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In the verification community it is now widely accepted that, in particular for
large programs, verification is often incomplete and hence bugs still arise in deployed
code on the machines of end users. Yet, in most cases, verification code is taken out
prior to deployment due to large performance penalties induced by current runtime
verification approaches. Consequently, if errors do arise in a production environment,
bugs are hard to find, since the available debugging information is often very limited.

In previous work on tracematches [1], we have shown that in many cases runtime
monitoring can be made much more efficient using static analysis of the specification
[2] and program under test [3]. Most often, the imposed runtime overhead can be
reduced to under 10%. However, the evaluation we performed also showed that
some classes of specifications and programs exist for which those optimizations do
not perform as well and hence large overheads remain. According to researchers in
industry [5], larger industrial companies would likely be willing to accept runtime
verification in deployed code if the overhead is below 5%. Hence, additional work is
required in order to make runtime verification scale even better.

In this work, we tackle this problem by applying methods of remote sampling [4]
to runtime verification. Remote sampling makes use of the fact that companies which
produce large pieces of software (which are usually hard to analyze) often have access
to a large user base. Hence, instead of generating a program that is instrumented
with runtime verification checks at all necessary places, one can generate different
kinds of partial instrumentation (“probes”) for each such user. A centralized server
then combines results of all runs of those users. This method is generally very flexible.
In particular, we see the following advantages over a complete runtime verification.

Less runtime overhead per user. The program each user runs is only partially
instrumented and hence the instrumentation overhead can be kept to a moderate
level.

Better coverage of relevant paths. In order for runtime verification to be com-
plete, perfect path coverage is necessary. In general, this is nearly impossible to
achieve. If instrumentation could be dynamically adapted, it could be focused
on paths that are actually being executed during users’ program runs.

Assigning priorities. Similarly, usage data could be used to assign priorities to
bugs that are triggered by many users.

Automatic analyses. The server that receives the event data in the end can apply
arbitrarily sophisticated analyses on the received data and automatically attach
this information to a bug report. This is in contrast to existing error reporting
systems, which are mostly operated manually.



In this work we focus on the first part, reducing the runtime overhead, and
present experiments for providing such an infrastructure based on static compila-
tion of tracematches. Since tracematches allow for per-object specifications via free
variables, special attention has to be paid to object bindings. Using a flow-insensitive
whole-program analysis proposed in [3], we obtain groups of related instrumentation
points which need to be triggered at runtime in order to obtain a property viola-
tion. Each probe is defined as such a set of instrumentation points. We extended
our compiler such that each probe is guarded by a Boolean flag whose status can be
dynamically changed.

As we will show, it is safe to freely enable and disable probes while still preserving
the correct tracematch semantics. In general, this approach gives up completeness,
though. Hence, we explain how techniques from Liblit et al. [4] can be used to express
probabilities with which a given piece of software is correct if no errors are detected.
In the situation where there exist at least as many users as different probes and
if probes are evenly distributed amongst those users, this probability can amount
up to 100%. In those cases no precision is lost with respect to a fully instrumented
program.

In order to prove the feasibility of our approach, we applied our modified compiler
to some of our largest benchmarks from previous evaluations [3]. Our results show
that in many cases, the instrumentation overhead can indeed be lowered from as
much as 250% to less than 10% (for each user). We also identified two possible
sources of problems. As mentioned in [3], under some unfortunate circumstances
(imprecise points-to sets, very long-lived objects) probes can become larger than
usual. Consequently, in those cases the instrumentation overhead per user might be
higher. Secondly, the reconfigurable instrumentation which we statically insert may
impede other static optimizations due to the introduction of a more complicated
branching structure. We discuss approaches to overcoming those problems as well
as the possibility of dynamic reconfiguration of probes on the level of a Java virtual
machine.
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3. Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program analy-
sis to improve the performance of runtime monitoring. Technical Report abc-2006-4,
http://www.aspectbench.org/, 12 2006.

4. Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via re-
mote program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation, San Diego, California, June 9–11
2003.

5. Wolfgang Grieskamp (Microsoft Research), January 2007. Personal communication.

2




