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Collaborative Semantic Understanding and Mapping

Framework for Autonomous Systems
Yufeng Yue, Chunyang Zhao, Zhenyu Wu, Chule Yang, Yuanzhe Wang, and Danwei Wang

Abstract—Performing collaborative semantic mapping is a
critical challenge for cooperative robots to enhance their com-
prehensive contextual understanding of the surroundings. This
paper bridges the gap between the advances in collaborative
geometry mapping that relies on pure geometry information
fusion, and single robot semantic mapping that focuses on
integrating continuous raw sensor data. In this paper, a novel
hierarchical collaborative probabilistic semantic mapping frame-
work is proposed, where the problem is formulated in a dis-
tributed setting. The key novelty of this work is the modelling
of the hierarchical semantic map fusion framework and its
mathematical derivation of its probability decomposition. At
the single robot level, the semantic point cloud is obtained by
combining information from heterogeneous sensors and used
to generate local semantic maps. At the collaborative robots
level, local maps are shared among robots for global semantic
map fusion. Since the voxel correspondence is unknown between
local maps, an Expectation-Maximization approach is proposed
to estimate the hidden data association. Then, Bayesian rule is
applied to perform semantic and occupancy probability update.
Experimental results on the UAV (Unmanned Aerial Vehicle) and
the UGV (Unmanned Ground Vehicle) platforms show the high
quality of global semantic maps, demonstrating the accuracy and
utility in practical missions.

Index Terms—Collaborative Semantic Mapping, Semantic Seg-
mentation, Information Fusion, Mobile Robots

I. INTRODUCTION

As autonomous systems become more common in our daily

lives, they are expected to interact with each other, share infor-

mation, and execute tasks collaboratively. Collaborative robots

have benefits of multi-perspective perception, high efficiency,

and robustness to single robot failure, so they can perform

more intelligent tasks such as human robot teaming and task-

oriented robots formation. Due to limited sensing capabilities,

each robot has only partial information of the surroundings.

In such cases, the fundamental challenge is to deploy multiple

robots that can perform collaborative semantic understanding

and reconstruct the environment. Current 3D geometry map-

ping method only contains geometry information, which limits

the application of robots in high level tasks. To enhance the

perception capability of a group of robots, individual robots

have to share local maps to generate a global representation,

which is composed of geometry information and semantic
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Fig. 1. The demonstration of collaborative semantic understanding and map-
ping in mixed indoor-outdoor environment. The red trajectory was followed by
robot 1, while the orange one by robot 2. Top: local semantic maps generated
by two robots. Bottom: collaboratively generated global semantic map.

context. Till now, the problem of collaboratively generating a

consistent global semantic map using multiple robots remains

open. This paper takes one step forward by focusing on

collaborative probabilistic semantic mapping problem.

Single robot semantic mapping serves as the basic module

for collaborative semantic mapping [1]. In recent years, multi-

modal sensor-based [2] and Octree-based [3] algorithms have

been proposed for single robot semantic mapping. However,

there is a fundamental difference between single robot map-

ping and collaborative mapping because they work on different

data levels. Single robot mapping aims to fuse the input con-

tinuous raw sensor scans into a local map, while collaborative

mapping takes local maps generated by different robots as the

input. The data heterogeneity makes a single-layer structure

unqualified for collaborative mapping. In addition, it is not

efficient to transmit raw sensor data between robots due to the

bandwidth limitation. Therefore, the first key challenge is how

to design a hierarchical collaborative mapping framework that

is able to perform collaborative semantic perception efficiently

under communication constraints.

Various approaches have been proposed to perform collab-

orative geometry mapping, such as estimating relative local-

ization [4], accounting for transformation uncertainty [5], or

updating maps in the global perspective [6]. However, existing

collaborative geometry mapping methods focus on fusing

geometry information such as planes, lines, and points. In the

process of geometry information fusion, they simply fuse the

nearest neighboring voxels without considering the disparity of

semantic information. Collaborative semantic mapping differs

from them because the data association between semantic vox-

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 11,2020 at 04:21:04 UTC from IEEE Xplore.  Restrictions apply. 



1083-4435 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2020.3015054, IEEE/ASME

Transactions on Mechatronics

els is unknown, which introduces another layer of difficulty.

In summary, the second key challenge is how to estimate

the hidden data association between semantic voxels, update

and integrate probabilistic information into a consistent global

semantic map.

This work is motivated by the fact that comprehensive anal-

ysis, modelling and implementation of collaborative semantic

mapping methods have not been studied in-depth. This paper

bridges the gap between collaborative geometry mapping that

relies on pure geometry information fusion, and single robot

semantic mapping that focuses on integrating continuous raw

sensor data. The key novelty of this work is the modelling

of the hierarchical semantic map fusion framework and the

mathematical derivation of its probability decomposition. The

main contributions are listed as follows:

• A hierarchical collaborative probabilistic semantic map-

ping framework is proposed and formulated in both

single-robot and collaborative robots levels.

• An Expectation-Maximization (EM) algorithm is pro-

posed to estimate the hidden data association between

voxels in local maps, where the Bayesian rule is applied

to perform semantic and occupancy probability updates.

• The proposed framework is validated in various experi-

mental scenarios, demonstrating its accuracy and utility

in practical tasks.

The rest of the paper is organized as follows. Section II

reviews the related work. Section III gives an overview of

the proposed framework. Section IV explains the theoretical

basis for collaborative semantic mapping. Section V shows the

experimental procedures and results. Section VI concludes the

paper with a discussion on future work.

II. RELATED WORK

In this section, an extensive survey of existing approaches

related to collaborative semantic mapping is provided. Among

these solutions, semantic segmentation, single robot semantic

mapping and collaborative geometry mapping are the most

relevant domains.

A. Semantic Segmentation

Interpreting the scene is important for the robot to interact

with the environment. The purpose of semantic segmentation

is to assign a label to each pixel of an image. In recent

years, convolutional neural networks (CNNs) have become the

mainstream in computer vision tasks such as image classi-

fication and segmentation. For semantic segmentation tasks,

the work in [7] presents a novel fully connected network

(FCN) architecture Segnet, where the decoder up-samples its

lower resolution input as the feature map. Refinenet [8] is

proposed to exploit all the information for high-resolution

image prediction. In Deeplab [9], multiple parallel atrous

convolutions with different rates are involved to process the

feature map. In this paper, Deeplab is employed to process the

image data perceived by mobile robots.

B. Single Robot Semantic Mapping

To realize single robot semantic mapping, each robot needs

to localize itself accurately in the environment. Up to now,

the simultaneous localization and mapping (SLAM) for single

robot is considered as a well-studied problem. Current ap-

proaches mainly consists of Lidar SLAM [10], visual SLAM

[11] and graph SLAM [12]. However, they only restores the

geometry information of the surroundings.

With the rapid development of deep learning, semantic

mapping has attracted a lot of attention. A comprehensive

review for single robot semantic mapping is summarized in

[1]. The authors in [13] propose a hierarchical framework

to combine spatial information and geometric maps in 2D

environments. Then, the work in [14] propose an incremental

semantic 3D mapping system for large-scale environments

using the scrolling occupancy grid. To improve the efficiency,

the authors in [3] proposes an octree based multi-label 3D

semantic mapping algorithm. Since semantic information is

also important for navigation [15], the authors in [16] use the

semantic map to provide a hierarchical navigation solution.

More recently, the authors in [17] applies object-level entities

to construct semantic maps and integrate them into the seman-

tic SLAM framework. The authors in [18] integrates semantic

mapping with simultaneous object detection and localization.

To perform mapping in dynamic environments, the authors

in [19] propose a dense mapping algorithm based on stereo

camera. Regarding the reconstruction of moving objects, the

work in [20] incrementally fuses sensor observations into

a consistent semantic map. The aforementioned approaches

promote the development of single robot semantic mapping.

However, single robot mapping mainly fuses incoming raw

sensor data, while collaborative mapping takes local maps as

input. This inherent difference prevents existing algorithms

from being directly applied to collaborative semantic map-

ping, therefore a novel framework and theoretical formula are

needed.

C. Collaborative Geometry Map Fusion

The coordination between multiple robots allows them to

perform difficult tasks more efficiently and reliably. Dis-

tributed multi-robot coordination brings the challenges of data

sharing [5], relative localization [21], and communication

management [22]. The key challenge is to fuse the maps

generated by individual robots (i.e., local maps) into a globally

consistent map (i.e., a global map).

In order to balance the requirements of limited commu-

nication and detailed 3D mapping, global mapping requires

careful selection of map types based on actual conditions [23].

Data fusion between multiple robots can be grouped into three

different types, raw sensor data [24], volumetric maps [25] and

topological maps [23]. When a robot receives local maps from

neighboring robots, the key issue is to integrate the probabilis-

tic information from these maps into a global consistent map.

In most of the previous methods, the final maps are generated

by stitching the overlap area [26] or averaging the geometry

occupancy probability on the voxel-wise level [27]. To fuse

semantic maps, the updating of semantic probability should

also be considered. Collaborative semantic mapping differs

from them because the data association between corresponding

semantic voxels is unknown. Therefore, there is a strong need

2

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 11,2020 at 04:21:04 UTC from IEEE Xplore.  Restrictions apply. 



1083-4435 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2020.3015054, IEEE/ASME

Transactions on Mechatronics

Fig. 2. The framework of hierarchical collaborative semantic understanding and mapping. The red trajectory was followed by robot 1, while the orange one
by robot 2.

for a strategy to estimate hidden data associations and update

the probability correctly.

III. SYSTEM FRAMEWORK

In this section, the system architecture for collaborative se-

mantic mapping is presented, where the problem is formulated

to provide a theoretical basis for the system.

A. The Framework of Hierarchical Semantic 3D Mapping

The objective of this paper is to develop a hierarchical

framework for collaborative semantic mapping that enables a

group of robots to generate a consistent global semantic map.

The overview of the system architecture is depicted in Figure

2, where the framework consists of three modules: multimodal

semantic information fusion, single robot semantic mapping

and collaborative semantic map fusion. Since the collabora-

tive robot system operates in a distributed configuration, the

organization of this paper follows a hierarchical structure from

the single robot level to the multi-robot level.

For single robot level, the heterogeneous sensors carried by

each robot are calibrated and integrated. The robots generate

semantic point clouds based on image semantic segmentation

and sensor fusion output. By applying the Bayesian rule, se-

mantic label probability and occupancy probability are updated

to generate a single-robot semantic map.

For multi-robot level, each robot communicates with

neighboring robots to share local 3D semantic maps. The

Expectation-Maximization (EM) approach is applied to esti-

mate the hidden data association between voxels. Then, the

local semantic maps are fused into a global consistent semantic

map. The notational symbols used in this paper are defined in

Table I.

B. Centralized Problem Formulation

Considering a group of robots moving through an unknown

environment and attempting to map out the surroundings, the

problem can be defined as follows:

Centralized Definition: Given a group of robots R =∆

{r}1:R, the objective is to estimate the global semantic map Mt

TABLE I
THE MAIN NOTATIONS USED THROUGHOUT THE PAPER.

Symbol Description

Single Robot Level:
r A single robot is denoted as r

I
(r)
t Camera observation of robot r at time t

L
(r)
t 3D laser observation of robot r at time t

Ls
(r)
t Semantic labels correspond to 3D laser points

x
(r)
t Pose of robot r at time t

m
(r)
t Local semantic map generated by robot r at time t

Multi-Robot Level:

R Set of all robots R =∆ {r}1:R, R is number of robots

R r Set of neighboring robots R r =
∆ {rn}1:Rn

in
communication with r, where the number is Rn

Mr The global map generated by robot r
Tr,rn

Relative position between robot r and rn

given camera observations I
(R )
1:t , 3D laser observations L

(R )
1:t

and robot trajectories x
(R )
1:t .

p(Mt |I
(R )
1:t ,L

(R )
1:t ,x

(R )
1:t ) (1)

The global semantic map M = {Mi}
N
1 consists of a set of

voxels. Each voxel Mi = (Mi
x,M

i
y,M

i
z,vi,oi) is defined as a

tuple, which includes the position of the extracted voxel center

mi = (Mi
x,M

i
y,M

i
z), the occupancy probability value vi and the

semantic label oi. The label oi comes from a finite set of

discrete class labels: S = {1,2, · · · ,k, · · ·}. For the input, we

have xt ∈ SE(3) in 3D, It ∈ R
2 in 2D and Lt ∈ R

3 in 3D.

In the centralized setting, the problem corresponds to the

Maximum A Posterior (MAP) estimation problem (1). Assum-

ing the communication is perfect, all the robots can share their

latest sensor observations L
(R )
1:t and I

(R )
1:t to the control station

in real time. However, it is challenging to transfer large size

raw sensor data with limited bandwidth. Therefore, the paper

adopts the distributed setting, and each robot builds its own

global semantic map.

C. Distributed Hierarchical Definition

In constrained environments, each robot r only has access

to its own raw sensor observations. In this case, the paper

introduces the single robot layer to perform local semantic

3
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mapping, which is an intermediate level that acts as percep-

tion and communication node. In order to improve network

efficiency and robustness, only local semantic maps are shared

among the group of robots. The collaborative robots level

mainly estimates the global semantic map given the output

from single robot.

Single Robot Level Definition: For each robot r, the

objective is to estimate its local semantic map m
(r)
t given its

camera observations I
(r )
1:t , 3D laser observations L

(r )
1:t and robot

trajectory x
(r )
1:t .

p(m
(r)
t |I

(r)
1:t ,L

(r)
1:t ,x

(r)
1:t ) (2)

In the single robot level, multimodal semantic information

fusion model serves as the input for each robot. Prior to single

robot semantic mapping, the multimodal information fusion

algorithm is applied to generate semantic point cloud. The

process of multimodal environmental perception is presented

in IV-A.

Given the input of semantic point cloud, each robot will

estimate its local semantic map m
(r)
t . For semantic mapping,

the occupancy probability and semantic label probability are

updated simultaneously. Based on conditional independence,

each voxel in the semantic map is updated separately with

occupancy update model and semantic update model. The

details of single robot semantic mapping are presented in IV-B.

The benefits of introducing the single robot level comes at

the following advantages, firstly, the size of the local seman-

tic map is greatly compressed compared to the raw sensor

data (point cloud and image), which significantly reduces

the communication burden; Besides, the factorization also

gives the flexibility of choosing various SLAM and semantic

segmentation algorithms.

Collaborative Robots Level Definition: The objective of

collaborative semantic mapping is to estimate global semantic

map Mr under a fully distributed network, given local maps

m
(r,R r)
t from neighboring robots R r.

p(Mr|m
(r)
t ,Φrn∈R r(m

(rn)
t )) (3)

At the collaborative robots level, it is assumed that each

robot r has estimated its semantic map m
(r)
t based on local

observations. However, the perception ability and operation

area of a single robot are limited. The comprehensive under-

standing of the environment should be obtained by integrating

information from neighboring robots. Hence, robot r receives

the local map m
(rn)
t from the nearby robots rn ∈ R r, where

R = {r∪R r} if the communication covers all robots.

Under limited communication, robot r receives neighboring

maps in a certain time interval. Hence, the map fusion is per-

formed serially. Given the received local maps, an Expectation-

Maximization (EM) approach is proposed to estimate the

hidden data association between voxels in local maps, where

Bayesian rule is applied to perform semantic and occupancy

probability update (see IV-C).

IV. COLLABORATIVE SEMANTIC 3D MAPPING

This section presents a hierarchical collaborative semantic

mapping framework, which is divided into three subsections:

Fig. 3. Multimodal semantic information fusion model.

multimodal semantic information fusion, single robot semantic

mapping and collaborative semantic map fusion.

A. Multimodal Semantic Information Fusion

The goal of multi-modal semantic information fusion is to

assign a semantic label for each point in a 3D point cloud. In

this work, we utilize the 3D LiDAR and the visual camera as

the main sensors for semantic mapping. At time t, to obtain

a semantic point cloud, the semantic image Ist is generated

by passing the raw image It through the Deeplab model [7].

Deeplab can output 19 semantic classes, including road, tree,

building, and pedestrian etc. Then, we assign the semantic

classes from the semantic image to the point cloud by utilizing

the calibration parameters and projection equation: first, the 3D

point cloud Lt is projected onto the semantic image Ist with

the projection equation (4). Due to the limited field of view of

the camera, only 3D points that fall into the semantic image

will receive semantic information. Here, Li
t is the 3D point in

the point cloud Li
t ∈ Lt , T c

l is the extrinsic parameter between

the 3D LiDAR and the camera, Kc is the intrinsic parameter

of the camera, li
t is the projected point [28]. After projection,

the projected point li
t is overlapped with the 2D pixel pi

st
in

the semantic image Ist (pi
st
∈Ist ). Therefore, the semantic label

of pixel pi
st

can be assigned to point li
t and Li

t . Thus, each 3D

point Li
t receives the semantic information. Subsequently, a

semantic point cloud Lst can be obtained.

li
t = KcT c

l Li
t (4)

The generated semantic point cloud consists of L
(r)
1:t and

Ls
(r)
1:t , where L

(r)
1:t denotes 3D geometry coordinate and Ls

(r)
1:t

represents the corresponding 19D semantic labels, the sub-

script 1 : t means from time 1 to t, the superscript (r) denotes

the robot number r. In the semantic mapping process, raw

images Ir
1:t can not be used as the input. Therefore, the

semantic point cloud will serve as the input. Then, (2) can

be rewritten as:

p(m
(r)
t |Ls

(r)
1:t ,L

(r)
1:t ,x

(r)
1:t ) (5)

4
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B. Single Robot Semantic Mapping

Single robot localization problem is the basis for semantic

mapping, which has been well studied and many efficient

approaches have been developed. Any SLAM methods can

be applied to estimate the odometry x1:t . This paper focuses

on collaborative mapping and we assume that the local maps

are consistent. As the laser scan is with respect to its local

sensor frame, the semantic point cloud is converted into the

map frame using odometry x1:t , where L̂t = xt ∗Lt denotes the

transformed 3D geometry coordinate, L̂st = xt ∗Lst denotes the

transformed semantic labels, then we have

p(m
(r)
t |Ls

(r)
1:t ,L

(r)
1:t ,x

(r)
1:t ) = p(m

(r)
t |L̂

(r)
1:t , L̂s

(r)
1:t ) (6)

As a result, the probability distribution of map mr is

estimated given observation L̂
(r)
1:t and L̂s

(r)
1:t as shown in (6).

In the following content, the denotation of m
(r)
t is simplified

as mr. For the local semantic map, we define mr = {mi
r}

Nmr
i=1 ,

where Nmr is the number of voxels in the map. Since the voxel-

wise correspondences are usually assumed to be independent,

the probability density function of p(m
(r)
t |I

(r)
1:t ,L

(r)
1:t ,x

(r)
1:t ) can be

factorized as:

p(mr|L̂s
(r)
1:t , L̂

(r)
1:t ) =

Nmr

∏
i=1

p(mi
r|L̂s

(r)
1:t , L̂

(r)
1:t ) (7)

Then, the probability of a leaf node mi
r is estimated by

updating semantic label probability and occupancy probabil-

ity simultaneously. Based on conditional independence, each

voxel is updated separately with occupancy update model

p(vi
r|L̂

(r)
1:t ) and semantic update model p(oi

r|L̂s
(r)
1:t ), then (7) is

rewritten as (8).

Nmr

∏
i=1

p(vi
r,o

i
r|L̂s

(r)
1:t , L̂

(r)
1:t ) =

Nmr

∏
i=1

p(vi
r|L̂

(r)
1:t )

︸ ︷︷ ︸

Occupancy Update

· p(oi
r|L̂s

(r)
1:t )

︸ ︷︷ ︸

Semantic Update

(8)

1) Voxel Occupancy Update: The occupancy probability

is recursively updated given the incoming 3D point cloud

L̂
(r)
1:t . Based on Bayesian rule, the occupancy update model

is expanded and updated in (9). The updating of (8) depends

on the current observation p(vi
r|L̂

(r)
t ), the previous estimation

p(vi
r|L̂

(r)
1:t−1) and the prior probability p(vi

r). p(vi
r) denotes the

initial occupancy probability of each voxel and is set as 0.5.

The details of deriving (9) with Bayesian rule can be found

in [29].

p(vi
r|L̂

(r)
1:t ) = [1+

1− p(vi
r|L̂

(r)
t )

p(vi
r|L̂

(r)
t )

1− p(vi
r|L̂

(r)
1:t−1)

p(vi
r|L̂

(r)
1:t−1)

p(vi
r)

1− p(vi
r)
]−1

(9)

2) Semantic Label Update: The semantic probability is

recursively updated given the incoming set of 19 semantic

labels L̂s
(r)
1:t = {L̂s

(r)
1:t (k)}

19
k=1. Then, p(oi

r|L̂s
(r)
1:t ) denotes the

probability of updated label class (k=1:19). Based on Bayesian

rule, the semantic update model is expanded and updated in

(10). The updating of (10) depends on the current observation

p(oi
r|L̂s

(r)
t ), the previous estimation p(oi

r|L̂s
(r)
1:t−1) and the prior

probability p(oi
r). p(oi

r) denotes the initial semantic probabil-

ity of each voxel and is set as 1
19

. The details of deriving (10)

with Bayesian rule can be found in [29].

p(oi
r|L̂s

(r)
1:t )= [1+

1− p(oi
r|L̂s

(r)
t )

p(oi
r|L̂s

(r)
t )

1− p(oi
r|L̂s

(r)
1:t−1)

p(oi
r|L̂s

(r)
1:t−1)

p(oi
r)

1− p(oi
r)
]−1

(10)
After fusion, the class that corresponds to maximum prob-

ability is assigned as the label of the voxel. The process of

single robot semantic map update is shown in Fig. 4(a-b).

C. Collaborative Semantic Map Fusion

1) Sequential Semantic Map Fusion: Under limited band-

width, maps are generated and transmitted sequentially in a

time interval. This results in robot r receiving its neighboring

local maps in some permutation π . Hence, the map fusion

is performed serially, where a certain threshold is satisfied to

trigger a pair-wise map sharing and fusion. Then, Eq. (3) can

be factorized into Eq. (11). Initially, the relative transformation

matrix Tr,rn between mr and mrn is unknown. To estimate Tr,rn ,

this paper applies the map matching algorithm proposed in

[30]. Then, the neighboring robot map mrn is transformed

to coordinate frame of robot r by transformation function

Φ(Tr,rn ,mrn), which is simplified as Φ(mrn).

p(Mr|mr,Φrn∈R r(mrn))

=
Nr

∏
rn=1

p(M
π(1:rn)
r |M

π(1:rn−1)
rn ,Φ(m

π(rn))) (11)

where M
π(1:rn)
r is the global map by fusing M

π(1:rn−1)
r with

latest incoming map m
π(rn). The final global fused map Mr of

robot r can be retrieved after the end of this serial process,

hence Mr = M
π(1,Nr)
r .

2) Global Map Occupancy and Label Update: The key dif-

ference between local and global semantic map update comes

from two aspects. First, the input of single robot mapping is

raw sensor observation (Fig. 4(a)), while the input of global

semantic mapping is local semantic maps (Fig. 4(c)). Since

voxel correspondence is unknown, we need to establish the

data association relationship before fusion. Second, the same

object can be observed in different perspectives by different

robots, the voxels representing the same object can have

different semantic classes. To show the difference, an example

is presented in Fig. 5. In the left image, the grey color denotes

geometry map. As can be seen, the geometry map fusion is

based on closest neighborhood distance search, which ignores

the object attributes. In contrast, the right image shows an

example of semantic map fusion, where blue voxels denote the

car and green voxels represent the grass. In this case, semantic

data association should reject the wrong correspondences and

accept correct pairs by incorporating semantic information.

For semantic map fusion, it is vital to come up with a

strategy to consider the dissimilarities and fuse them into the

global semantic map (Fig. 4(d)). The following two subsec-

tions will detail the hidden data association estimation and

global information fusion.

For simplification, we denote the latest incoming neigh-

boring robot map as mrn and current robot map as mr.

5
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Fig. 4. An example of local and global semantic map update process. The
value represents semantic probability, indicating the semantic update process.

(a) Geometry map fusion (b) Semantic map fusion

Fig. 5. An example of geometry map fusion process in Fig. 5a, it only con-
siders the geometry information and simply stitch the map. While in Fig. 5b,
semantic information is considered to establish correct data associations. The
red cross rejects the wrong data association.

Therefore, the probability distribution p(Mr|mr,Φrn∈R r(mrn))
in (11) is simplified as p(Mr|mr,mrn). Since the voxel-wise

correspondences are usually assumed to be independent, the

probability distribution of p(Mr|mr,mrn) can be factorized into

(12).

p(Mr|mr,mrn) = ∏
i=1

p(Mk
r |m

i
r,m

j
rn
) (12)

To estimate the hidden data association between voxel mi
r and

voxel m
j
rn , a binary variable di, j is introduced to represent the

data association between corresponding voxels mi
r and m

j
rn . We

have di, j = 1 if mi
r corresponds to m

j
rn and di, j = 0 otherwise.

Based on total probability theory, (12) is rewritten in the form

of (13).

p(Mr|mr,mrn) = ∏
i=1

n

∑
j

p(Mk
r ,di, j|m

i
r,m

j
rn
) (13)

To solve (13), Expectation-Maximization (EM) is applied,

which is an algorithm well-suited for models containing latent

variables. The mathematical derivation of EM can be found

in [31]. There are two steps of EM: the E-step efficiently

estimates the hidden variables by evaluating the expectation,

while M-step updates the global map probability given the

corresponding voxel pairs (see (14)).

p(Mk
r ,di, j|m

i
r,m

j
rn
) = p(di, j|m

i
r,m

j
rn
)

︸ ︷︷ ︸

E step:data association

· p(Mk
r |di, j,m

i
r,m

j
rn
)

︸ ︷︷ ︸

M step:probability update

(14)

E-Step: The E-step establishes the correspondence by cal-

culating the minimum distance metric. Here, we define a 5D

descriptor as {mx
i ,m

y
i ,m

z
i ,vmi

,omi
}, which includes the center

coordinate of voxel mx
i ,m

y
i ,m

z
i (3D), occupancy probability

vmi
(1D) and semantic label omi

(1D). The corresponding

voxel is calculated by finding the nearest neighborhood as

formulated in (15). Once the nearest neighborhood within a

certain threshold is found, the data association is established

between mi
r and m

j
rn with di, j = 1. Otherwise, we let di, j = 0.

An example of E-Step with semantic information is shown in

Fig. 5b.

p(di, j|m
i
r,m

j
rn
) = de(m

i
r,m

j
rn
)+dv(vmi

r
,v

m
j
rn
)+ov(omi

r
,o

m
j
rn
)

= ||mi
r −m j

rn
||2 + ||vmi

r
− v

m
j
s
||2 + ||omi

r
−o

m
j
s
||2

(15)

M-Step: Given the data association di, j and corresponding

voxel pairs mi
r, m

j
rn , the next step is to fuse corresponding

voxels into the global voxel Mk
r . (16) is the M-step of updating

the probability, which is defined in (14). Since each voxel

contains occupancy probability and semantic label probability,

(16) is rewritten into (17). Considering the occupancy update

and semantic update are updated independently, (17) is fac-

torized into (18) as a global occupancy update model and a

global semantic update model.

p(Mk
r |di, j,m

i
r,m

j
rn
) (16)

= p(v(Mk
r ),o(M

k
r )|di, j,v(m

i
r),v(m

j
rn
),o(mi

r),o(m
j
rn
)) (17)

= p(v(Mk
r )|di, j,v(m

i
r),v(m

j
rn
))

︸ ︷︷ ︸

Global Occupancy Update

· p(o(Mk
r )|di, j,o(m

i
r),o(m

j
rn
))

︸ ︷︷ ︸

Global Semantic Update

(18)

In single robot occupancy updating process (9), the input is a

set of raw semantic points. However, the input in collaborative

robots level is the probability value of local semantic map.

Each voxel can be regraded as a Gaussian distribution. In this

case, the fusion at collaborative robots level is the integration

of two Gaussian distributions. The initial semantic probability

of each global map voxel p(v(Mk
r )) is 0.5. Then, the global

occupancy update is formulated based on the Bayesian rule,

where details are provided in [29].

p(v(Mk
r )|di, j,v(m

i
r),v(m

j
rn
))

= [1+
1− p(v(m j

rn))

p(v(m j
rn))

1− p(v(mi
r))

p(v(mi
r))

p(v(Mk
r ))

1− p(Mk
r )
]−1 (19)

For the global semantic label probability update, the input

is 19 class probabilities of each voxel from the single robot

map. The initial semantic probability of each global map voxel

p(o(Mk
r )) is 1

19
(see (20)), where details are provided in [29].

p(o(Mk
r )|di, j,o(m

i
r),o(m

j
rn
))

= [1+
1− p(o(m j

rn))

p(o(m j
rn))

1− p(o(mi
r))

p(o(mi
r))

p(o(Mk
r ))

1− p(o(Mk
r ))

]−1 (20)

After fusion, the probability values for all 19 labels are

updated. The semantic probability of the most likely class

p(o(Mk
r ),max) for each voxel Mk

r is computed as follows:

p(o(Mk
r ),max) = argmax[p(o(Mk

r ),1), . . . , p(o(Mk
r ),19)]

(21)

As a result, the class that corresponds to maximum proba-

bility is assigned to the class label of the voxel.

6
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TABLE II
COMPARISON OF CORE FUNCTIONALITY WITH EXISTING APPROACHES.

Algorithms Category
Multimodal Geometry Semantic Collaborative Distributed
Perception Mapping Mapping Fusion Communication

Yang et al. [14] Single Robot × X X × ×
Berrio et al. [3] Single Robot X X X × ×

Saeedi et al. [23] Multiple Robots × X × X ×
Jessup et al. [27] Multiple Robots × X × X ×

This work Multiple Robots X X X X X

(a) Open Carpark (b) Mixed Environment (c) UAV-UGV Mapping

Fig. 6. The experiment setting up: Open Carpark, Mixed Environment, UAV-
UGV Mapping respectively.

V. EXPERIMENTAL RESULTS

The performance of the proposed collaborative semantic

mapping framework is validated through extensive real-world

experiments. Both qualitative and quantitative results are pre-

sented. The former is obtained by visualizing the fused map

in various experimental settings. Then, the latter is expressed

by showing average entropy, update process and size of data.

A. Evaluation Overview

1) Experimental Platform: Experiments are conducted by

operating the UGV platforms in real environments. All algo-

rithms are implemented on the ROS platform [32]. Two UGV

platforms (Husky Clearpath) are equipped with the Intel Core

i7-6700HQ CPU @ 2.60GHz CPU and the Nvidia GeForce

RTX 2060 @ 6GB RAM GPU. The UGVs are also equipped

with a 3D Velodyne LiDAR and a visual camera, where the

sensors have already been calibrated. The UAV platform is

designed by ourselves and is equipped with the ZED stereo

camera with Intel NUC 6i7KYK @ 2.60GHz CPU. The

communication between robots is established by long range

Wi-Fi with limited bandwidth.

For the software packages, LOAM [10] is applied for UGV

pose estimation. ORB-SLAM [11] is applied for UAV pose

estimation. The Cityscapes dataset [33] is used to train the

semantic segmentation model. HPFF [30] is implemented to

estimate relative transformation between robots, and Octomap

[34] is utilized for basic 3D geometry mapping with a reso-

lution of 0.2m.

2) Experiment Setup: Experiments are conducted by op-

erating UGV or UAV in three different scenarios in Nanyang

Technological University ( Fig. 6). All algorithms are executed

on the ROS platform for multimodal semantic information

fusion, single robot semantic mapping and collaborative se-

mantic map fusion.

• Open Carpark: two Husky robots equipped with Velo-

dyne 3D LiDAR and visual camera in an open carpark.

• Mixed Environment: two Husky robots equipped with

Velodyne 3D LiDAR and visual camera in an indoor-

outdoor mixed environment.

• UAV-UGV Semantic Mapping: one Husky robot

equipped with Velodyne 3D LiDAR and visual camera,

one UAV equipped with ZED stereo camera.

3) Comparison Baseline: Most of the existing approaches

either focus on single robot semantic mapping or collaborative

geometry mapping. A direct qualitative comparison of our

method with other approaches is conducted and summarized in

Table II. The existing work can achieve part of the functions,

but this paper is the only work that addresses the collaborative

semantic mapping problem and realizes all functions. As no

available work has addressed collaborative semantic mapping

problem, we first demonstrate extensive qualitative results of

how the global map is updated and how the local maps

are fused. Then, we present quantitative results on average

entropy, update process and size of data.

B. Open Carpark

To evaluate the multimodal semantic fusion algorithm for

single robot semantic mapping, we first test our system in the

Open Carpark. After processing the input data, semantic 3D

reconstruction results can be obtained, which is presented in

Fig. 7. The figure shows top view of the map and three close-

up views for each time step. As shown in Fig. 7, the algorithm

successfully integrates and updates the semantic information

into 3D semantic map. More specifically, our approach can

reconstruct the 3D map and recognize the classes of objects

on the road with high accuracy.

The collaborative semantic mapping results is shown in

Fig. 8. Two robots started their mission from nearby places and

explored the environment by traversing two different paths.

Fig. 8 shows the fusion of maps at start, middle and final of

the mission. The left two columns show two local semantic

maps. The right side is the fused global semantic map. For

the overall process of collaborative mapping, it is shown that

our system performs well in both single robot and multi-robot

levels. For single robot level, the semantic map can be built

by utilizing the raw sensor data perceived by each robot. For

collaborative robots, the algorithm successfully combines the

map information from two local maps to generate a consistent

global map.

C. Mixed Indoor Outdoor

The mixed environment presented in Fig. 9 is a building in

the university, where the indoor environment is the lobby, and

the outdoor environment is the outside road. Robot 1 travelled
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Fig. 7. Robot 2 semantic map in Open Carpark. Only the seven classes that
appear in the scene are marked.

(a) t=0s, the initial position of the two robots. Two sparse local maps are
successfully fused into a global map.

(b) Half of the mission. The local maps become denser, and global map are
fused.

(c) End of the mission. The global map of the full environment is presented.

Fig. 8. Collaborative semantic mapping at the start, middle and final of the
task in the open carpark.

through the lobby in the building, and robot 2 moved along

the road outside the building. The two robots first started

nearby in the initial position, it can be seen that the two

maps are successfully merged into a global map. Then, two

robots encountered at the end position, and generated a global

semantic map. Thanks to the probability update formulation,

the overlapped area combines the advantages between the two

maps to form a detailed global map.

(a) t=0s, the initial position of the two robots. Two sparse local maps are
successfully fused into a global map.

(b) Half of the mission. The local maps become denser, and global map are
fused.

(c) End of the mission. The global map of the full environment is presented.

Fig. 9. Collaborative semantic mapping at the start and final of the task in
the mixed environment.

Fig. 10. The semantic map generated by UAV in two scenarios.

D. UAV-UGV Mapping

This part presents the result of UAV-UGV collaborative se-

mantic mapping. It differs from the previous two experiments

since heterogeneous robots and sensors are applied. In this

environment, two robots started from a nearby place. The UGV

could not cross the staircase, while the UAV directly flew over

the staircase due to its high mobility (see Fig. 11). Fig. 10

demonstrates the semantic maps generated by UAV in two

scenarios.

As presented in Fig. 11, UAV and UGV generated local

semantic maps at the the end of the mission. Due to the

specification of sensors, UAV generated a dense semantic map

and successfully mapped the staircase. UGV captured most of

the environmental information. Due to the limited mobility,

8

Authorized licensed use limited to: Nanyang Technological University. Downloaded on August 11,2020 at 04:21:04 UTC from IEEE Xplore.  Restrictions apply. 



1083-4435 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2020.3015054, IEEE/ASME

Transactions on Mechatronics

Fig. 11. The result of UAV-UGV semantic mapping. (a-b) Single robot SLAM
is performed to generate the local semantic map. (c) The fused global semantic
map.

TABLE III
GLOBAL MAP LABEL FUSION

Robot1 (FP) Robot2 (TP) Global (TP)

No Label Probability Label Probability Label Probability

1 Road 0.638 Car 0.973 Car 0.894

2 Road 0.711 Car 0.985 Car 0.969

3 Road 0.834 Car 0.992 Car 0.977

TABLE IV
GLOBAL MAP LABEL FUSION

Robot1 (TP) Robot2 (TP) Global (TP)

No Label Probability Label Probability Label Probability

1 Road 0.695 Road 0.773 Road 0.784

2 Road 0.810 Road 0.855 Road 0.886

3 Road 0.906 Road 0.924 Road 0.943

the UGV still failed to climb the staircase and map out the

area as shown in Fig. 11. By combing the local semantic

maps generated by UAV and UGV, a more detailed global

semantic map is reconstructed. It shows the flexibility of the

proposed algorithm in different robot platforms equipped with

heterogeneous sensors.

E. Quantitative analysis

First, the average entropy is calculated to show the improved

map uncertainty. We also examine the fusion accuracy in the

global mapping process. Finally, the data size of the three

experiments are summarized and compared.

1) Average Uncertainty: Table V summarizes the average

entropy of the maps before and after collaborative mapping. In

entropy theory, the higher the probability of the map, the lower

the corresponding entropy. Therefore, we use average entropy

to measure the uncertainty of the map. In Table V, the value

presents the average entropy in different experiments. For

the occupancy probability update, the entropy decreases after

performing the proposed algorithm. For the label probability

update, the entropy decreases as well. Then, the average

entropy of overall probability update process decreases up to

10% in all experiments. Experiments show that the proposed

map fusion strategy can effectively combine the probability

information of two maps, thereby reducing the uncertainty of

occupancy probability and label probability.

Fig. 12. Semantic probability update process of a voxel in global map.

2) Updating Process: Table III demonstrates the example

of fusing mutual information from two local maps. In this

scenario, the ground truth for the voxels from robot 1 and 2

should be Car. In the semantic mapping process, the voxel

from robot 1 is assigned with the class of Road with a low

probability of 0.638. However, it is a false positive (FP),

and the ground truth label should be Car. The corresponding

voxel in the robot 2 has a true positive (TP) class of Car

with a high probability of 0.973. As can be seen from

Table III, the voxel label in the global map is assigned to

Car after fusion. This shows the superiority of the proposed

algorithm for revising the false positive label after fusion,

which increases the accuracy and robustness. Then, Fig. 12

shows a more detailed semantic probability update process of

the global voxel in the global map, specifying the label and

its corresponding probability. We can observe the increasing

of the label Car (blue) and the decreasing in the remaining

labels.

Table IV shows an example that the fusion process can

enhance semantic probability of correctly assigned label. The

corresponding voxels from two local maps indicate the true

class label of Road. The fusion integrates the probability

information and increases the semantic probability in the

global map.

3) Data Size: To evaluate the efficiency of the collaborative

systems, data management is worth studying. In the exper-

iment, we recorded the accumulated data size of the entire

process when executing the mission, as shown in Figure 13.

The horizon axis is the duration of the mission and the unit

is second. The vertical axis represents the data size, and is

expressed in logarithmic of Bytes. The size of data generated

by robot 1 is presented in three scenarios. It can be directly

observed that the data volume of the raw image is nearly

10 GB, because the raw image records detailed information.

Therefore, due to its large size, it is not suitable for sharing

between robots. Then, the size of generated point cloud is

also more than 1 GB, because the 3D Lidar records more

than 100,000 points per second. The data volume of the

semantic map is below 30MB, which is compact and suitable

for communication between robots. In the experiment, we only

share the generated 3D semantic map. In summary, sharing

3D semantic map will significantly reduce the communication

burden and increase efficiency.

VI. CONCLUSION

This paper has established a hierarchical collaborative prob-

abilistic semantic mapping framework. We have designed a

new framework to provide the theoretical formulation and
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TABLE V
AVERAGE ENTROPY OF THE MAPS IN ALL EXPERIMENTS. (THE BEST PERFORMANCE IS DENOTED IN BOLD.)

Experiments
Occupancy Probability Label Probability Overall Probability

Map 1 Map 2 Global Map Map 1 Map 2 Global Map Map 1 Map 2 Global Map

Open Carpark 0.4030 0.3929 0.3712 0.3689 0.3653 0.3429 0.3439 0.3267 0.3078

WKW Lobby 0.3088 0.3285 0.2849 0.3239 0.3327 0.2937 0.2833 0.2930 0.2715

UAV-UGV 0.3291 0.3476 0.3161 0.3349 0.3527 0.3229 0.3098 0.3157 0.2895

(a) Size of Data in Open Carpark. (b) Size of Data in Mixed Environment. (c) Size of Data in UAV-UGV Mapping.

Fig. 13. The results of cumulative data size in all experiments.

system implementation for collaborative semantic mapping.

In the single robot level, the semantic point cloud is obtained

by combining information from heterogeneous sensors and is

used to generate local semantic maps. To achieve collaborative

semantic mapping, this paper has provided a theoretical basis

for the global 3D semantic mapping. The results have shown

that the proposed algorithm was able to establish the correct

data association between voxels. More importantly, the fusion

process is able to correct the false label and enhance the true

label. The overall experimental results have presented high

quality global semantic maps, which demonstrate the accuracy

and utility of the framework. In summary, the proposed

collaboration system provides a new perspective of sensing

and reconstructing the environment, which is complementary

to the individual robot perception and mapping.

In the future, relative localization between collaborative

robots can be performed based on global semantic map, which

will significantly improve the localization accuracy.
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