaly) are assumed to be Gaussian. The solution of

the resulting generalized likelihood ratio test turns out to be

the Mahalanobis distance between the pixel under test and the

background. Two typical versions of the RX have been studied:

global RX, which estimates the background statistics (i.e., mean

and covariance matrix) of the entire image, and local RX, which

estimates the background using local statistics. Obviously, the

key to success for global or local RX is an appropriate esti-

mate of the global or local background covariance matrix for

effective background suppression. In addition to the classical

RX detector, a number of anomaly detection algorithms have

also been proposed for hyperspectral data. A time-efficient

method has been introduced for anomaly detection in [14] and

[15], the subpixel anomaly detection was discussed in [16],

multiple-window anomaly detection was developed in [17]

to capture local spectral variations, a random-selection-based

anomaly detector was described in [18], subspace-projection-

based detectors were presented in [19]–[21], and kernel-based

detectors, such as kernel RX and support vector data description

(SVDD), were presented in [22]–[25].

In this paper, similar to SVDD, we propose a nonparametric

anomaly detector that can adaptively estimate the background

without assuming pdf or estimating its covariance matrix. The

proposed detector is designed using the concept that each pixel

in background can be approximately represented by its spatial

neighborhoods, while anomalies cannot. The representation is

assumed to be the linear combination of neighboring pixels, and

the collaboration among these pixels is reinforced by ℓ2-norm
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minimization of the representation weight vector. To adjust

the contribution of each neighboring pixel, a distance-weighted

regularization matrix is included in the optimization problem,

which has a simple and closed-form solution. By imposing the

sum-to-one constraint to the weight vector, the stability of the

solution can be enhanced. Similar to the local RX, the proposed

collaborative-representation-based detector (CRD) also adopts

a dual-window strategy: surrounding spatial neighborhoods in

the outer region are linearly combined to produce a prediction

for the test (central) pixel within a sliding dual rectangular

window. In this way, background estimation can be achieved.

Once the background image is available, the anomalies can be

determined in the residual image which is obtained by subtract-

ing the predicted background from the original HSI. Note that

the concept of collaborative representation has been presented

for face recognition [26], [27], where it is a supervised method

and the mechanism to estimate the weight vector is different

from the proposed CRD.

Obviously, the counterpart of the proposed CRD is a sparse-

representation-based detector (SRD). The supervised hyper-

spectral target detection using sparse representation has been

discussed in [10] and [11]. In this paper, unsupervised target de-

tection, i.e., anomaly detection, with sparse representation will

be discussed and compared with the proposed CRD. Recently,

robust principal component analysis (RPCA) [28] has been

presented for low-rank and sparse matrix decomposition. The

typical PCA provides the optimal low-rank representation in an

ℓ2-sense when the data are corrupted as long as the magnitude

of noise is small. However, it breaks down under arbitrary cor-

ruption, which affects only very few of the additional observa-

tions [29], [30]. Comparatively, RPCA seeks to exactly recover

the underlying low-rank structure (background modeling) and

a sparse structure (residual error) from the original data, even

in the presence of large noise. Due to its characteristics, it is

straightforward to apply RPCA for anomaly detection in HSI,

which usually assumes that the background image is low-rank

while anomalies are preserved in the residual (sparse) image.

We will compare the proposed CRD with the traditional RX

algorithm, SRD, and the state-of-the-art RPCA-based anomaly

detectors. It is also extended to the kernel version and compared

with the counterpart, i.e., kernel RX.

The uniqueness of the proposed CRD algorithm includes

the following: 1) As far as we know, it is the first time that

collaborative representation is applied for anomaly detection,

which is a nonparametric approach without estimation of the

background covariance matrix (a conference version of this

paper with preliminary results can be found in [31]); 2) the

collaborative representation is further regularized by a simi-

larity matrix such that it can adaptively handle the situation

when the background includes anomalous pixels, avoiding the

contamination when using all of the pixels to estimate the back-

ground; 3) it has a closed-form solution, which is much simpler

than a sparseness-constrained detector; and 4) by imposing

the sum-to-one constraint to representation coefficients, the

solution of the ℓ2-norm minimization becomes more stable,

resulting in better discrimination power. Compared to the orig-

inal collaborative representation in [26] and [27], our method

includes distance-based regularization terms, which is critical

in anomaly detection since not all of the background pixels

can be used for representation in practice. Note that our pre-

vious work on nearest regularized subspace (NRS) [32] uses

the distance-weighted regularization, which is called Tikhonov

regularization [33]; however, NRS in [32] was implemented in

a supervised fashion because the representation is based on the

labeled samples within each class.

This paper is organized as follows. Section II provides a

detailed description of the proposed CRD detector as well as

its kernel version. Section III describes the experimental setup

and detection performance and shows how to optimize the

proposed method. Finally, concluding remarks are provided

in Section IV.

II. COLLABORATIVE REPRESENTATION FOR

ANOMALY DETECTION

A. Collaborative-Representation-Based Detector

Consider a 3-D hyperspectral cube with resized samples

X = {xi}
n
i=1 in R

d (d is the number of spectral bands and n is

the total number of samples). For each pixel y (of size d× 1),

surrounding data are collected inside the outer window (of size

wout × wout) while outside the inner window (of size win ×
win), centered at the pixel y. The selected data are resized

into a 2-D matrix Xs = {xi}
s
i=1 (s is the number of chosen

samples; s = wout × wout − win × win). Therefore, the matrix

Xs (of size d× s) is obtained for every pixel y on its own local

window. Note that, in the local case, Xs is adaptive for each

test pixel. The objective is to find weight vector α such that

‖y −Xsα‖22 is minimized under the constraint that ‖α‖22 is

also minimized. Therefore, the objective function is

argmin
α

‖y −Xsα‖22 + λ‖α‖22 (1)

where λ is a Lagrange multiplier. Equation (1) is equivalent to

argmin
α

[
α

T
(
XT

s Xs + λI
)
α− 2αTXT

s y
]
. (2)

Taking derivative with regard to α and setting the resultant

equation to zero yield

α̂ =
(
XT

s Xs + λI
)−1

XT
s y. (3)

The parameter λ controls the penalty of the norm of weight

vectors. However, some surrounding pixels may be quite sim-

ilar to the center pixel and should allow them to have large

coefficients in the representations; for those surrounding pixels

that are quite different from the center pixel, the coefficients

should be small, and the penalty for having a large coefficient

must be heavy. In [31] and [32], a distance-weighted Tikhonov

regularization has been considered to adjust the weight vector,

and in this work, we also employ the technique by using the

following diagonal regularization matrix:

Γy =

⎡
⎢⎣
‖y − x1‖2 0

. . .

0 ‖y − xs‖2

⎤
⎥⎦ (4)



LI AND DU: COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION 1465

Fig. 1. Examples of how the sum-to-one constraint affects the output of the proposed CRD for HYDICE forest data. (a) and (b) represent residual vectors
between a chosen normal pixel and its approximation, and (c) and (d) represent residual vectors between a chosen anomalous pixel and its approximation. (a) CRD
with constraint for a normal pixel. (b) CRD without constraint for a normal pixel. (c) CRD with constraint for an anomalous pixel. (d) CRD without constraint for
an anomalous pixel.

where x1,x2, . . . ,xs are the columns of Xs. It calculates the

Euclidean distance between the center pixel to each of the pixels

in Xs. Then, the improved optimization problem becomes

argmin
α

‖y −Xsα‖22 + λ‖Γyα‖22 (5)

which means that the penalty values on different elements in

α are different, depending upon the distance (or similarity) of

the corresponding pixel to the center pixel. Intuitively, if the

distance is small, which means that the corresponding pixel is

similar to the center pixel, then its coefficient is allowed to be

large; otherwise, the coefficient must be small. Following the

same derivation, the solution to (5) is:

α̂ =
(
XT

s Xs + λΓT
yΓy

)−1
XT

s y. (6)

To impose the sum-to-one constraint on α, the objective is

modified such that ‖ỹ − X̃sα‖
2

2 is minimized under the con-

straint that ‖α‖22 is also minimized, where ỹ = [y; 1] and X̃s =
[Xs;1], and 1 is a 1× s row vector of all ones; in other words,

the data dimensionality is increased by 1 after inserting 1’s to

the lately added dimension. After that, the new optimization

problem can be represented as

argmin
α̂

‖ỹ − X̃sα̂‖22 + λ‖Γyα̂‖22 (7)

and its solution is

α̂ =
(
X̃T

s X̃s + λΓT
yΓy

)−1

X̃T
s ỹ. (8)

In CRD, once the representation process is finished, anoma-

lies can be determined in the residual image which is obtained

by directly subtracting the predicted background from the orig-

inal hyperspectral data as

r1 = ‖y − ŷ‖2 = ‖y −Xsα̂‖2. (9)

If it is larger than a threshold, then y is claimed to an anoma-

lous pixel. The overall description of the CRD-based anomaly

detection algorithm is given as Algorithm 1.
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Fig. 2. (a) Pseudocolor image of the HYDICE forest scene. (b) Ground-truth map of 19 anomalous pixels. (c) Spectral signatures of two background (normal)
pixels and one anomalous pixel.

Algorithm 1 The CRD Algorithm for Anomaly Detection

Input: Three-dimensional hyperspectral cube, window size

(wout, win), and the regularization parameter λ

for all pixels do

1) For each test pixel y, a matrix Xs = {xi}
s
i=1 is col-

lected based on the dual window strategy;

2) The weight vector α is calculated via the ℓ2-regularized

minimization with a closed-form of Eq. (6) or (8);

3) Eq. (9) is used to obtain the distance measurement,

which is further compared with the prescribed threshold;

end for

Output: Anomaly detection map.

It is worth mentioning that, for another important application

of hyperspectral data, i.e., hyperspectral unmixing [34], sum-

to-one is often imposed on abundances as a constraint, and the

resulting constrained least squares problem has been presented

in previous works (e.g., [34]). Nevertheless, the purpose of

imposing the sum-to-one constraint in this research is mainly to

help control the range of weights. Our proposed CRD builds on

the concept that the central pixel is linearly reconstructed using

surrounding neighbors. Empirically, we have found that CRD

with and without constraint can produce similar weight vectors

in homogeneous areas; however, in heterogeneous areas, the

CRD without the sum-to-one constraint tends to use significant

weights for the normal background pixels to represent a central

anomalous pixel, causing the central pixel being misclaimed to

be a normal one. Overall, the sum-to-one constraint makes the

solution more stable, resulting in better discriminant power.

Fig. 1 illustrates how the sum-to-one constraint affects the

output of the proposed CRD using the Hyperspectral Digital

Imagery Collection Experiment (HYDICE) forest data to be

introduced in Section III. Fig. 1(a) and (b) represents residual

vectors between a chosen normal pixel and its estimation with

and without the constraint, respectively, and Fig. 1(c) and (d)

represents residual vectors between a chosen anomalous pixel

and its estimation with and without the constraint, respectively.

For both cases, 112 surrounding normal pixels are used to

calculate the weight vector. According to (9), the outputs of

CRD (i.e., the norm of the residual vector) in Fig. 1(a) and (b)

are 0.2535 and 0.3112, respectively, which means that the

center pixel is easier to be claimed as a normal one with a

smaller output when the constraint is imposed. On the other

hand, in Fig. 1(c) and (d), the outputs are 0.3983 and 0.2017,

respectively; the CRD with the sum-to-one constraint generates

a larger output, thereby facilitating the discrimination of the

anomaly from its background.

Since the anomalous pixels in hyperspectral data are rarely

present, we assume that most of the samples Xs in an outer

region are background (normal) pixels, and one of the following

situations may appear.

1) If the test pixel y is a normal pixel and none of the

samples from Xs is anomalous either, the regularization

matrix Γy will have less weighting power since most

samples from surrounding data Xs are similar to y, and

the diagonal elements of Γy are small, which causes the

approximation ŷ to be close to y (and the decision to y is

“normal”).

2) If the test pixel y is a normal pixel and one or two samples

from Xs are anomalous, the corresponding values for the

anomalous samples in the regularization matrix Γy are

large, resulting in less contributions. As a result, y is

mainly represented by other normal pixels in Xs, which

causes the approximation of ŷ to be close to y (and the

decision to y is “normal”).

3) If the test pixel y is an anomalous pixel and none of the

samples from Xs is anomalous, the regularization matrix

Γy will have more weighting power since the diagonal

elements of Γy are relatively large, which causes the

approximation ŷ to be different from y (and the decision

to y is most likely “abnormal”).

4) If the test pixel y is an anomalous pixel and one or two

samples from Xs are also anomalous but dissimilar to y

(which means that they are different types of anomalies),

the regularization matrix Γy will have weighting power

since all of the samples from the surrounding data are
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Fig. 3. (a) Pseudocolor image of the HYDICE urban scene. (b) Ground-truth
map of 21 anomalous pixels.

dissimilar to y, which causes the approximation ŷ to be

different from y (and the decision to y is “abnormal”).

5) If the test pixel y is an anomalous pixel and one or two

samples from Xs are also anomalous and similar to y, Γy

will have adaptive weighting power since the elements of

Γy have such distribution—relevant positions have small

values and others have large values, which causes the

corresponding weight vector α to be adaptively adjusted

(i.e., if xi is similarly anomalous as y, then the ith

element in Γy is small, which allows αi to be large

but others are small), and the approximation ŷ is still

close to y (and the decision is “locally normal” since

there have been other similar anomalous pixels in the

neighborhood).

B. Kernel Collaborative-Representation-Based Detector

Kernel methods can project the linearly nonseparable data

into a high-dimensional feature space in which those data

become more separable [35], [36]. Kernel-based versions of

feature extraction or anomaly detection algorithms have re-

cently been investigated in hyperspectral image analysis, such

as kernel principal component analysis [37], kernel discrim-

inant analysis [38], kernel local Fisher discriminant analysis

[39], and kernel RX [22]. Here, we further extend the proposed

CRD into a kernel version, referred to as kernel CRD.

In a kernel-induced feature space, we can linearly represent

the center pixel y in terms of its surrounding data Xs. The new

optimization problem becomes

argmin
α

∗

‖Φ(y)−Φα
∗‖22 + λ

∥∥ΓΦ(y)α
∗
∥∥2
2

(10)

where the mapping function Φ maps the center pixel to the

kernel-induced feature space: y→Φ(y) ∈ R
D×1 (D ≫ d is the

dimension of kernel feature space), and Φ = [Φ(x1),Φ(x2),
. . . ,Φ(xs)] ∈ R

D×s. The new biasing Tikhonov matrix ΓΦ(y)

then has the form of

ΓΦ(y) =

⎡
⎢⎣
‖Φ(y)− Φ(x1)‖2 0

. . .

0 ‖Φ(y)− Φ(xs)‖2

⎤
⎥⎦

(11)

where ‖Φ(y)−Φ(xi)‖2=[k(y,y)+k(xi,xi)− 2k(y,xi)]
1/2,

i = 1, 2, . . . , s. After constituting ΓΦ(y), the weight vector α∗

Fig. 4. Pseudocolor image of the HyMap image and ground-truth map of a
total of seven types of targets (F1: 3-m red cotton target; F2: 3-m yellow nylon
target; F3: 1- and 2-m blue cotton target; F4: 1- and 2-m red nylon target; V1:
1993 Chevy Blazer; V2: 1997 Toyota T100; and V3: 1985 Subaru GL Wagon).

with size of s× 1 can be recovered in a closed-form solution

α
∗ =

(
ΦTΦ+ λΓT

Φ(y)ΓΦ(y)

)−1

ΦTΦ(y)

=
(
K+ λΓT

Φ(y)ΓΦ(y)

)−1

k(·,y) (12)

where k(·,y)=[k(x1,y), k(x2,y), . . . , k(xs,y)]
T ∈R

s×1 and

kernel function K = ΦTΦ ∈ R
s×s is the Gram matrix with

Ki,j = k(xi,xj). The commonly used Gaussian radial basis

function (RBF) kernel k(xi,xj) = exp(−γ‖xi − xj‖
2
2) (γ >

0 is the parameter of RBF kernel) is adopted here.

Then, the collaborative representation residual of the kernel

CRD is represented as

r2 = ‖Φ(y)−Φα
∗‖2

=

√
(Φ(y)−Φα

∗)T (Φ(y)−Φα
∗)

=
√
k(y,y) +α

∗TKα
∗ − 2α∗Tk(·,y). (13)

C. Sparse-Representation-Based Detector

Note that in [10] and [12] the authors have proposed sparse-

based ℓ1-minimization methods for hyperspectral target de-

tection, which actually require a priori information, such as

available training samples or the target spectral signature from

a spectral library. In our work, the SRD with ℓ1-minimization
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Fig. 5. (a) Pseudocolor image of the Moffett Field scene. (b) Anomaly detection map of global RX. (c) Ground-truth map of 59 anomalous pixels.

Fig. 6. For the HYDICE forest data, detection performance of the RD, CRD,
CRDDW, and CRD-DW-STO.

is applied for background estimation in an unsupervised

fashion. Different from (1), the weight vector α using the

ℓ1-minimization is defined as

argmin
α

‖y −Xsα‖22 + λ‖α‖1. (14)

The basic idea is to find a sparse solution α, which enables

the approximation of Xsα to have desired matching compared

to sample y. It assumes that the matching pixels are sparsely

distributed, and the number of matching pixels is limited.

D. RPCA-Based Detector

RPCA [28]–[30] is a novel decomposition technique1 tai-

lored to the situation that the multidimensional data often

comprise a low-rank term and a sparse term. In mathematical

modeling, the observation data X can be expressed as

X = L+ S (15)

1http://perception.csl.illinois.edu/matrix-rank/sample_code.html.

Fig. 7. For the HYDICE forest data, sizes of window (wout, win) adjustment
for the proposed CRD-DW-STO and local RX.

TABLE I
AUC (IN PERCENT) PERFORMANCE OF THE PROPOSED CRD-DW-STO

AND LOCAL RX WITH VARYING WINDOW SIZE (wout, win)
AS WELL AS λ FOR THE HYDICE FOREST DATA

where L is a low-rank matrix and S is a sparse matrix of entries

with a small fraction of nonzero entries. L and S are solved by

the following convex optimization problem:

min
L,S

‖L‖∗ + λ‖S‖1, s.t. X = L+ S (16)

where ‖ · ‖∗ and ‖ · ‖1 denote the trace-nuclear norm (sum

of the singular values) and the sum of the absolute values
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Fig. 8. For the HYDICE forest data, background prediction as well as residual images of the RPCA, SRD, and proposed CRD-DW-STO. (a) RPCA: background
(band 100). (b) SRD: background (band 100). (c) CRD-DW-STO: background (band 100). (d) RPCA: residual (band 100). (e) SRD: residual (band 100).
(f) CRD-DW-STO: residual (band 100). (g) RPCA: background (band 60). (h) SRD: background (band 60). (i) CRD-DW-STO: background (band 60). (j) RPCA:
residual (band 60). (k) SRD: residual (band 60). (l) CRD-DW-STO: residual (band 60).
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Fig. 9. For the HYDICE forest data. (a) ROC evaluation of different anomaly detectors. (b) ROC evaluation of the kernel RX and kernel CRD.

of matrix entries, respectively, and λ > 0 is the regularization

parameter. The optimization of (16) can be further solved by

any off-the-shelf interior point solver after being reformulated

as a semidefinite program. More detailed description of the

optimization can be found in [28] and [29].

Unlike traditional PCA, RPCA can handle well the gross

corruption of large noise (high magnitude). In RPCA, the trace-

nuclear norm is for low-rank recovery, and the ℓ1-norm is for

error correction as expressed in (16). Currently, RPCA has been

employed to a variety of applications, such as removing the

shadows of face images [28]. For the application of anomaly de-

tection, X can be viewed as hyperspectral data with anomalous

pixels, L is the prediction of the background image, and S is

the residual (sparse) image which contains anomalies. RPCA-

based anomaly detection can be achieved by calculating the

Mahalanobis distance in the sparse matrix S.

III. EXPERIMENTAL RESULTS

A. Hyperspectral Data

Four different hyperspectral data sets are used to evaluate the

effectiveness of the proposed algorithm in the task of detecting

anomalies. The first hyperspectral data set was acquired by

the HYDICE image sensor [40] depicted in Fig. 2(a). This

forest scene consists of size 64 × 64 pixels with 210 spectral

bands of spectral coverage 0.4–2.5 μm for a forest area. In

the experiments, a total of 169 bands are used after removal of

water-absorption bands with a spatial resolution of 1.56 m. The

ground-truth map includes 19 anomalous pixels corresponding

to 15 target panels covered with different paints as illustrated

in Fig. 2(b). Fig. 2(c) shows the spectral signatures of two ran-

domly chosen background (normal) pixels and one anomalous

pixel.

The second data were also collected by HYDICE airborne

sensor [21]. This urban scene consists of 80 × 100 pixels for

an urban area. The spatial resolution is approximately 1 m.

Here, 175 bands remain after removal of water vapor absorption

bands. There are approximately 21 anomalous pixels, repre-

senting cars and roof. The scene and the ground-truth map of

anomalies are illustrated in Fig. 3.

The third data set2 was acquired by the HyMap airborne

hyperspectral imaging sensor, which provides 126 spectral

bands spanning the wavelength interval of 0.4–2.5 μm. The

image data set, covering one area of Cooke City, MT, USA, was

collected on July 4, 2006, with the spatial size of 200 × 800.

Each pixel has approximately 3 m of ground resolution. Seven

types of targets, including four fabric panel targets and three

vehicle targets, were deployed in the region of interest. In our

experiment, we crop a subimage of size 100 × 300, including

all of these targets (anomalies) as depicted in Fig. 4.

The fourth data set3 was obtained from the Airborne Visible/

Infrared Imaging Spectrometer covering the Moffett Field, CA,

USA, at the southern end of the San Francisco Bay on August 20,

1992. This scene consists of 512 × 512 pixels [as shown in

Fig. 5(a)] with 224 bands spanning the wavelength interval of

0.4–2.5 μm. The spatial resolution is approximately 20 m. Here,

we implement global RX to find the anomalous pixels [41]

in the scene [as shown in Fig. 5(b)], where 59 anomalies are

identified when the threshold is set to 0.5 in Fig. 5(c), which

are used as ground truth for local detectors.

B. Detection Performance

In this section, we investigate the anomaly detection accuracy

of the proposed collaborative-representation-based algorithms.

The representation-based methods (and their acronyms) inves-

tigated in the experiments are summarized as follows:

1) representation without ℓ1-norm or ℓ2-norm minimization

as RD;

2) representation with ℓ2-norm minimization as CRD;

3) representation with ℓ2-norm minimization and distance-

weighted regularization matrix as CRD-DW;

2http://dirsapps.cis.rit.edu/blindtest/.
3http://aviris.jpl.nasa.gov/.



LI AND DU: COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION 1471

Fig. 10. For the HYDICE urban data. (a) ROC evaluation of different anomaly detectors. (b) ROC evaluation of the kernel RX and kernel CRD.

4) representation with ℓ2-norm minimization and distance-

weighted regularization matrix and sum-to-one constraint

as CRD-DW-STO.

First, we illustrate the effects of the regularization term and

window size using the first experimental data. The receiver

operating characteristic (ROC) [42] curves are employed. Fig. 6

shows the performance when the outer window size wout = 11,

the inner window size win = 3, and the regularization param-

eter is chosen as small as λ = 10−6 for CRD, CRD-DW, and

CRD-DW-STO. It shows that CRD-DW-STO outperforms all

other detectors, which is expected because the former adopts

the distance-weighting measurement, providing more flexibility

to obtain the weights. Compared to CRD-DW, CRD-DW-STO

provides more stable weight vectors, especially in heteroge-

neous areas. Fig. 7 further shows the parameters of window size

(wout, win) (e.g., (11, 3), (11, 5), etc.) for the proposed CRD-

DW-STO as well as the local RX algorithm. For optimal param-

eter selection, we further compute the area under the ROC curve

(AUC) to evaluate the performance of the proposed CRD-DW-

STO and local RX with varying window size (wout, win) and λ

as listed in Table I. From the results, it is obvious to observe that

the detection performance is insensitive to the regularization

parameter but sensitive to window size. The best window size

for this experiment is (11, 3). Thus, the regularization parameter

of the proposed CRD-DW-STO is fixed to λ = 10−6 in the

following experiments.

Then, we compare the estimated background images using

the RPCA, the SRD method (the ℓ1-minimization4 is im-

plemented by l1_ls.m), and the proposed CRD-DW-STO as

shown in Fig. 8. For CRD-DW-STO, we employ the same

parameter setting as the previous experiment. The parameters,

such as λ for both RPCA and SRD, are optimized in our

experiment. For visual comparison, Fig. 8 illustrates the back-

ground estimates as well as the residual images using these

different approaches for the HYDICE forest data set. From

the comparative results, it is evident that, for the 100th band,

4http://www.stanford.edu/boyd/software.html.

TABLE II
AUC (IN PERCENT) PERFORMANCE OF THE PROPOSED CRD-DW-STO

AND LOCAL RX WITH VARYING WINDOW SIZE (wout, win)
AS WELL AS λ FOR THE HYDICE URBAN DATA

TABLE III
AUC (IN PERCENT) PERFORMANCE OF THE PROPOSED CRD-DW-STO
AND LOCAL RX WITH VARYING WINDOW SIZE (wout, win) FOR THE

HYMAP IMAGE DATA (VIEWING “F1” TARGET AS ANOMALIES)

the RPCA, SRD, and CRD-DW-STO methods exhibit similar

performance; however, for the 60th band, the estimated residual

images of RPCA and SRD are not as good as that of CRD-

DW-STO. Specifically, our proposed CRD-DW-STO method

can better suppress background in the upper area of the scene.

Next, we evaluate the detection performance of our proposed

CRD-DW-STO detector, comparing with conventional global
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Fig. 11. For the HyMap image data. (a) ROC evaluation of different anomaly detectors viewing “F1” target as anomalies. (b) ROC evaluation of different
anomaly detectors viewing all of the targets as anomalies.

RX, local RX, RPCA, and SRD. According to empirical search-

ing, for the HYDICE forest data, window size (wout, win) is set

to (11, 3). Fig. 9 illustrates their ROC curves for the HYDICE

forest data set. In Fig. 9(a), an important observation is that the

local RX outperforms the global RX and RPCA. Compared to

the local RX, the proposed CRD-DW-STO exhibits a slightly

lower probability of detection for a high false alarm rate (e.g.,

when the false alarm is 0.006–0.007); however, the overall

detection performance of the proposed detector is still better.

A nonlinear version of the proposed CRD (i.e., kernel CRD)

has been further compared with the traditional kernel RX [22]

as illustrated in Fig. 9(b). As indicated in [22], the value of

parameter γ is usually large for the RBF kernel, and in our

work, the value of γ is determined experimentally and is set

to 20. We observe that the kernel CRD outperforms three other

algorithms (i.e., the kernel RX, proposed CRD-DW-STO, and

local RX), especially when the false alarm rate is from 0.0005

to 0.002. Furthermore, the AUC (in percent) values for these

four detectors are 99.92, 99.87, 99.86, and 99.73, respectively.

For the HYDICE urban data, the detection performance is

illustrated in Fig. 10. The proposed CRD-DW-STO exhibits

a slightly lower probability of detection when the false alarm

is lower than 0.005, while the AUC value is still the largest

one among all of the detectors. According to Table II, the

best performance of CRD-DW-STO can be achieved when λ =
10−6 and the window size is (15, 7). The parameters of window

size (wout, win) are set to (15, 7) for the local RX and SRD after

extensive searching. In Fig. 10(a), it is interesting to notice that,

for the HYDICE forest data set, CRD-DW-STO has a lower

probability of detection in the high false alarm rate region than

the local RX; however, for the HYDICE urban scene, CRD-

DW-STO has a lower probability of detection in the low false

alarm rate region than RPCA and SRD but outperforms the

local RX in general. The performance between the kernel CRD

and the kernel RX is illustrated in Fig. 10(b). For these data,

the value of kernel parameter γ is set to 50. It is obvious that

the kernel CRD outperforms CRD-DW-STO, the kernel RX

Fig. 12. For the Moffett Field data, ROC evaluation of different anomaly
detectors.

outperforms the local RX, and the kernel CRD has the best

detection performance. The AUC (in percent) values for these

four detectors (i.e., the kernel CRD, kernel RX, proposed CRD-

DW-STO, and local RX) are 99.87, 97.32, 99.69, and 94.93,

respectively, which confirms that the proposed methods (i.e.,

CRD-DW-STO and kernel CRD) can outperform the traditional

detectors.

For the third HyMap data set, anomaly detection is relatively

more difficult. We evaluate the detection performance using the

HyMap subimage (i.e., 100 × 300). According to Table III,

the optimal window size is (15, 9) for CRD-DW-STO using

these data. Here, the window size is set to (17, 9) for both

local RX and SRD. The optimal λ is 10−6. Fig. 11(a) illustrates

the detection performances for the HyMap image viewing only

“F1” target as anomalies. It can be seen that the proposed

CRD-DW-STO offers a better result than all other detection

methods; for example, in Fig. 11(a), when the false alarm rate
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TABLE IV
AUC (IN PERCENT) PERFORMANCE OF THE PROPOSED CRD-DW-STO

AND LOCAL RX WITH VARYING WINDOW SIZE (wout, win)
FOR THE MOFFETT FIELD DATA

TABLE V
EXECUTION TIMES (IN SECONDS) FOR ALL

OF THE EXPERIMENTAL DATA SETS

is 0.2, the probability of detection is 0.82, which is much

higher than others. Fig. 11(b) further shows the detection per-

formances for the same scene viewing all of the various targets

as anomalies. Again, the proposed CRD-DW-STO apparently

performs the best.

For the Moffett Field data, Fig. 12 illustrates the detection

performance of three local detectors. The reason of only consid-

ering local detectors is that the ground-truth map is obtained by

a global detector (i.e., global RX) [41]. According to Table IV,

the best performance of CRD-DW-STO can be achieved when

the window size is set to (15, 3). In this test, λ is 10−6, and the

window size is set to (13, 9) for the local RX and (15, 3) for

SRD. In Fig. 12, the proposed CRD-DW-STO exhibits better

performance than SRD and local RX. The AUC (in percent)

values for these three detectors are 97.84, 92.32, and 82.82,

respectively.

Finally, we report the computational complexity of the afore-

mentioned detection methods. All experiments were carried out

in MATLAB on an Intel Core 2 Duo CPU machine with 4 GB of

RAM. The execution times for the experimental data are shown

in Table V. At this point, it is important to notice that the local

RX and CRD-DW-STO are computationally more expensive

than the global RX as expected. Note that the downloaded

RPCA code uses the MEX function which calls C program in

MATLAB.

IV. CONCLUSION

In this paper, we have proposed a novel collaborative-

representation-based anomaly detection algorithm as well as its

kernel version for a hyperspectral image. To estimate the back-

ground, each pixel is approximately represented via a linear

combination of surrounding samples within a sliding dual win-

dow. The weight vector of combination, based on the distance-

weighted Tikhonov regularization, has a closed-form solution

under the ℓ2-norm minimization. The anomalies are calculated

from the residual image which is obtained by subtracting the

predicted background from the original hyperspectral data. It

is demonstrated that the proposed CRD-DW-STO and kernel

CRD provide excellent detection performance with low com-

putational cost and outperform other algorithms, such as the

global RX, local RX, kernel RX, RPCA and SRD, for several

real experimental data.
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