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Abstract—Due to the limited power constraint in sensors, dynamic scheduling with data quality management is strongly preferred in

the practical deployment of long-term wireless sensor network applications. We could reduce energy consumption by turning off (i.e.,

duty cycling) sensor, however, at the cost of low-sensing fidelity due to sensing gaps introduced. Typical techniques treat data quality

management as an isolated process for individual nodes. And existing techniques have investigated how to collaboratively reduce the

sensing gap in space and time domain; however, none of them provides a rigorous approach to confine sensing error is within

desirable bound when seeking to optimize the tradeoff between energy consumption and accuracy of predictions. In this paper, we

propose and evaluate a scheduling algorithm based on error inference between collaborative sensor pairs, called CIES. Within a node,

we use a sensing probability bound to control tolerable sensing error. Within a neighborhood, nodes can trigger additional sensing

activities of other nodes when inferred sensing error has aggregately exceeded the tolerance. The main objective of this work is to

develop a generic scheduling mechanism for collaborative sensors to achieve the error-bounded scheduling control in monitoring

applications. We conducted simulations to investigate system performance using historical soil temperature data in Wisconsin-

Minnesota area. The simulation results demonstrate that the system error is confined within the specified error tolerance bounds and

that a maximum of 60 percent of the energy savings can be achieved, when the CIES is compared to several fixed probability sensing

schemes such as eSense. And further simulation results show the CIES scheme can achieve an improved performance when

comparing the metric of a prediction error with baseline schemes. We further validated the simulation and algorithms by constructing a

lab test bench to emulate actual environment monitoring applications. The results show that our approach is effective and efficient in

tracking the dramatic temperature shift in dynamic environments.

Index Terms—Collaborative scheduling, duty cycle control, energy efficient, neighbor error control

Ç

1 INTRODUCTION

WIRELESS Sensor Networks (WSNs) have found applica-
tions in a wide range of problems, from military

surveillance to environmental monitoring, disaster relief,
and home automation. In spite of their broad utility, energy
efficiency remains a critical challenge because many WSNs
nodes are normally equipped with limited power sources.
As is well known, one of the major sources of power
consumption is the energy cost of sensing activities. If
working continuously, a sensor node can typically sustain

only a few days. On the other hand, long-term applications
[2] are normally required to last for weeks or even months.
Therefore, unnecessary sensing activities should be avoided
to extend the lifetime of sensor networks. The discrepancy
between limited resources and stringent requirements
makes it necessary to develop scheduling protocols to turn
on and off (i.e., duty cycle) sensors to conserve energy.
Dynamic sensing scheduling is an effective method to
reduce sensing activities and thereby improve network
energy efficiency. Especially a collaborative way between
nodes is relevant when the node sensors are needed to
monitor a dynamic environment.

There is a great amount of research work on collabora-
tive sensing [3], [4], [5], [6], [7]. Most of these projects focus
on how to efficiently select or deploy a minimum set of
sensor nodes to provide a full/partial spatiotemporal
coverage. We note this work determines sensing activities
of nodes based on coverage requirements in space and/or
time. None of them focuses on how to schedule sensing
activities based on sensing error, and hence fails to provide a
rigorous approach to confine data accuracy within desirable
bounds when seeking to optimize the tradeoff between
energy consumption and accuracy of predictions.

Our work incorporates the advantage of both dynamic
scheduling and sensors collaboration, seeking to optimize
the tradeoff between energy consumption and accuracy of
predictions. By taking a completely different approach, we
schedule sensing activities based on two types of informa-
tion: 1) local estimated error and 2) inferred error from
neighbor nodes. A node turns on its sensors when either
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error type exceeds a user specified error tolerance. The
major challenge in our design is how to determine neighbor
nodes’ potential risk of violating the data accuracy require-
ment while minimizing the energy consumption. Our
design has several major advantages over existing single-
node scheduling methods [8]: 1) nodes can share sensing
error information and process it with limited resources,
2) nodes can collectively control sensing errors through
neighborhood coordination, and 3) a network can respond
to dramatic environmental changes more quickly, which
property is desirable in environment monitoring applica-
tions. Meanwhile, as our approach targets the long-time
duration monitoring application, the general sensing cover-
age service [7], which requires minimum coverage for an
interested sensing region, can be satisfied through neigh-
bors’ error inference mechanism that will trigger neighbors
to be activated when necessary.

We investigate a sensing-scheduling algorithm, called
collaborative inferred error sensing (CIES), focusing on mon-
itoring applications such as habitat monitoring in which
high sensitivity to rapid environment change is desired. It
can provide high data accuracy while minimizing the
amount of energy used. Specifically, our design exploits
neighbor node coordination to reduce possible violations
against sensing fidelity requirements. The driving idea of
our work is error inference, where the term error is defined as
the difference, in percentage, between the ground truth
environmental data and the corresponding value generated
by the predictor of sensor nodes, which is a direct
performance indicator of the sensor system. The error
information is not only used by the local sensing scheduler,
but is also shared among neighbors. Nodes can trigger
additional sensing activities of other neighbor nodes when
the inferred error has aggregately exceeded the error
tolerance. We refer to our proposed approach as CIES.

The main contributions of this work are:

. The design of a local error control algorithm to
guarantee a specified error bound.

. The introduction of a distributed inference model of
prediction error for neighbor nodes.

. The integration of both local and neighbor error
control into a unified architecture to adjust duty
cycles of sensor nodes.

. The simulated study and test-bed implementation
of the proposed design that conserves as much as
60 percent of energy compared to other solutions,
while confining sensing error within specified
error tolerance.

The remainder of this paper is organized as follows: We
present the overview for our design in Section 2. Sections 3
and 4 describe the details of the error control mechanisms.

The performance evaluation is presented in Section 6.

Section 7 surveys the related work and Section 8 concludes

the paper.

2 OVERVIEW AND OBJECTIVES

This section presents an overview of our CIES. We first

present the network model and assumptions of the work,

then describe the overall system design.

2.1 Network Model

Assume a wireless sensor network is composed of N sensor

nodes. Each sensor node has two states: an active state and
a dormant state. An active node performs all functionalities,

such as sensing events, transmitting packets, and receiving

packets. A dormant node turns off most functional modules

except the radio for listening to incoming traffic. All nodes

have their own schedules that are controlled by the duty

cycle controller on the nodes. A dormant node wakes up
when 1) it is scheduled to switch the an active state, or 2) it

receives triggering packets from neighbors and decides to

change into the active state.

2.2 Assumptions

We assume that we use off-the-shelf sensor node products

[9]. Without loss of generality, in our design and imple-

mentation, sensor nodes are homogeneous and can be

distributed as a random process. We also assume that in our
target sensing platforms, sensing is much more expensive

than communication, so that it is necessary to coordinate

sensing activities among neighbor nodes for better energy

efficiency. Certainly, this assumption does not hold for all

platforms, but it does apply to a few existing ones. For

example, the magnetometers used in the MICA sensor
boards and XSM nodes draw about 90 mA of current, as

compared to 6 mA for the ATmega128L microcontroller and

12 mA for the transceiver [10]. For clearer description, we

summarize a breakdown of energy cost for different

components on sensor node in Table 1. This assumption

also holds well in platforms where expensive sensors (e.g.,
camera [11] and micro-power-impulse radar (MIR) [12])

and low-power-listening techniques [13] are used.

2.3 Motivating Example

A simple example is used to illustrate the basic idea of CIES.

Fig. 1 shows an example with a node set G ¼ f1; 2; 3; 4g.

1. After deployment, nodes 1, 2, 3, and 4 initialize their
local error control operation processes and neighbor
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TABLE 1
A Breakdown of Energy Cost for Different

Components on Sensor Node

Fig. 1. Initial operation graph.



error-control procedures independently. Node 1 has
neighbor nodes 2, 3, and 4 as shown in Fig. 1.

2. In one sampling time duration, nodes 3 and 4 are
initially in full operation (in light color as shown in
Fig. 1). Nodes 1 and 2 are scheduled to be in a sleep
mode, within which mode their radio is switching
on and off periodically to monitor traffic.

3. When there is a dramatic change in the environment,
nodes 3 and 4 calculate their inferred errors on node
1 to be 90 and 66 percent, respectively, as shown in
Fig. 2. These error estimations from node 3 and 4 are
sent to node 1. Because both nodes 1 and 2 are in
sleeping mode, there is no message exchange
between them.

4. After receiving the inferred error messages from
nodes 3 and 4, node 1 evaluate the weighted average
inferred error to be 80 percent. Then, it determines
whether error tolerance is violated. If the error
tolerance in this simple example is 30 percent, node
1 is awakened immediately after the sampling time
duration because the calculated weighted inferred
error is larger than the threshold.

5. The operational modes of these nodes are indicated
in Fig. 3.

From this simple example, we have the following
observations. First, CIES exhibits great potential as for
reducing error rates due to rapid environmental change.
Compared to sole prediction as in eSense [8], CIES improves
the capability for sensor collaboration. Second, the predic-
tion model and data observation correlation among nodes
are critical, and distributed algorithms are required.

2.4 A Walk-Through of the Basic Operating
Procedures

In this section, we overview the collaborative scheme of our
design using a walk-through example, and the details are
given in Section 1 of the supplementary file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2013.28.

2.5 Objective and Challenge

As illustrated by above walk-through, CIES exploits
neighbor collaboration in the event detection, thus showing

a unique potential for reducing errors in environment
monitoring applications. Compared to other local error
control schemes [8], CIES extends the error control from
local node level to the network level, setting the foundation
for more complex applications.

The main objective of this work is to develop a generic
scheduling mechanism for collaborative sensors to achieve
error-bounded scheduling control in monitoring applica-
tions. The fundamental challenge in our design is how to
reconcile the conflict between energy consumption and error
tolerance. To achieve high accuracy of measurements for
highly dynamic environments among collaborating sensor
nodes, optimized approaches to accurately determine the
inferred errors between neighbor nodes are investigated.
At the same time, to minimize energy consumption, the
minimum duty cycle needs to be determined.

3 LOCAL ERROR CONTROL

The design of the local error control is motivated by the
observation that a sensor node should be able to achieve
the desired sensing fidelity independently even in isola-
tion. Therefore, the data detected and stored locally should
also be fault tolerant, a goal that is achieved by the local
error control.

For convenience, we refer to the local error control as
Noncollaborative IES, which consists of the duty cycle control
and local error predictor as shown in Fig. 4. To save energy,
a sensor node uses its local error predictor to predict the
environment status without performing actual sensing
operation. When data are obtained through actual sensing,
a node compares predicted sensing values with the actual
sensing values, and then stores the prediction errors into the
local error data library. Based on the accuracy of the local
error predictors, the duty cycle controller adjusts the
sensing frequency through error bound control, which serves
to confine the system prediction error within a user
specified bound.

3.1 Local Error Predictor

To conserve their limited power supply, sensors do not
continuously sense data. Instead, they operate at some
selective cycles as long as the data quality is acceptable. The
data in the remaining cycles are reconstructed through
appropriate prediction models. If the environment exhibits
cyclic patterns, an empirical model is used to establish
strong correlations in the data and to organize them in a
certain way so that future data can be extracted from the
empirical or historical ones.
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Fig. 2. The computation of weighted inferred error.

Fig. 3. The initial and final operational modes.

Fig. 4. The local error control layer illustration.



Depending on system lifetime and the data fidelity
requirement of an application, the empirical model can be
constructed in different ways. Similar to the work of [14],
we developed a cycle-based empirical model [15], which
has been proven to be efficient for environment monitoring
applications. The error predictor is mainly responsible for
generating prediction errors, defined as ei, for each node i.
Our preliminary experiments of temperature measure-
ments, as shown in Figs. 5 and 6, demonstrate that the
error predictor can adapt to the environmental changes
sufficiently well.

Since the energy resource on individual sensor nodes is
limited, empirical model in this application domain can
simplify data processing, and thus extend the lifetime of
sensor nodes. However, the model selection can be flexible,
and the duty cycle controller can adapt the system to the
relative error induced by different prediction models. More-
over, the local error predictor provides a reliable reference
for duty cycle controller to perform further analysis.

3.2 Duty Cycle Controller

The duty cycle controller receives and analyzes the
prediction errors from the local error predictor. The first
step in designing the duty cycle controller is modeling
sensing behavior of the system mathematically to derive the
relationships among the local prediction error, the current
duty cycle, and system requirements. In this design, we
separate the controller into the error analyzer and duty
cycle adaptor, two processes that can run collaboratively.

3.2.1 Error Analyzer

We determine the error analyzer theoretically as follows:
We assume that the sensing baseline consists of N data
cycles, in which k warm-up cycles are used for building
controller models. In each cycle, the probability that a
sensor node performs actual sensing operation is defined
as sensing probability pi. To simplify the description,
without loss of generality, instead of considering energy
cost spent on different components, (e.g., sensing and
processing), we use average energy consumption to
represent the total energy cost of a node to sense, process
and communicate in each sensing period. Let the average
energy consumption for sensing be Ea. When a sensor is
inactive, it does not sample the environment; instead, it
uses the local predictor to estimate sensing readings, which
introduces prediction errors. Let the potential prediction
error at each cycle be ei. And let the maximum prediction
error tolerance specified by a user be et. Therefore, the goal

of our design is to minimize the energy consumption
during each baseline period:

E ¼
X

k

i¼1

Ea � ti þ
X

N�k

i¼1

pi � Ea � ti; ð1Þ

under the constraint that

PN
i¼1

1� pið Þ � ei
N

¼

PN
i¼k ð1� piÞ � ei

N
� et; ð2Þ

where ti is the unit cycle length, k is the length of cycles used
to stabilize the scheduling system andN represents the total
length of operational cycles . The constraint enforces that the
potential statistical error caused by the prediction is smaller
than the error tolerance. The range of possible values of pi is
bounded to satisfy the constraint equation.

The minimization of energy consumption deals with
several key issues, for example, the length of the training
cycle and the prediction model used. Now the problem is to
determine the appropriate pi for a given error range ei
obtained from past data values. To solve for sensing
probability pi at a specific ei requires a joint distribution
of a process for ei at specific time instance or period. This
requires a heavy computation and storage overhead on the
limited resource of the sensor node. Obtaining a solution for
sensing probability pi is extremely difficult to calculate
during transitions. Instead, we introduce a lightweight
method for computation which allows the sensor to choose
a value within a range. We first determine the bound for
sensing probability pi, and the algorithm chooses one value
within that bound.

It should be clear that with a higher value of sensing
probability pi, larger energy consumption is needed. With a
lower value of sensing probability pi, a higher probability is
for the error because the prediction result is greater than the
tolerance. Therefore, we need to analyze the bound of
sensing probability pi to optimize this tradeoff.

3.2.2 Determining the Sensing Probability Bound

We use a bottom-up approach to set a bound for the sensing
probability. That is, if we do not violate the error constraint
in every cycle instance, it is certain that the inequality (2)
holds. As noted, this sets a stricter requirement than the
constraint equation over all sampling instances. By doing
so, our probability constraint problem can be simplified into
choosing the pi at each scheduling cycle to satisfy the
constraint on ð1� piÞ � ei, which can be solved as
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Fig. 5. The preliminary temperature measurement experiments. Fig. 6. An example of output from predictor (error tolerance 10 percent,
x-axis is the time-stamp).



plbi ¼
0 0 � ei � et

1�
et

ei
et � ei � 1

(

ð3Þ

The plbi is the lower bound of pi that guarantees data
quality requirement at each sensing cycle instance. Only
values higher than this assure that the constraint require-
ment would not be violated under any circumstances. We
should also be careful in the selection of pi, as a higher pi
implies more energy consumption by the sensor node.

We also note in (3) that the lower bound plbi is affected by
the prediction error ei. A large prediction error ei imposes a
higher bound, leading to high energy consumption. The
critical issue is to reduce this prediction error ei. Clearly it
can be achieved with a better prediction model; however,
individual nodes are limited in their ability of sensory
measurements and collaborative schemes usually prove
better [16], [17]. Therefore, we need online method to
improve error control, which is achieved through the
network error control described in next section.

4 NETWORK ERROR CONTROL

In this section, we present the design of network error
control as shown in Fig. 7. Recall in our analysis, in
Section 3.2.2, it is essential to predict the neighbors’ model
prediction error accurately and to share such information
among them effectively. To ensure the accuracy of such
prediction and information sharing, we assign tasks to two
processes: 1) neighbor error predictor, 2) neighbor error
controller. The process running on this network control
layer is named collaborative IES, which aims to maximize the
energy saving and minimize the prediction error of the
sensor system.

Before further discussion, we define several terms used
to describe the processes.

Definition 1 (Inferred Error eijeij). Given a node i and its
neighbor node j, the node-pair inferred error eij is defined as
the inference error at neighbor j from the point view of node i.

Definition 2 (Node-Pair Weight wijwij). The weight is defined as
the extent of a node-pair’s data correlation and indicates how
similar the sensing observation is between two neighbor nodes
i and j.

Definition 3 (Error Probability Density Function �ðeÞ�ðeÞ). The
error PDF is a collection of distributions of detection errors in

which the past detection errors for sensors are stored and
processed so that the detection errors can be directly linked to
corresponding occurrence probability. The neighbor nodes
exchange the error PDF locally. We can easily derive its
statistical accrual error probability mass function( PMF) once
the PDF is given.

4.1 Design of Neighbor Error Predictor

Since the neighbors can change dynamically, we need to
iteratively estimate the neighbors’ prediction error, given a
certain relationship among neighbors.

Step 1: Neighbor Recognition. The control process starts
with neighborhood discovery. During this phase, the
sensors acquire the knowledge that which close sensors
around them can build up a “trust” relationship, which can
be characterized as node-pair weights. The formation of
neighborhood may be based on different requirements such
as vicinity, link quality or the displacement along the
routing path of the sensing data. In this stage, each node
recognizes its neighbor nodes and assigns a table for each
neighbor to build the weight graph. Note that the
neighborhood formation is a dynamic process which is
refreshed after a defined period. By the end of this process,
sensors recognize their neighbors and data storage struc-
tures created for neighbors are also initialized.

Step 2:Weight Graph Construction.As pointed in our earlier
assumptions, nodes are synchronized with each other [18],
[19], [20], and Ttrain, the time for initialization, is divided
into equal time durations Tbuild, as shown in Fig. 8. Each time
duration includes m equal duration intervals, where an
interval is a unit sample time period set by the user.

For each round, each node Ni stores its observation
vector foi

1
; oi

2
; . . . ; oimg obtained through discrete sampling

at Ti ¼ fti
1
; ti

2
; . . . ; timg. At the end of each round, each node

exchanges the observation vector, which is used to calculate
the correlation between nodes. This process is repeated
until the end of Ttrain, so that the average sensing correlation
between nodes can be estimated.

Specifically, we use an approach to calculate data
correlation between two observation vectors Cði; jÞ by
node Ni and node Nj, and also the weight value wði; jÞ
among nodes, as reported in Section 2.1 of the online
supplemental material.

Step 3: Achieving the inferred error eij for neighbors. The
control of sensing errors in the network is further guaranteed
by the collaboration of neighbor nodes. The observations that
sensor nodes demonstrate spatial correlations found in [21],
[22], [23] are also supported by our preliminary experiments
described in Section 3. The measurement distributions of
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Fig. 7. The network error control layer illustration.

Fig. 8. The process of correlation calculation.



collaborative nodes have the same confidence level. Moti-
vated by such observations, we can predict error of neighbor
nodes using local prediction error. That is, an active sensing
node, by comparing its real-time sensing values with
corresponding predicted values, can infer the prediction
errors of correlated neighbor nodes. In this way, our
neighbor-error inference scheme ensures real-time tracking
and quick response to the error status change within a
sensing group. The process can be summarized as follows:

. At a sampling cycle m, assuming sensor i is active in
sensing and computation, we can easily calculate the
observation error emi at source node i based on the
difference between actual sensingdata andprediction
values that are generated by our prediction model.

. From its error probability density function �ðxÞ, node i

evaluates the cumulative distribution function
PMF iðe

m
i Þ as in (4). From this result, we can infer

the statistical confidence level of the worst error
occurrence at node i as

PMFi emi
� �

¼

Z em
i

�em
i

� xð Þdx: ð4Þ

. Upon obtaining the PMFi, the active sensor node i

calculates the inferred error of a neighbor sensor j,
based on PDF information of sensor node j. Given the
neighbors errormodels, an iterative step isperformed:

eij ¼ PMFj
�1 PMFi t k½ �ð Þð Þ; ð5Þ

and the variable t½k� is expressed as

t½k� ¼
2 � t½k� 1� PMFjðt½k� 1�Þ < PMFi

�

emi
�

t½k�1�þt½k�2�
2

PMFjðt½k� 1�Þ > PMFi

�

emi
�

;

(

ð6Þ

in which PMF�1ðÞ is the inverse function of PMF

and t½0� ¼ 0; t½1� ¼ emi . The iterative process does not
stop until PMFj ðt½k� 1�Þ ¼ PMFiðe

m
i Þ.

Two examples of the inferred error computation process
are given in Section 2.2 of the online supplemental material.

4.2 Neighbor Error Control

After estimating the error value for neighbor sensor j,
sensor i sends the inferred error eij to neighbor error control
process where the error information is sent and received.
The neighbor error control process monitors the channel
through which its neighbors send error information. To
minimize the false positive risk, a weighted average
approach is adopted in this design.

Definition 4 (Weighted Average Inferred Error). Given a
neighborhood GðV ;EÞ, a sensor j’s weighted average inferred
error ej is the weighted average of all node-pair inferred errors,
i.e, edj, where d and j are a neighborhood pair.

The weighted average error ej is obtained according to
the following rationale. Node-pairs provide different in-
ferred errors due to correlation relationships or other
influences. Pair inferred errors have a specific weight value

based on their degree of similarity. A higher weight value
means a higher probability for data similarity. Therefore,
the sensor platform must take this into account when
determining whether the sensor needs to adjust its current
operating status. Based on our observation, the inferred
error can be expressed as

ej ¼

P

k ekj � wkj
P

wkj; k 2 NðjÞ
; ð7Þ

where k is size of the neighborhood of the node j, w is the
node-pair weight, and NðjÞ is the neighborhood list of node
j. As shown in Fig. 4d of the online supplemental material,
sensor node j receives several isolated error estimations
from neighbor sensors i, l, and q. The ej should be viewed as
a total effective contribution from all the neighboring
inferred errors on a weighted basis. Apparently if one
sensor detects that the estimation error currently violates
the error threshold, its neighbor nodes having a high weight
value are expected to experience a high risk of violating the
data accuracy as well.

The process that should be executed during all phases of
operation is described in Algorithm 1 as given in Section 3
of the online supplemental material.

5 INSIGHT OF IES AND CIES SYSTEM

We investigate some insights of IES and CIES system, such
as sensor lifetime estimation based on IES and the analysis
of node density to the performance of CIES, which details
are given in Section 4 of the online supplemental material.

6 EVALUATION

To evaluate, we develop a simulation program that uses
historical soil temperature data. The temperature data
were collected from the Wisconsin-Minnesota Cooperative
Extension Agricultural Weather Page [24] where the soil
temperature is monitored continuously, sampled twice per
hour, 24 hours per day, for over 10 years. This data set is
large enough to reduce sampling randomness, allowing us
to verify our algorithm and investigate the impact of
different configurations on the performance of energy
conservation and error control. In our experiments, we
use randomly deployed sensors in a square area of
200 m� 200 m. We define a pair of nodes as neighbors
when their distance is less than 20 m. Moreover, we use a
diffusive model to fill up the simulation environment, in
which we consider the environment as a homogeneous
semi-infinite medium. Various benchmark approaches such
as the fixed-probability sensing scheme are simulated to
generate the metric data.

6.1 Metrics and Baseline

To evaluate the scheduling quality of a sensor network, we
define metrics as follows:

. Error Rate: This metric is defined as the error rate
that the prediction system produces during the same
observation window.

. Miss Ratio: This metric is defined as the ratio that the
sensor system fails to respond to an event, for
example, a rapid change in environment.
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. Energy Consumption: This metric is defined as
the total energy consumed by the network during
the operation period.

The sensing schemes proposed are assessed using the
above metrics with respect to different system parameters,
for example, the error tolerance. Through these examples,
comparison between different benchmarks and our pro-
posed CIES is used to demonstrate the performance of
our design.

6.2 The Mechanism of Our Error Bounded
Approach

One of the benefits of this adaptive and collaborative
approach is that it tries to reduce the average error for the
entire operation period. The stricter guarantee is that it
limits the error at each sampling instance, which enhances
the system performance. The difficulty in limiting the errors
is to determine when to switch on the sensors whenever
there is a dramatic change in the environment. Our
approach achieves this by relying upon both local and
network error control mechanisms. Local error control can
guarantee the error bound when model-based prediction
works well. However, when environments experience
dramatic changes, model-based prediction no longer works.
In such scenario, the network error control mechanism
relies on active nodes to trigger inactive nodes, when the
inferred error of the inactive nodes exceeds the bounds.

As shown in Fig. 9, when environment temperature
experiences corner-like change, sensing activities becomes
more intensive than other sampling periods. This is because
the network error control triggers more nodes to start
sensing to avoid violation of the error bound.

6.3 The Impact of Training Period Length

In this experiment, we evaluate the influence of different
length of training period on the error rate and on the energy
conservation. When the node starts sensing, an initialization
period is required to build both the correlation table and the
prediction model. The accuracy of the prediction model
depends on the sample sizes of data feed into the model
constructor. As we can see in Fig. 16, the error rates
decrease as the length of the training period become longer.
The results become more obvious as the error tolerance et is
larger. This can be explained in that the scheduling
algorithm has more flexibility to adjust the duty cycle as
the error tolerance gets larger. Notice that the energy

consumption also increases with the increase of training
period length. According to our experiment, the energy
consumption increases from 27 to 38 percent as the length of
training period goes from 2.3 to 12 percent during the
simulation. As a result, the system exhibits a tradeoff
between data accuracy and energy conservation.

6.4 The Detailed Analysis of Neighbor Error Control

In the first example, there are only two sensors adjacent to
each other. This example shows the performance of the
simplest case of CIES.

Fig. 10 illustrates the error performance of noncollabora-
tive and collaborative CIES. Over error tolerances, we can
see that both approaches can satisfy the error performance
requirement. However, under the collaborative CIES
scheme, the error rate is at least 20 percent less than with
stand-alone IES.

Fig. 11 demonstrates the metric of miss ratio for stand-
alone IES and CIES. In the extreme region, (i.e., the error
tolerance is 10 percent), the miss ratio is about 25 percent
less with the collaborative information. The purpose is well
demonstrated here.

Fig. 12 demonstrates the energy consumption for both
schemes. Compared to the 25 percent error rate improve-
ment in CIES, the additional energy consumption is small
as the maximum difference between the two schemes is
only 5 percent.

From the above three figures, we can conclude that the
CIESmethod is superior to the stand-alone IES scheme with
slightly more energy consumption. This cost can be traded
for the reduction in miss ratio, which has been considered
important in certain monitoring applications [2].

6.5 The Impact of Node Density

In the second example, we raise the node density to 20 and
investigate the effect of node density to performance
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Fig. 9. The sample of sensor activities.

Fig. 10. The error performance with different error tolerance.

Fig. 11. The miss ratio with different error tolerance.



metrics. Figs. 13, 14, and 15 show the error rates associated
with each approach. Compared to the results in Fig. 10, the
error rates are dramatically reduced while the gap between
the two schemes is increased. This is expected because
there is greater chance for the sensor to be awakened by
neighbor nodes.

From the miss ratio performance result, we can draw a
similar conclusion. The miss ratio is reduced almost by
45 percent for different levels of error tolerance. This shows
the validity of collaborative IES.

However, as shown in Fig. 15, the energy consumption is
slightly higher but still acceptable considering the improve-
ment in miss ratio. It is the application’s choice to balance
the tradeoff between energy consumption and other
performance metrics.

We also compare the performance of our approaches to
the state-of-the-art eSense approach [8] (eSense has only
local error control) and an additional benchmark. The
benchmark is to set with a random 50 percent probability
rate for Pm for each time instance m. We implement the
principle of eSense to control the probability for miss ratio
performance into our simulation system. The performance
results of all approaches are demonstrated below:

. The error rate comparison. The error performance is
demonstrated inFig. 17.Aswe can see, the benchmark

is not affected too much by the setting of error
tolerance. Although the error rate for eSense does not
increase too much due to the increase of error
tolerance, its error rate is much higher than both IES
and CIES approaches. Note that the error rate
determined by eSense cannot satisfy the error rate
boundaries while both stand-alone IES and collabora-
tive CIES approaches meet the requirement.

. The miss ratio comparison. The miss ratio, as shown in
Fig. 18, for eSense continues to increase with the
increase of error tolerance, while our methods seem
to be stable. The hike in eSense is due to the
reduction in sensitivity to the change when
the threshold or risk tolerance increases. The higher
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Fig. 12. The energy consumption with different error tolerance.

Fig. 13. The error performance with different error tolerance.

Fig. 14. The miss ratio with different error tolerance.

Fig. 15. The energy consumption with different error tolerance.

Fig. 17. The error performance with different error tolerance.

Fig. 16. The influence of training period length on the prediction error
rate.

Fig. 18. The miss ratio with different error tolerance.



the risk tolerance, the less sensitive eSense is to the
data change, leading to a higher miss ratio. Our
system can guarantee the absolute error rate, which
keeps tracking the past error and adjusts accord-
ingly. Therefore, our approaches do not experience a
similar hinderance.

. The energy consumption comparison. The energy
consumption shown in Fig. 19 indicates that eSense
consumes slightly less than 15 percent of that of our
CIES. However, the stability of our system is much
better than eSense as the maximum variance of
energy consumption is just 12 percent compared to
almost 100 percent in eSense. These achievements
only cost 20 percent more energy consumption than
eSense, which is acceptable in most applications. In
some situations, the rare event detection is as
important as the lifetime management.

To see the performance compare more directly, we list
the performance metrics of our design with those reported
in eSense [8]. The results are shown in Table 2.

Based on comparisons, we conclude that CIES can
outperform the eSense with respect to the miss ratio and
total error rates. The results also confirm that the error-
bounded scheduling limitation, which is missed in eSense,
is achieved in our approach.

6.6 System Implementation

The architecture has been implemented on our newly
constructed testbed and the details are given in Section 5 of
the online supplemental material.

7 RELATED WORK

Scheduling control has been an effective method in wireless
sensor platforms to improve energy efficiency. It allows
networked nodes to reduce their transmitting and sensing
power while preserving sensing quality. A common
technique to reduce power is local data control, for example,
reducing the duty cycle (the active duration) of sensors by
turning them off while using a prediction model to estimate

the actual data at each sensor node [25], [26]. In general, a
higher duty cycle leads to a better prediction accuracy, but
consumes more energy. In contrast, a reduced duty cycle is
preferred due to its lower energy consumption and reduced
data traffic within the network, but this may decrease the
prediction accuracy. Methods in [8], [27] further introduce a
self-adaptive scheduling mechanism to address the data
accuracy issues. We acknowledge that these technologies do
provide frameworks to manage the energy cost without
comprising data accuracy. However, these design ap-
proaches are isolated in that the management of data
accuracy can only be used for each individual sensor. Thus,
these techniques do not fully exploit the potential of
network collaboration for data accuracy management under
rapidly changing conditions in the environment, and their
ability to tradeoff data accuracy with energy reduction is
thus inherently limited [14], [28], [29]. Our work incorpo-
rates the advantages of both dynamic scheduling and
sensors collaboration, seeking to optimize the tradeoff
between energy and the accuracy of predictions.

Traditionally, complex and dedicated models have been
used in local data control, aiming to determine if the model
is accurate enough to ensure high precision [30], [31], [32],
[33]. In [31], empirical analysis results are used to reveal the
relationship between the configuration parameters and the
quality of the tracking application. It shows that empirical
models [14], [28] can be effectively applied without
sacrificing the data prediction accuracy. One useful insight
from an empirical modeling approach is that data correla-
tion can be utilized for other purposes [34], [35], such as
monitoring applications. In eSense [8], a stochastic sensing
algorithm that computes the sensor switching probability at
each sampling cycle is introduced. It determines the lower
and upper bounds of sensing probability to satisfy missing
ratio constraints, a metric to determine the percentages that
the prediction model output does violate the data perfor-
mance requirement. In actual situations, however, this kind
of approach cannot necessarily characterize the volatile
nature of the environment, caused by the insensitivity of the
prediction model to sharp changes in natural environment
[36], thus leading to inefficient data prediction.

Another category of data control is the implementation of
a distributed data management scheme. Data aggregation
approaches have been widely acclaimed as useful techni-
ques to reduce communication overhead in sensor networks
[26], [37]. However, there has been little cooperation
between sensor nodes. Although those approaches offer
data management mechanisms which reduce the error and
energy cost of sensing activities, they fail to improve the
system performance through network coordination. A
collaborative mechanism among nodes, together with
local data management, can provide the opportunity to
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Fig. 19. The energy consumption with different error tolerance.

TABLE 2
The Performance Comparison with eSense



accurately associate networking nodes for higher data

accuracy and increased network capability, for example,

the detection of a rapid environmental change.

8 CONCLUSIONS

In this paper, we have presented a stochastic sensing
algorithm to reduce energy consumption. Our approach
used the data correlation between nodes to reduce the error
rate for prediction model performance. Observed correla-
tions between nodes have been used to estimate the
neighbor nodes’ errors, and to adjust their operation
accordingly. We demonstrated that our design achieved
better control of data accuracy than baseline approaches
and still retained the energy saving properties. The
measurement and simulation results showed that system
prediction error remained within a specified error tolerance
while saving up to 60 percent of the required energy. For
our future work, we will evaluate the energy performance
of individual sensor network components so that the
algorithm can be further optimized.
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