
Collaborative Schema Matching Reconciliation

Author

Nguyen, Quoc Viet Hung, Luong, Xuan Hoai, Miklos, Zoltan, Quan, Thanh Tho, Aberer, Karl

Published

2013

Journal Title

Lecture Notes in Computer Science

Version

Accepted Manuscript (AM)

DOI

https://doi.org/10.1007/978-3-642-41030-7_14

Copyright Statement

© 2013 Springer International Publishing AG. This is the author-manuscript version of this
paper. Reproduced in accordance with the copyright policy of the publisher. The original
publication is available at www.springerlink.com.

Downloaded from

http://hdl.handle.net/10072/348253

Griffith Research Online

https://research-repository.griffith.edu.au

Collaborative Schema Matching Reconciliation

Nguyen Quoc Viet Hung1, Xuan Hoai Luong1, Zoltán Miklós2, Tho Thanh Quan3, and

Karl Aberer1

1 École Polytechnique Fédérale de Lausanne

{quocviethung.nguyen,hoai.luong,karl.aberer}@epfl.ch
2 Université de Rennes 1

{zoltan.miklos}@univ-rennes1.fr
3 Ho Chi Minh City University of Technology

{qttho}@cse.hcmut.edu.vn

Abstract. Schema matching is the process of establishing correspondences be-

tween the attributes of database schemas for data integration purpose. Although

several schema matching tools have been developed, their results are often in-

complete or erroneous. To obtain correct attribute correspondences, in practice,

human experts edit the mapping results and fix the mapping problems. As the

scale and complexity of data integration tasks have increased dramatically in re-

cent years, the reconciliation phase becomes more and more a bottleneck. More-

over, one often needs to establish the correspondences in not only between two

but a network of schemas simultaneously. In such reconciliation settings, it is de-

sirable to involve several experts. In this paper, we propose a tool that supports

a group of experts to collaboratively reconcile a set of matched correspondences.

The experts might have conflicting views whether a given correspondence is cor-

rect or not. As one expects global consistency conditions in the network, the

conflict resolution might require discussion and negotiation among the experts

to resolve such disagreements. We have developed techniques and a tool that al-

low approaching this reconciliation phase in a systematic way. We represent the

expert’s views as arguments to enable formal reasoning on the assertions of the

experts. We detect complex dependencies in their arguments, guide and present

them the possible consequences of their decisions. These techniques thus can

greatly help them to overlook the complex cases and work more effectively.

1 Introduction

Integrating data stored in autonomously-developed information systems is essential for

a number of applications. Schema matching is the process of establishing correspon-

dences between the attributes of two database schemas, which is crucial for data inte-

gration. There is a large body of work on schema matching techniques: a number of

commercial and academic tools (so called matchers) have been developed [4, 38]. Al-

though some matchers perform impressively on certain data sets, the heuristic nature of

the matching algorithms prevent them from yielding completely correct results. In prac-

tice, data integration tasks often include a post-matching phase, called schema matching

reconciliation, where human experts review, validate and correct the generated corre-

spondences. Although this phase requires substantial efforts, it has received very little

attention, with the notable exception of [13].

In real life scenarios, the data to be integrated is often stored in several distributed

databases. The creation of a globally accepted schema or ontology is neither practi-

cal nor possible for certain cases and one has to construct a set of pairwise mappings

between the involved schemas. Constructing pairwise mappings can bring a number of

advantages, e.g. if new schemas are added or removed, one only needs to adjust the local

mappings. One can also construct the mappings in a pay-as-you-go fashion, whenever

they are needed. The pairwise mapping establishment has also disadvantages. In this

case, the matching reconciliation task can be very challenging as we explain in the fol-

lowing motivating scenario. Our work proposes methods to minimize these difficulties.

1.1 Motivating example

Let us consider the following scenario where three video content providers EoverI,

BBC, and DVDizzy would like to create a shared website to publicize their offerings,

which link back to the particular website for the purchases. The shared website needs

information from the individual content providers (e.g. title, release date, main actors)

so that consumers searching on the site can find the products they want. Although it

would be conceivable to construct a global schema for the three providers, as more

providers would join to this shared site, such a global schema could become impractical.

We assume a scenario where the correspondences are established in a pairwise manner.

Figure 1a shows simplified schemas to illustrate this scenario. The three boxes

represent the schemas of EoverI, BBC, and DVDizzy respectively. The figure shows

four correspondences c1, c2, c3, and c4, generated by the matcher that we applied

for each pair of schemas. As the names of the involved attributes are rather similar

(ProductionDate, AvailabilityDate, ScreeningDate, ReleaseDate), typical matchers

often fail to give the correct attribute mappings. Even human experts might disagree on

which correspondences are correct. Moreover, as matchers only consider two schemas

as input [4], they ignore natural expectations of the users with respect to the entire

network. One can formulate these network-level consistency conditions as constraints:

– One-to-one constraint. In some cases, one expects that each attribute of one of the

schemas is matched to at most one attribute of any other schemas.

– Cycle constraint. If the schemas are matched in a cycle, the matched attributes

should form a closed cycle. This is a very natural requirement, if one would like to

exchange data that is stored in the structure of the corresponding schemas.

Figure 1a shows some violations of these constraints, which are frequent in sets of

automatically generated correspondences as most matchers do not take the constraints

into account. For example, the attribute S1.ReleaseDate is matched with two attributes

S3.ProductionDate and S3.AvailabilityDate of schema S 3, thus violate the one-to-

one constraint. The cycle constraint is violated also: S3.AvailabilityDate is matched

to S2.ScreeningDate, which is then matched to S1.ReleaseDate, and finishes at

S3.ProductionDate. Using such correspondences for data integration can lead to un-

wanted effects: AvailibilityDate and ProductionDate of DVDizzy would be mixed up.

If one would like to use the attribute correspondences for data integration or

exchange, it is necessary to eliminate the errors from the set of correspondences.

S1: EoverI

S2: BBC

S3: DVDizzy

a4: ProductionDate

a1: ReleaseDate

a3: AvailabilityDate

a2: ScreeningDate

c
4

c
2

c
1

c
3

(a)

User Inputs Arguments (derived from user inputs)

we
1
= 〈{c1}, c1〉, w

e
2
= 〈{c2}, c2〉

EoverI approve c1, c2, c3 we
3
= 〈{c3}, c3〉, w

e
4
= 〈{c2,¬c2 ∨ ¬c4},¬c4〉

disapprove c4 we
5
= 〈{¬c3 ∨ ¬c1 ∨ ¬c4, c1, c3},¬c4〉

we
6
= 〈{¬c4},¬c4〉

BBC approve c3, c4 wb
1
= 〈{c3}, c3〉, w

b
2
= 〈{c4}, c4〉

DVDizzy approve c3, c4 wd
1
= 〈{c3}, c3〉, w

d
2
= 〈{c4}, c4〉

(b)

Fig. 1: The motivating example. (a) A network of schemas and correspondences generated by

matchers. There are two violations: {c2, c4} w.r.t. the one-to-one constraint, {c1, c3, c4} w.r.t.

the cycle constraint. (b) An illustrated collaborative reconciliation between three video con-

tent providers: EoverI, BBC, and DVDizzy. The assertions (approvals/disapprovals) of BBC and

DVDizzy are identical and different from those of EoverI.

This reconciliation process typically involves human input, which is a set of asser-

tions that indicate whether a particular mapping, such as the correspondence between

S3.ProductionDate and S1.ReleaseDate, should be approved or disapproved.

Until recently, this task was performed by a single expert. As the size of networks

in data integration grows, the complex reconciliation tasks should be performed by not

only one but several experts, to avoid the overload on a single expert and also to assign

each expert the parts of the problem about which he is more familiar. In such cases, the

experts might disagree about certain correspondences. If the application requires the

network-level constraints, there could be rather complex dependencies among corre-

spondences. For example, the choice of considering a correspondence correct can influ-

ence the possible choices for other correspondences. Moreover, the simple techniques

for conflict resolution such as majority voting are not applicable, as the resulting set of

correspondences would not comply to these constraints. To resolve these problems, the

experts need to discuss and negotiate which correspondences to accept or reject. Be-

cause of complex dependencies in these networks, it is very challenging for the experts

to overlook all possible consequences of their decisions. Thus on one hand it is highly

desirable to split the reconciliation task, on the other hand combining individual results

is very challenging. Our work addresses exactly this problem by proposing a number of

services and a tool realizing those services to enable the collaborative process.

1.2 Contributions

In this paper, we leverage the theoretical advances and the negotiation nature of argu-

mentation [5, 16] to support the work of multiple experts in the reconciliation task. This

task, with the presence of consistency constraints, requires that the experts overlook a

number of dependencies, which is very challenging without any support.

The specific contributions of our work are as follows. We model the schema match-

ing network and the reconciliation process, where we relate the experts’ assertions and

the constraints of the matching network to an argumentation framework [16]. Our rep-

resentation not only captures the experts’ belief and their explanations, but also en-

ables to reason about these captured inputs. On top of this representation, we develop

support techniques for experts to detect conflicts in a set of their assertions. Then we

guide the conflict resolution by offering two primitives: conflict-structure interpretation

and what-if analysis. While the former presents meaningful interpretations for the con-

flicts and various heuristic metrics, the latter can greatly help the experts to understand

the consequences of their own decisions as well as those of others. Last but not least,

we implement an argumentation-based negotiation support tool for schema matching

(ArgSM) [25], which realizes our methods to help the experts in the collaborative task.

Our paper is organized as follows. Section 2 consists the formulation of schema

matching network reconciliation problem and the overview of our solution. Next, Sec-

tion 3 discusses how to construct an argumentation framework for schema matching

networks, while Section 4 deals with our guiding methods for conflict resolution. After

that, Section 5 describes implementation details. Then, we present our tool, ArgSM, in

Section 6. Section 7 presents the related work and Section 8 concludes the paper.

2 Model

In this section, we focus on modeling the collaborative reconciliation in schema match-

ing. Firstly, we introduce the elements of a schema matching network, which is a net-

work of schemas that are connected through pairwise mappings between them. Then

we describe the process of collaborative reconciliation to validate the mappings of this

network, which are generated by automatic matchers.

2.1 Schema Matching Network

We model a schema as a finite set of attributes {a1, · · · , an}. Let S = {s1, · · · , sn} be

the set of schemas of unique attributes (si ∩ s j = ∅ for all 1 ≤ i, j ≤ n and i , j) and

AS be the set of attributes in S (AS =
⋃n

i=1 si). An attribute correspondence between

a pair of schemas s1, s2 ∈ S is a pair of attributes (a, b) in which a ∈ s1, b ∈ s2. The

set of all possible attribute correspondences is denoted by C. In addition, we have Γ =

{γ1, . . . , γn} as the set of integrity constraints, which expresses the intuitions observed

from the schema matching problem. Combining the introduced notions, we define a

schema matching network to be a triple (S, Γ,C).

In this paper, we consider a schema matching network (S, Γ,C), where C is typi-

cally the outcome of first-line schema matchers [20] such as COMA++ [1], AMC [35].

The schema matching reconciliation is the process of assessing the correspondences

in C whether they are correct. The goal of the reconciliation process is to construct a

maximal set of attribute correspondences (M ⊆ C) satisfying all constraints of Γ.

2.2 Collaborative Reconciliation

In practice, to obtain M, schema matching tasks often include a post-matching phase

for correspondences to be reviewed and validated by experts. If the size of the schema

matching network is large, the reconciliation task can be rather expensive. Moreover,

1. Automatic

 Matching

 COMA

 AMC

2. Individual

 Validation

Expert 1

2. Individual

 Validation

Expert n

Correspondences C

• •
 •

(a) Phase 1 - Individual validation

Expert n Expert 1

Arguments &

Explanations

Correspondences

F1

Participant Inputs

A1

Arguments &

Explanations

Fn

Participant Inputs

An

Argumentation framework

3.1. Negotiation

 Detect conflicts

 Guide conflict resolution

• •
 •

. . .

C

Expert n Expert 1

Arguments &

Explanations

Correspondences

F1

Participant Inputs

A1

Arguments &

Explanations

Fn

Participant Inputs

An

Argumentation framework

3.N. Negotiation

 Detect conflicts

 Guide conflict resolution

. . .

C

Intermediate Rounds

(b) Phase 2 - Input combination

Fig. 2: The collaborative reconciliation process starts with a set of correspondences C generated

by matchers. In Phase 1, each expert (user/participant) i is responsible for validating a particular

set Ci ⊂ C. It is followed by Phase 2 that has multiple negotiation steps (3.1. to 3.N) to resolve

conflicts in user inputs.

some experts might be more knowledgeable about some parts of the network, thus in

these cases it is very natural to split the task among multiple experts.

The collaborative reconciliation as illustrated in Figure 2 is a two-phase process: in-

dividual validation and input combination. Let E denote the set of users E = {E1, . . . , En}

who participate.

– Individual validation: In the first phase, each expert Ei is assigned to validate a

subset Ci of C (usually of equal size). The assigned sets Ci usually overlap to a

certain degree, thus there are correspondences assessed by several experts.

– Input combination: In the second phase, the individual inputs are combined. The

goal of the collaborative reconciliation process is to construct a set of correspon-

dences M that satisfies all constraints. If there are conflicting views about corre-

spondences (for example, one expert considers correct while the other incorrect)

then they need to come to a conclusion and chose which view to accept.

We leverage existing techniques from a large body of research [2, 26, 37] for the first

phase. In this paper, we focus on the second phase. More precisely, we apply the the-

oretical advances of argumentation to detect conflicts in user inputs and guide them to

resolve conflicts. Section 3, 4, and 5 will describe those functionalities in detail.

3 Argumentation for Schema Matching Networks

Let us consider a setting where several experts assess a set of attribute correspondences

in a schema matching network. They might have different views whether a given cor-

respondence should be correct or not. To complete the reconciliation task, they need

to discuss and resolve these conflicts to obtain a globally consistent set of correspon-

dences. The conflicts between the different user views can be rather complex in the

presence of integrity constraints. We call a situation direct conflict if two experts dis-

agree about a given correspondence (one of them thinks it is correct, while the other

claims that it is incorrect). In the presence of integrity constraints, we can also talk

about indirect conflicts. For example, in Figure 1, if we assume the one-to-one con-

straint between S 1 and S 3 and an expert considers c4 correct, then c2 must be incorrect

(otherwise the constraint would be violated). We call a situation where a second expert

thinks that c2 is correct an indirect conflict.

3.1 Arguments for schema matching

In order to study the conflicts between the experts opinions, we will rely on argumenta-

tion techniques. Argumentation is a systematic study of techniques to reach conclusions

from given premises [5]. We will use the standard representation of arguments [5] where

an argument consists of a claim and a support that explains the respective claim. We

represent arguments in the form 〈{support}, claim〉. In the case of logic-based argu-

mentation, both the support and the claim are logical formulas, such that the support is

a minimal set that is sufficient to prove the claim.

For the schema matching problem, given a set of correspondences C, we employ

propositional logic to encode the user inputs (during the reconciliation process): if an

expert asserts that a given correspondence c is true, then we can represent this by a

propositional variable vc (and the assignment vc = true). To simplify our notation,

sometimes we use c to denote the propositional variable (corresponding to a correspon-

dence c). This representation also enables to represent the consistency constraints, for

example ¬(c2 ∧ c4) encodes the one-to-one constraint (the two correspondences c2 and

c4 cannot be true at the same time).

If several experts assess a set of correspondences (or as it is more common, they

work on a different but overlapping set of correspondences) then we can use this

encoding to represent their individual input in the form of arguments. For exam-

ple, in Figure 1, we can represent the input assertion of an expert by the argument

we
1
= 〈{c1}, c1〉, where the claim is that the c1 is correct, that is based on the simple

support that is the knowledge of the expert about the correctness of c1. A more com-

plex example is the argument (that is the claim of an expert, together with a support)

we
4
= 〈{c2,¬c2 ∨¬c4},¬c4〉. This can be interpreted as follows: the expert has approved

c2, he would like to avoid violating the one-to-one constraint (¬c2∨¬c4), he disapproves

c4. We give a more complete list of arguments of three experts in Figure 1b (with respect

to one-to-one and cycle constraints). In our work, the claim of an argument is always a

single propositional clause, while the support is a set of propositional formulae.

3.2 Understanding the conflicting arguments

This representation enables us to explain more precisely the direct and indirect conflicts.

If the claim of two arguments w1 and w2 contradict each other (together they form an

inconsistent set of formulae) then we say that the arguments w1 and w2 are in direct

conflict. In argumentation terminology this is called rebuttal. If the claim of an argument

w2 appears in a negated form in the support of w1, we talk about indirect conflict. In

argumentation terms, w1 undercuts w2. In the following, we will consider following

attack relation: w1 defeats w2 if w1 either undercuts or rebuts w2. For example, wb
1

attacks we
3

and the argument wd
1

rebuts the argument we
5

(Figure 1b). A set of arguments

and attacks between the arguments 〈A,R〉 is called an argumentation framework [16].

Constructing argumentation framework 〈A,R〉 for a reconciliation problem from

the arguments of all the experts A =
⋃

Ai with the above attack relation has several

advantages. In particular, computing the attack relation we can detect each problem

that might exists in the experts’ inputs. The argumentation framework enables even

more complex tasks that we explain in the following sections.

4 Guiding the Conflict Resolution

We have presented in Section 3 how to construct an argumentation framework for the

schema matching problem, where multiple experts work on the reconciliation task. This

not only enables to reason about the user input, but also to detect conflicts and determine

the reasons for these problems. In this section we focus on techniques that exploit this

information to guide the experts in resolving these conflicts.

In particular, we describe here two services that can largely help the collaborating

experts. These are the (1) the interpretation of conflict structures, with which we can

present meaningful interpretations for the conflicts together with some associated met-

rics that can largely support the negotiation of the experts and the (2) what-if analysis,

with which we can compute (and in the tool visualize) the consequences of a particular

potential decision. The details of these services are provided in what follows.

4.1 Interpretation of conflict structures

Given a potentially conflicting set of assertions from several experts who collaborate on

the reconciliation task, we can analyse the structure of conflicts and compute (qualita-

tive) metrics that explain the conflicts as well the potential ways to resolve the problems.

Extensions. An extension ǫ ⊆ A of an argumentation framework 〈A,R〉is an acceptable

set of arguments ǫ; i.e., a set of arguments that can be accepted simultaneously, that

is, they do not contain any conflicts. In fact, there are many possible ways to define an

extension. The various strategies that can be used to construct such an exception are

called acceptability semantics [16]. For instance, an extension following the complete

semantics is a conflict-free set of arguments, defends all its arguments, and contains all

arguments it defends. A set of arguments A′ is conflict-free if there are no arguments

a1, a2 ∈ A′ that a1 attacks a2. Meanwhile, a1 defends a2 if there exists a3 that is attacked

by a1 and attacks a2. Generally, there are more then one extension (for a given seman-

tics). Hence, the experts need to agree about choosing which one. With argumentation,

we can compute and present extensions for the experts, thus enables them to consider

all possible options.

Witnesses. Given a set of conflicting arguments, we compute (also present and visual-

ize) witnesses of the conflicts. Let Ac and A¬c be the set of arguments having claim c

and ¬c respectively, i.e. Ac = {(Φ, α) ∈ A | α = c} and A¬c = {(Φ, α) ∈ A | α = ¬c}.

Ac and A¬c explain why we should approve/ disapprove c. Presenting the witnesses lets

the experts understand problems arise during reconciliation.

Example 1 In Figure 1, EoverI wants to approve c1, c2, c3 and disapprove c4. From

the complete semantics, we obtain the extension {we
1
,we

3
,wb

1
,we

4
,we

5
,we

6
}. Based on the

explanations provided by this extension’s arguments, EoverI can better argue for the

other two participants to approve c1 (explained by we
1
), c2 (explained by we

2
), and dis-

approve c4 (explained by we
4
, we

5
, and we

6
). Furthermore, observing the witnesses for

and against c4 would make the decision to discard this correspondence more convinc-

ing. Indeed, from those witnesses (Ac4
= {wb

2
} and A¬c4

= {we
4
,we

5
,we

6
}), we realize that

although the decision supporting c4 is voted by more users, the opposite decision (to

disapprove c4) seems to be the one that is better explained. Moreover, disapproving c4

is also justified by intuitive observations on the network: the approval of this correspon-

dence would constitute not only a one-to-one constraint violation (with c2) but also a

cycle constraint violation (with c1 and c3).

We cannot only compute the extensions and witnesses to facilitate the discussion among

the experts, but also associate heuristic metrics to further support their work. Further-

more, we enable the users to rank decisions, based on the strengths of their explanations

(arguments) or the decisions themselves.

Argument strength. Computing extensions is a preliminary step to evaluate arguments.

From the occurrences of an argument in the extensions, we compute the argument

strength. Given the set of extensions E of an argumentation framework with respect

to an acceptability semantics, the strength of an argument a is the number of its occur-

rences in E divided by the size of E:

argument strength(a) =

∑
ǫ∈E 1a∈ǫ

| E |

With argument strength, we have a more fine-grained metric to rank arguments and

assist the users to make wiser decisions. Indeed, we were motivated by the notion of

argument acceptance [12], which evaluates arguments based on their occurrences in all

extensions of a given acceptability semantics. However, this is a rough metric, which

does not take into account the difference between the number of occurrences of argu-

ments in the extensions. This shortcoming prevents the users from having detailed looks

on the credibility of arguments to compare them.

Decision strength. Providing explanations might be overwhelming for the users, espe-

cially when there are too many arguments. Therefore, we associate each decision with

a quantitative metric reflecting the decision strength, which is computed by applying

aggregate operators (max, min, avg, etc.) on the set of supporting arguments. Based on

this metric, the users can evaluate which decisions should be made given a specific cir-

cumstance. It is also important to note that the number of ambiguous correspondences

is generally large. As a result, identifying the sequence of correspondences to negotiate

is necessary. In practice, one may define such a sequence by taking pairs of decisions

for and against a correspondence in the ascending order of the level of ambiguity, which

can be measured by the difference between the strengths of associated decisions.

Example 2 An example of argument and decision strength can be found in Figure 3.

In that figure, we have on the left the decisions (circle shapes) supporting and oppos-

ing each correspondence in the network, as well as the associated arguments (square

shapes). We follow the complete acceptability semantics to compute argument strengths

and apply the sum operator to evaluate decision strengths. Those values are displayed

right above the corresponding shapes. We can observe that the decision to disapprove c4

possesses higher strength. Thus, disapproving c4 would be the better decision to take. In

fact, this outcome aligns with what the users should achieve using the qualitative met-

rics solely. Having the quantitative metrics (argument and decision strength), however,

brings the users more details thus increases the confidence in making decisions.

4.2 What-if analysis

We have also developed another reasoning service, called what-if analysis, that exists in

many decision support systems [23] and largely supports the collaborative work. This

service can compute (and in our tool also visualize) the consequences of a possible

decision. Using the what-if analysis, the experts can understand the consequences of

any particular decision, resulting in a stronger feeling of trust throughout their work.

Three questions for which we can compute the answers are:

– Q1: Which arguments will be added or deleted if a particular assertion is given?

– Q2: Which attacks will be added or deleted if a particular assertion is given?

– Q3: Which extensions will be modified if a particular assertion is given?

By answering these questions, we can provide the experts with two important views.

The (1) Local view reflects the relationships among inputs of a single participant. Each

participating expert can check whether his new assertion conflicts with the previous in-

puts. Technically, we use the answers of Q1 and Q2 to construct this view. When an user

gives a new assertion, his own arguments are maintained. If any attack between those

arguments is found, the user is notified to adjust his inputs to avoid further inconsisten-

cies. Besides, the (2) Global view reflects the connections between inputs of multiple

users. All participants can observe the negotiation progress. To construct this view, we

use the answers of Q2 and Q3. The number of attacks and extensions are maintained. In

one hand, the users understand the current conflicts (attacks) among their arguments and

the impact of those inconsistencies. In the other hand, keeping track of the extensions

lets them know the current state of the system and when it reaches an agreement.

Example 3 In Figure 1, three video content providers now attempt to change their

assertions to reach an agreement. In the view-point of EoverI, he might change his

disapproval of c4 since the others both approve c4. If EoverI approves c4, two new

arguments we
7
= {{c4}, c4}, we

8
= {{c4,¬c2 ∨ ¬c4},¬c2} and two new attacks we

7
↔ we

4
,

we
8
↔ we

2
will be added. Through local view, EoverI can foresee these new arguments

and attacks to realize the contradiction with himself. In the view-point of BBC and

DVDizzy, they might change the approval of c4 because of EoverI. If they disapprove

c4, two arguments wd
2

and wb
2

will be deleted; and hence, there is no attack between

remaining arguments and only one extension remains. Through global view, they can

foresee this consequence and feel more confident to make changes. In addition, they

might also agree with EoverI on c1 and c2 since no further contradiction exists.

5 Implementation

In the previous sections, we discussed how to support the collaborative reconciliation

through detecting conflicts in the assertions of multiple experts and guiding the resolu-

tion of these conflicts. To accomplish these tasks, we need to realize the argumentation

framework, which can only be achieved after generating arguments and computing the

attack relation. This section serves a two-fold purpose. First, we present how to instan-

tiate an argumentation framework using ASP-based tools. Second, we describe how to

implement the proposed services on top of this argumentation framework.

5.1 Instantiate Argumentation Framework

We rely on a declarative language, Answer Set Programming (ASP) [7], to carry out the

preliminary tasks before instantiating an argumentation framework (Figure 2). In our

work, we utilize the ASP Solver DLV-Complex[8] to take advantages of its built-in data

structures and functions. We invoke an ASP program called Πpre, which is essentially

the union of other ASP program, each of which is responsible for a specific task. In

particular, Πpre = Πsmn ∪ ΠΓ ∪ Πinputs ∪ ΠΦ.

Encoding the schema matching network (Πsmn). We extend the setting to keep track

of the correspondences. Let I be the set of identities, a function f : C → I maps exactly

one element in I to each in C. f is injective as an identity is assigned to at most one

correspondence. For each schema si ∈ S, we represent the attribute-schema relationship

between si and each attribute a ∈ Asi
as a ground fact attr(a, si). It is assumed that the

attributes are globally unique. Meanwhile, the correspondence-attribute relationships

are captured by cor(c, ai, a j) for each (ai, a j) ∈ C and c = f ((a1, a2)). For instance, the

network in Figure 1 has the following encoding of Πsmn:

Πsmn = {attr(a1, S 1).attr(a2, S 2).attr(a3, S 3).attr(a4, S 3).

cor(c1, a1, a2).cor(c2, a1, a3).cor(c3, a2, a3).cor(c4, a1, a4).}

Encoding the integrity constraints (ΠΓ). We encode the integrity constraints as rules.

In fact, we use rules to encode two different types of constraints. The first type is our

basic assumptions, which are encoded in the program πass below:

πass = { ← attr(a, s), attr(a, s′), s , s′.

← cor(c, a, a′), attr(a, s), attr(a′, s′), s = s.′}
(1)

Second, we use rules to express the network-level integrity constraints. Atoms prefixed

with # are built-in functions of DLV-Complex.

– Cycle constraint: a path of correspondences must not make any two attributes of a

schema reachable. Each rch(S , a, a′) signifies the reachability between attributes a

and a′ via the correspondences in S . Below is the encoding of the program πcycle:

πcycle = {rch(S , a, a′)← cor(c, a, a′), #set(c, S).

rch(S , a, a′)← #intersection(P,Q,R), #card(R, 0),

rch(P, a, b), rch(Q, b, a′), #union(P,Q, S).

violation(S)← rch(S , a, b), a , b, attr(a, s), attr(b, s).}

(2)

– One-to-one constraint: any attribute is matched by at most one attribute in each of

the other schemas. Each pair(c, c′) captures a violation detected by π1−1 below:

π1−1 = {pair(c, c′)← cor(c, a, b), cor(c′, a, b′), b , b′, attr(b, s), attr(b′, s).

violation(S)← pair(c, c′), #set(c, c′, S).}
(3)

To put it in a nutshell, ΠΓ is defined formally as ΠΓ = πass ∪ πcycle ∪ π1−1. For

example, invoking ΠΓ for the network in Figure 1, we have πass check the validity of

the schema matching network encoded by Πsmn, which is valid indeed. Besides, from

πcycle and π1−1, we obtain two violations: {c2, c4} and {c1, c3, c4}.

Collecting user inputs (Πinputs). Indeed, user inputs are assertions on the correspon-

dences. We represent user assertions (that may be approvals or disapprovals of corre-

spondences) as ground atoms of the form app(·) and dis(·). For instance, in Figure 1b,

the user EoverI approves c1, c2, c3 and disapproves c4, while BBC and DVDizzy only

approve c3 and c4. Their inputs are encoded as follows:

ΠEoverI
inputs = {app(c1). app(c2). app(c3). dis(c4).}

ΠBBC
inputs = Π

DVDizzy

inputs
= {app(c3). app(c4).}

Constructing the set of formulae (ΠΦ). We construct this set by extracting proposi-

tional formulae from either the assertions (through πsimple) or the detected violations

(through πextract). Formally, ΠΦ = πsimple ∪ πextract. Each atom kb(·) captures a formula.

For assertions, we consider each assertion app(c) (or (dis(c)) as a simple formula c (or

¬c). This is capture by the program πsimple:

πsimple = {kb(c)← app(c).

kb(neg(c))← dis(c).}
(4)

Things are more complex in the cases of the constraint violations (detected by the

πcycle and π1−1 of ΠΓ). From a violation {c1, · · · , cn}, we can state that at least one of

the assertions must be false. This is expressed formally by the formula ¬c1 ∨ · · · ∨ ¬cn.

Such formulae are extracted from the detected violations by the program πextract, whose

process is described below:

– Initially, violations are captured by ground atoms violation(S) where S is a set of

correspondences. We convert from set to list using the atom by vioList(L), in which

L is the list-based representation of S .
– From each list L, we create sublists starting from the first to the (n − 1)th element

([c1, · · · , cn], [c2, · · · , cn], · · · , [cn−1, cn]).
– Based on the sublest, we form formulae in a bottom-up manner, starting from the

shortest one ([cn−1, cn]). The longer sublists have their forumlae composed recur-

sively from those that are one element shorter. This is continued up to original list.

Example 4 In Figure 1b, we have the collected the inputs of EoverI. Through πsimple, we

obtain the formulae kb(c1), kb(c2), kb(c3), and kb(neg(c4)). Besides, we also detected

the violations in the schema matching network, from which πextract form two formu-

lae kb(or(neg(c2), neg(c4))) and kb(or(neg(c1), or(neg(c3), neg(c4)))). These ground

atoms kb(·) compose the set of formulae of EoverI.

With the set of formula, we proceed to first generate arguments then the attack re-

lation, with the goal to compose an argumentation framework. One could consider for-

mulae in the set we just obtained as candidates to be argument claims. This approach,

however, would easily overwhelm the users due to the huge amount of generated ar-

guments. The reason is that many formulae are syntactically different but semantically

equivalent. To avoid this scenario, we limit the candidates for argument claims. In prac-

tice, users concern more with arguments claiming to approve or disapprove correspon-

dences. We thus select the set of possible claims from the assertions. In the motivating

example, the possible claims for EoverI is cl(c1), cl(c2), cl(c3), and cl(neg(c4)).

We take advantage of Vispartix [11], an ASP-based tool, to not only generate argu-

ments but also to compute the attack relation. For argument generation, the tool con-

siders only subsets of the set of formulae and the set of possible claims. It then looks

for pairs which can be considered as arguments (Figure 1b presents an example of these

generated arguments). Once the set of arguments is ready, we start to compute the attack

relation. This is done by invoking the corresponding feature of Vispartix with the set of

all arguments (the union of the arguments of each user) as the input. Visaprtix provides

the users with several attack types [5], such as defeat, undercut, and rebut.

5.2 Realizing Services

In Section 3 and 4, we showed the elements of an argumentation framework as well as

offered possible services (conflict detection, interpretation of conflict structures, what-if

analysis) on top of this framework. In this subsection, we will describe how to realize

these services, with the focus on technical aspects.

Conflict detection. We detect conflicts based on the results of ASP-solver in section

5.1. In that section, we described how to encode the integrity constraints in the language

of ASP. The solver DLV-Complex is responsible for detecting the violations based on

our encodings. Based on the results of the solver, we have the atoms vioList(L) as lists

of violation, each of which contains a set of involved correspondences. Moreover, in our

system, we show not only the violations but also the explanations for these violations.

In doing so, we analyze the attack relations R of the argumentation framework. The user

inputs are valid if this vioList is empty or R is empty.

Interpretation of conflict structures. To realize this service, we need to compute four

elements: the extension, the witness, the argument strength, and the decision strength. In

Section 5.1, we already generated a set of arguments. As previously defined, a witness

of a claim is a set of arguments having this claim. By grouping arguments sharing the

same claim, we obtain the witnesses for all possible claims. Then, we employ Vispatrix

[11] to generate all possible extensions with different semantics. After obtaining all

extensions, we compute argument and decision strength as mentioned in Section 4.1.

What-if analysis. To realize this service, we need to recompute the argumentation

framework and all possible extensions when user modifies an assertion. Then, we com-

pare the differences between the new computed results and the current ones. Based on

these differences, we can know what arguments, attacks, and extensions are added or

deleted to answer three what-if questions in Section 4.2. This service is implemented

with the support of Vispatrix [11], which allows efficient recomputation.

All above-mentioned services are integrated in our argumentation-based negotiation

support tool, namely ArgSM. This tool not only implements these services but also

provides graphical user interface. The details will be described in the next section.

6 Tool - ArgSM

ArgSM is an argumentation-based negotiation support tool for schema matching. It is

developed by using the Java programming language and the JUNG4 library for visual-

ization purposes. We also integrate other supporting libraries, including Vispatrix [11]

and DLV-Complex [8]. We have also made the source code to be publicly available at

our website 5. In this section, we discuss the user interface and the technical challenges.

6.1 User Interface

ArgSM can aggregate the assertions of multiple experts and visualize the concerned

arguments. For visualizing, we provide users with a GUI (Figure 3), which is a unified

view of the provided inputs and the argumentation framework. From the GUI, the users

can compare their inputs via views and view modes. In particular, views give the users

static pictures about the network, the decisions, and the explanations, while view modes

provide the users with dynamic interaction during collaborative reconciliation.

Two views are supported in ArgSM: Schema and Argumentation view. They are

displayed alongside each other in the GUI (Figure 3, from right to left). Together, they

should help the users to review the inputs and make decisions effectively.

– Schema view. This view shows the schema matching network for the users who

do not have deep understandings of argumentation, hence another name User view.

In this view, correspondences are highlighted according on to their status. There

are three possible status: (1) all approved and (2) all disapproved respectively for

correspondences that are approved and disapproved by all users, and (3) ambiguous

for those that are approved by some and disapproved by the others.

– Argumentation view. Also called the technical view, it is intended for those who

have knowledge on argumentation. In this view, the numbers outside the shapes in-

dicate the strengths of decisions (circles) or witnesses (squares) respectively. There

are two perspectives supported:

• Decision-making perspective shows all possible decisions (aggregated from the

inputs) and the associated witnesses (arguments) that explain the reasons for

making decisions.

• Abstract argumentation perspective presents the argumentation framework in

the form of a directed graph. The nodes are the arguments and the directed

edges are elements of the attack relation.

Those views are further supported by three view modes. Apart from the Normal mode,

which is set by default and has no interaction at all, the others allow users to interact

with the network and the arguments:

– Schema-Argumentation mode. Upon clicking on a correspondence in the Schema

view, the user can see all generated decisions (circle shapes) and witnesses (square

shapes) in the Argumentation view. For instance, in Figure 1, correspondence c3 has

4 JUNG - http://jung.sourceforge.net
5 https://code.google.com/p/argsm/wiki/ArgSM

http://jung.sourceforge.net
https://code.google.com/p/argsm/wiki/ArgSM

two arguments we
4

and we
5

for disapproving and wb
2

for approving. Therefore, the

users will have two decisions at their disposal (c4 and ¬c4, presented in circles) and

three witnesses (we
4
, we

5
, and wb

2
, presented in squares). Those circles and squares

will be highlighted when the users click on c4 in the Schema view.
– Argumentation-Schema mode. There are two cases. First, when choosing a wit-

ness in the Argumentation view, the participants will see all the involved correspon-

dences in the Schema view. Correspondences appearing in the support are showed

differently from those in the claim of the witness. In the other case, once a decisions

is clicked on, the relating correspondence is highlighted in the Schema view.

For a better understanding and stronger feelings of trust, ArgSM not only generates

explanations but also provides the foreseeable effects of each decision. Technically, we

keep the strength of arguments and the possible decisions up-to-date during negotiation.

6.2 Technical Challenges

When implementing ArgSM, we had to cope with a number of scalability issues. The

schemas are usually too large, leading to high response time (i.e. computation time) for

each human interaction and overwhelming control for the experts. To overcome such

challenges, we apply the following techniques:

– Partitioning. We divide the correspondences into small disjoint and independent

subsets such that any two correspondences in one subset share a common attribute.
– Caching. We apply the view maintenance technique [6] with a repository storing

intermediate results along the process. The rationale behind is that collaborative

reconciliation is incremental as a change (insertion or removal) only affects some

arguments. Recomputing all arguments after each modification is unnecessary.
– Filtering. It is not useful to generate any and every argument. We only filter for

arguments of predefined claims. Hence, not only does it reduce computation time

but also avoid overwhelming the users. Every argumentation process should operate

on the filtered set. That set may be refined by modifying the predefined claims.

To show the efficiency of the above techniques, we set up an experiment to measure the

response time of computing arguments and attacks for a large network. With the help of

automatic matchers, we obtain 472 correspondences in the network. Since the network

is large, it is partitioned into 21 clusters, in which smallest and biggest ones contain

6 and 59 correspondences respectively. Applying caching and filtering for each cluster,

the response time varies from 0.38s (the smallest cluster) to 12.92s (the biggest cluster).

In total, it takes about 61.16s to generate all arguments and attacks.

Fig. 3: The GUI of ArgSM, with Argumentation view (left) and Schema view (right)

7 Related Work

In this section, we first review some techniques and applications related to schema

matching. We then review salient work that supports negotiation in collaborative infor-

mation systems as well as applications built on top of argumentation-based negotiation.

7.1 Schema Matching - Research and Applications

Database schema matching is an active research field. The developments of this area

have been summarized in two surveys [4, 38]. Existing works on schema matching fo-

cused mainly on improving quality parameters of matchers, such as precision or recall

of the generated matchings. Recently, however, one started to realize that the extent to

what precision and recall can be improved may be limited for general-purpose match-

ing algorithms. Instead of designing new algorithms, there has been a shift towards

matching combination and tuning methods. These works include YAM [14], systematic

matching ensemble selection [21], automatic tuning of the matcher parameters [29],

or validation of correspondences with the help of schemas belonging to the same do-

main [42]. While there is a large body of works on schema matching, the post-matching

reconciliation proces, which is central to our work, has received little attention in the

literature. Recently, there are some works [13, 26, 30, 37] using pay-as-you-go integra-

tion method to establish the initial matching and then incrementally improve matching

quality. While [26, 37] depend on one user only, the framework in [30] relies on the

work of multiple participants of an online community, who -unlike in our setting- do

not communicate. The authors [30] propose statistical aggregating techniques for con-

flicting user inputs. Another major difference between our work and [30] is that we

assume integrity constraints on the correspondences.

Regarding applications, one of the major challenges posed by the Intertnet and col-

laborative business is enterprise interoperability (EI) in recent years is the ability of

two or more systems to exchange information with each other. Several relevant ini-

tiatives have been undertaken and are ongoing today worldwide. Among them, schema

matching is an important primitive to tackle strategic challenges such as Interoperability

Service Utility [17], Web Technologies for Enterprise Interoperability [31], Knowledge-

Oriented Collaboration [32], and Science Base for Enterprise Interoperability [10]. The

roles of schema matching in enterprise systems are summarized in [46].

7.2 Argumentation in Collaborative Work

In the literature, many researchers have studied collaborative work which involves

multi participants with different and possibly conflicting interests. In order to resolve

conflicts and reach mutually acceptable agreements, participants negotiate with each

other. There is a large body of mechanisms dedicated to support this negotiation pro-

cess, including game-theoretical approach [28, 43], heuristic-based approach [19, 27],

and argumentation-based approach [34, 45]. The work of this paper focuses on the

argumentation-based approach, which provides not only explanations for each decision

but also a language for communication between participants [40, 41].

The argumentation-based approach has been successfully applied to many practical

applications. In e-commerce systems [3], argumentation is used for solving conflicts

that may arise among distributed providers in large scale networks of web services and

resources, thus improving the automation level of business processes. In collaborative

& cooperative planning [18, 33, 44], argumentation can be combined with other tech-

niques (e.g. machine learning) to help participants collaborate to solve problems by de-

termining what policies are operating by each participant. In social-network platforms

[22], arguments can be extracted from natural language and then argumentation is used

to determined the social agreements among participants. In cloud-computing [24], ar-

gumentation can be used to help cloud providers, who manage computational resources

in the platform, to reach an agreement on reacting against physical failures. In semantic

web [39], argumentation has been modeled under Argument Interchange Format (AIF)

ontology, which forms the foundation for a large-scale collection of interconnected ar-

guments in the Web. In this paper, we apply argumentation in data integration domain,

which is an active research field for more than ten years [4].

From the argumentation point of view, our work is related to two main directions in

argumentation research: abstract and logical argumentation. This classification can be

found in [36], along with a discussion on the development of argumentation research.

In brief, abstract argumentation was proposed in [16]. In that paper, the author used

an argumentation framework to describe a system of arguments and attacks, which are

actually considered as abstract objects, hence the name abstract argumentation. Ac-

ceptability semantics of arguments were studied in [16], [15], and [9]. To make abstract

argumentation more applicable, there are attempts to give concrete definitions to argu-

ments and attacks. The most prominent proposal is logical argumentation [5], which

relies on propositional logic. In particular, an argument is a pair of support and claim,

while attacks are defined on the logical inconsistencies between the supports and/or

claims of arguments.

8 Conclusion

We presented an argumentation-based tool to support collaborative reconciliation, where

multiple users, with different sorts of opinions, cooperate to validate the outputs of au-

tomatic matchers. While splitting the reconciliation task is highly desirable, combining

the individual results in the presence of consistency constraints is very challenging for

the collaborating experts. Our tool and its services shall facilitate collaboration. In par-

ticular, we systematically detect conflicts, provide the experts with visual information to

understand the causes of the problems. Moreover, we offer services to better understand

decision consequences and make collaborative reconciliation more transparent.

Our work opens up some future research directions. First, we will design a negotia-

tion protocol to enable negotiation within our tool. Second, we would like to extend the

notion of proposed constraints and consider further integrity constraints that are rele-

vant in the praxis (e.g., functional dependencies, domain-specific constraints). Third, we

would like to apply our methods to other problems. While our work focuses on schema

matching, our techniques, especially the argumentation-based reconciliation, could be

applicable to other tasks such as entity resolution or business process matching.

Acknowledgment

This research has received funding from the NisB project - European Union’s Seventh

Framework Programme (grant agreement number 256955) and the PlanetData project -

Network of Excellence (grant agreement number 257641). Many thanks to SAP 6 and

MOM 7 for providing use cases and data sets as well as evaluating our tool.

References

[1] D. Aumueller et al. “Schema and ontology matching with COMA++”. In: SIGMOD. 2005,

pp. 906–908.

[2] K Belhajjame. “User feedback as a first class citizen in information integration systems”.

In: CIDR. 2011, pp. 175–183.

[3] J. Bentahar et al. “Using argumentation to model and deploy agent-based B2B applica-

tions”. In: KBS (2010), pp. 677–692.

[4] P. A. Bernstein, J. Madhavan, and E. Rahm. “Generic Schema Matching, Ten Years Later”.

In: PVLDB 4.11 (2011), pp. 695–701.

[5] P. Besnard and A. Hunter. Elements of Argumentation. The MIT Press, 2008.

[6] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. “Efficiently updating materialized views”.

In: SIGMOD Rec. (1986), pp. 61–71.

[7] G. Brewka, T. Eiter, and M. Truszczyński. “Answer set programming at a glance”. In:

Commun. ACM (2011), pp. 92–103.

[8] F. Calimeri et al. “Computable Functions in ASP: Theory and Implementation”. In: ICLP.

2008, pp. 407–424.

[9] M. Caminada. “Semi-Stable Semantics”. In: COMMA. 2006, pp. 121–130.

[10] Y. Charalabidis, R. J. Gonalves, and K. Popplewell. “Developing a Science Base for En-

terprise Interoperability”. In: Enterprise Interoperability IV. 2010, pp. 245–254.

[11] G. Charwat, J. P. Wallner, and S. Woltran. “Utilizing ASP for Generating and Visualizing

Argumentation Frameworks”. In: ASPOCP. 2012, pp. 51–65.

[12] S. Doutre and J. Mengin. “On Sceptical Versus Credulous Acceptance for Abstract Argu-

ment Systems”. In: JELIA. 2004, pp. 462–473.

[13] F. Duchateau, Z. Bellahsene, and R. Coletta. “Matching and Alignment: What Is the Cost

of User Post-Match Effort?” In: OTM. 2011, pp. 421–428.

[14] F. Duchateau et al. “(Not) yet another matcher”. In: CIKM. 2009, pp. 1537–1540.

[15] P. M. Dung, P. Mancarella, and F. Toni. “Computing ideal sceptical argumentation”. In:

Artif. Intell. (2007), pp. 642–674.

[16] P. M. Dung. “On the Acceptability of Arguments and its Fundamental Role in Nonmono-

tonic Reasoning, Logic Programming and n-Person Games”. In: Artif. Intell. 77.2 (1995),

pp. 321–358.

[17] B. Elvesaeter et al. “Towards enterprise interoperability service utilities”. In: ECOCW.

2008, pp. 224–229.

[18] C. D. Emele, T. J. Norman, and S. Parsons. “Argumentation strategies for plan resourcing”.

In: AAMAS. 2011, pp. 913–920.

[19] P. Faratin, C. Sierra, and N. R. Jennings. “Negotiation decision functions for autonomous

agents”. In: RAS (1998), pp. 159 –182.

[20] A. Gal. Uncertain Schema Matching. Morgan & Claypool Publishers, 2011.

6 http://www.sap.com
7 http://www.momentumni.org

http://www.sap.com
http://www.momentumni.org

[21] A. Gal and T. Sagi. “Tuning the ensemble selection process of schema matchers”. In: JIS

(2010), pp. 845–859.

[22] K. Grosse, C. I. Chesevar, and A. G. Maguitman. “An Argument-based Approach to Min-

ing Opinions from Twitter.” In: AT. 2012, pp. 408–422.

[23] P. Haas et al. “Data is Dead Without What-If Models”. In: PVLDB. 2011, pp. 11–14.

[24] S. Heras et al. “The Role of Argumentation on the Future Internet: Reaching agreements

on Clouds”. In: AT. 2012, pp. 393–407.

[25] N. Q. V. Hung et al. “An MAS Negotiation Support Tool for Schema Matching (Demon-

stration)”. In: AAMAS. 2013.

[26] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. “Pay-as-you-go user feedback for dataspace

systems”. In: SIGMOD. 2008, pp. 847–860.

[27] R. Kowalczyk and V. Bui. “On Constraint-Based Reasoning in e-Negotiation Agents”. In:

AMEC. 2001, pp. 31–46.

[28] S. Kraus, K. Sycara, and A. Evenchik. “Reaching agreements through argumentation: a

logical model and implementation”. In: AI (1998), pp. 1–69.

[29] Y. Lee et al. “eTuner: tuning schema matching software using synthetic scenarios”. In:

JVLDB (2007), pp. 97–122.

[30] R. McCann and W. Shen. “Matching schemas in online communities: A web 2.0 ap-

proach”. In: ICDE (2008), pp. 110–119.

[31] M. Nagarajan et al. “Semantic interoperability of web services-challenges and experi-

ences”. In: ICWS. 2006, pp. 373–382.

[32] A. M. Ouksel and A. Sheth. “Semantic interoperability in global information systems”. In:

SIGMOD (1999), pp. 5–12.

[33] P. Pardo et al. “Multiagent argumentation for cooperative planning in DeLP-POP”. In:

AAMAS. 2011, pp. 971–978.

[34] S. Parsons, C. Sierra, and N. Jennings. “Agents that Reason and Negotiate by Arguing”.

In: JLC (1998), pp. 261–292.

[35] E. Peukert, J. Eberius, and E. Rahm. “AMC - A framework for modelling and comparing

matching systems as matching processes”. In: ICDE. 2011, pp. 1304–1307.

[36] H. Prakken. “Some Reflections on Two Current Trends in Formal Argumentation”. In:

Logic Programs, Norms and Action. 2012, pp. 249–272.

[37] Y. Qi, K. S. Candan, and M. L. Sapino. “FICSR: feedback-based inconsistency resolution

and query processing on misaligned data sources”. In: SIGMOD. 2007, pp. 151–162.

[38] E. Rahm and P. A. Bernstein. “A Survey of Approaches to Automatic Schema Matching”.

In: JVLDB (2001), pp. 334–350.

[39] I. Rahwan, F. Zablith, and C. Reed. “Towards large scale argumentation support on the

semantic web”. In: AAAI. 2007, pp. 1446–1451.

[40] I. Rahwan et al. “Argumentation-based negotiation”. In: KER (2003), pp. 343–375.

[41] S. Sá and J. a. Alcântara. “Cooperative dialogues with conditional arguments”. In: AAMAS.

2012, pp. 501–508.

[42] K. Saleem and Z. Bellahsene. “Complex Schema Match Discovery and Validation through

Collaboration”. In: OTM. 2009, pp. 406–413.

[43] T. Sandholm. “Algorithm for optimal winner determination in combinatorial auctions”.

In: AI (2002), pp. 1–54.

[44] O. Sapena, A. Torreño, and E. Onaindia. “On the construction of joint plans through argu-

mentation schemes”. In: AAMAS. 2011, pp. 1195–1196.

[45] C. Sierra et al. “A Framework for Argumentation-Based Negotiation”. In: ATAL. 1997,

pp. 167–182.

[46] K. P. Smith et al. “The Role of Schema Matching in Large Enterprises”. In: CIDR. 2009.

	Collaborative Schema Matching Reconciliation

