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Collaborative Sensor Networking Towards
Real-Time Acoustical Beamforming

in Free-Space and Limited Reverberance
Pierpaolo Bergamo, Shadnaz Asgari, Hanbiao Wang, Daniela Maniezzo,

Len Yip, Student Member, IEEE, Ralph E. Hudson, Kung Yao, Fellow, IEEE, and

Deborah Estrin, Fellow, IEEE

Abstract—Wireless sensor networks have been attracting increasing research interest given the recent advances in microelectronics,

array processing, and wireless networking. Consisting of a large collection of small, wireless, low-cost, integrated sensing, computing,

and communicating nodes capable of performing various demanding collaborative space-time processing tasks, wireless sensor

network technology poses various unique design challenges, particularly for real-time operation. In this paper, we review the

Approximate Maximum-Likelihood (AML) method for source localization and direction-of-arrival (DOA) estimations. Then, we consider

the use of least-squares (LS) method applied to DOA bearing crossings to perform source localization. A novel virtual array model

applicable to the AML-DOA estimation method is proposed for reverberant scenarios. Details on the wireless acoustical testbed are

given. We consider the use of Compaq iPAQ 3760s, which are handheld, battery-powered device normally meant to be used as

personal organizers (PDAs), as sensor nodes. The iPAQ provide a reasonable balance of cost, availability, and functionality. It has a

build-in StrongARM processor, microphone, codec for acoustic acquisition and processing, and a PCMCIA bus for external IEEE

802.11b wireless cards for radio communication. The iPAQs form a distributed sensor network to perform real-time acoustical

beamforming. Computational times and associated real-time processing tasks are described. Field measured results for linear,

triangular, and square subarrays in free-space and reverberant scenarios are presented. These results show the effective and robust

operation of the proposed algorithms and their implementations on a real-time acoustical wireless testbed.

Index Terms—Beamforming, source localization, distributed sensor network, wireless network, microphone array, time

synchronization, reverberance.

�

1 INTRODUCTION

RECENT advances in microelectronic-mechanical and

wireless communication systems have allowed the

construction of low-cost, low-power small sensor nodes.

The challenge of sensor networks is to achieve dependable

mission performance by the dynamic configuration and

collaboration of these low reliable sensor nodes with limited

sensing and communication capabilities. Some of the
missions for these sensor networks may include the

operations of detection, localization, tracking, and identifi-

cation of objects which are of interest to diverse military,

industrial, and civilian applications [1], [2], [3], [4], [5].
This paper, in this special issue on mission-oriented

sensor networks, illustrates that the proper usage of novel

array and signal processing algorithms implemented on

very low-cost Commercial-Off-The-Shelf (COTS) platforms

is capable of achieving quite sophisticated real-time

acoustical beamforming operation for source localization.
The objective of source localization is to estimate the
positions of either a fixed or moving source using a passive
and stationary sensor network. Various beamforming
methods can be used to determine the direction-of-arrival(s)
(DOA) and the location(s) of one or more acoustic source(s).
Beamforming is a space-time operation in which a wave-
form originating from a given source but received at
spatially separated sensors are combined in a time-
synchronous manner. If the propagation medium preserves
sufficient coherency among the received waveforms, then
the beamformed waveform can provide an enhanced
Signal-to-Noise-Ratio (SNR) compared to a single sensor
system. Beamforming and localization are two interlinking
problems and many algorithms have been proposed to
tackle each problem individually and jointly (i.e., localiza-
tion is often needed to achieve beamforming and some
localization algorithms take the form of a beamformer).
Many tutorial papers [6], [7] and books [8], [9] have dealt
with beamforming and localization.

Over the past few years, a number of hardware
platforms have emerged in the wireless sensor network
arena, most of them involve custom-made devices. While
these platforms may be energy-efficient and have small
form factors, the COTS platforms are particularly attrac-
tive due to their lower cost, readily availability, and ease
of use (minimal hardware/software modifications). While
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the dedicated platforms are probably required for efficient
real-world deployments, COTS platforms facilitate rapid
application prototypes and data collection. This is parti-
cularly important in order to verify newly proposed array
and signal processing algorithms in a testbed environ-
ment. In our COTS sensor platform, we use Compaq
iPAQ 3760s [10] as the sensor nodes, which are handheld,
battery-powered devices normally meant to be used as
Personal Digital Assistants (PDA). We select the iPAQ for
its compactness, reasonable battery life, Linux open-source
operating system support [11], and reasonable computa-
tional resource. Each iPAQ has a built-in microphone and
codec capable of a sampling rate from 8 kHz to 48 kHz for
acoustical acquisition. It also supports the IEEE 802.11b
wireless card for the data transmission. In order to
perform coherent processing of the achieved waveforms,
the signals collected from the iPAQ must be time-
synchronized with respect to each other. The synchroniza-
tion is achieved using Reference-Broadcast Synchroniza-
tion (RBS), described by Elson et al. in [12].

The paper is organized as follows: Numerous beamform-
ing methods have been proposed for DOA and source
localization; among these methods, the maximum like-
lihood (ML) technique is optimum in the minimum
estimation error variance sense for large SNR. In Section 2,
we summarize a practical version of the ML algorithm,
denoted as the Approximate ML (AML) algorithm, for
wideband source localization and DOA estimation origin-
ally proposed in [13]. This algorithm is then implemented
on the iPAQs to perform the real-time operation. Section 3
considers the least-squares (LS) method as applied to DOA
bearing crossings to perform source localization. This
approach provides a practical way to solve the far-field
source localization problem from estimated DOA values.
Section 4 proposes a novel virtual array model in which the
physical array, whose location is assumed to be known, is
reflected along known reflecting walls to create the virtual
arrays. Then, applying the LS method on the estimated
DOAs of the direct as well as the reflected paths arriving at
the physical and virtual arrays, the location of the source(s)
in reverberant environments can also be estimated. Section 5
provides various details on the testbeds. Hardware descrip-
tions of the iPAQ system are first given, then the time
synchronization and audio server issues are considered,
and, finally, some client server paradigms are discussed. In
Section 6, detailed computational times related to sampling,
FFT, AML, angle estimation, and bearing crossing for real-
time operations are given. In Section 7, we report various
AML source localization results in free-space and reverber-
ant scenarios. We first considered configurations of trian-
gular, linear, and square subarrays for free-space and
circular subarray for reverberant case. Then, we present
various real-time testbed free-space and reverberant sce-
nario results.

At the theoretical level, this paper first shows the
effectiveness and robust operation of the AML algorithm
in a collaborative sensor network for source DOA estima-
tion in free-space. Then, it shows that the novel virtual array
model is capable of extending the free-space capability to
controlled limited reverberant scenarios where the reflect-
ing surfaces are assumed to be known. At the practical

level, this paper demonstrates the feasibility of using COTS
iPAQS for the implementation of a real-time acoustical
beamforming testbed. The relative ease (in terms of months
instead or years) in getting the testbed operational and the
relatively low-cost (in the low thousands of dollars) of
implementation were both happily unexpected.

2 AML ALGORITHM FOR WIDEBAND DOA
ESTIMATION

In this section, we derive the AML algorithm for wideband
source DOA estimation. We assume the source is in the far-
field of the array, wavefront arriving at the array is assumed
to be planar, and only the angle of arrival can be estimated.
For simplicity, we assume both the source and sensor array
lie in the same plane (a 2D scenario), as shown in Fig. 1.

Let there beMwideband sources, each at an angle �m from
the arraywith the reference direction pointing to the east. The
sensor array consists ofP randomly distributed sensors, each
at position rp ¼ ½xp; yp�T . The sensors are assumed to be
omnidirectional and have an identical response. The array
centroid position is given by rc ¼ 1

P

PP
p¼1

rp ¼ ½xc; yc�T . We
use the array centroid as the reference point and define a
signal model based on the relative time-delays from this
position. The relative time-delay of themth source is given by

tðmÞ
cp ¼ tðmÞ

c � tðmÞ
p ¼ ½ðxc � xpÞ cos �m þ ðyc � ypÞ sin �m�=v;

where tðmÞ
c and tðmÞ

p are the absolute time-delays from the
mth source to the centroid and the pth sensor, respectively,
and v is the speed of propagation. In a polar coordinate
system, the above relative time delay can also be expressed
as tðmÞ

cp ¼ rp cosð�m � �pÞ=v, where rp and �p are the range
and angle of the p sensor with respect to the array centroid.
The data received by the pth sensor at time n is then

xpðnÞ ¼ �
M
m¼1

SðmÞðn� tðmÞ
cp Þ þ wpðnÞ; ð1Þ

for n ¼ 0; . . . ; N � 1, p ¼ 1; . . . ; P , and m ¼ 1; . . . ;M, where
N is the length of the data vector, SðmÞ is the mth source
signal arriving at the array centroid position, tðmÞ

cp is allowed
to be any real-valued number, and wp is the zero mean
white Gaussian noise with variance �2.

212 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2004

Fig. 1. Far-field notations for sources, sensors, and sensor array

centroid.



For ease of derivation and analysis, the received wide-
band signal can be transformed into the frequency domain
via the DFT, where a narrowband model can be given for
each frequency bin. However, the circular shift property of
the DFT has an edge effect problem for the actual linear
time shift. These finite effects become negligible for a
sufficient long data. Here, we assume the data length N is
large enough to ignore the artifact caused by the finite data
length. For N-point DFT transformation, the array data
model in the frequency domain is given by

Xð!kÞ ¼ Dð!kÞSð!kÞ þ �ð!kÞ; ð2Þ

for k ¼ 0; . . . ; N � 1, where the array data spectrum is
Xð!kÞ ¼ ½X1ð!kÞ; . . . ; XP ð!kÞ�T , the steering matrix Dð!kÞ ¼
½dð1Þð!kÞ; . . . ;dðMÞð!kÞ� the steering vector is given by

d
ðmÞð!kÞ ¼ ½dðmÞ

1
ð!kÞ; . . . ; dðmÞ

P ð!kÞ�T ;

dðmÞ
p ¼ e�j2�kt

ðmÞ
cp =N , and the source spectrum is given by

Sð!kÞ ¼ ½Sð1Þð!kÞ; . . . ; SðmÞð!kÞ�T :

The noise spectrum vector �ðkÞ is zero mean complex white
Gaussian distributed with variance N�2. Note, due to the
transformation to the frequency domain, �ð!kÞ asymptoti-
cally approaches a Gaussian distribution by the central limit
theorem, even if the actual time-domain noise has an
arbitrary i.i.d. distribution (with bounded variance). This
asymptotic property in the frequency-domain provides a
more reliable noise model than the time-domain model in
some practical cases. Throughout this paper, we denote
superscript T as the transpose and H as the complex
conjugate transpose.

The AML estimator performs the data processing in the
frequency domain. The maximum-likelihood estimation of
the source DOA and source signals is given by the
following optimization criterion [13]:

max
��;SS

Lð�; S�; SÞ ¼ min
�;S�;S

X

N=2

k¼1

jjXð!kÞ �Dð!kÞSð!kÞjj2; ð3Þ

which is equivalent to a nonlinear least square problem.
Using the technique of separating variables [14], the AML
DOA estimate can be obtained by solving the following
likelihood function:

max
��

Jð��Þ ¼ max
��

X

N=2

k¼1

jjPð!k;��ÞXð!kÞjj2

¼ max
��

X

N=2

k¼1

trðPð!k;��ÞRð!kÞÞ;
ð4Þ

where

Pð!k;��Þ ¼ Dð!kÞDyð!kÞ;Dy ¼ ðDð!kÞHDð!kÞÞ�1
Dð!kÞH

is the pseudoinverse of the steering matrix Dð!kÞ and
Rð!kÞ ¼ Xð!kÞXð!kÞH is the one snapshot covariance
matrix. Once the AML estimate of �� is found, the estimated
source spectrum can be given by

ŜS
MLð!kÞ ¼ D

yð!k; �̂���
MLÞXð!kÞ: ð5Þ

The AML algorithm performs signal separation by
utilizing the physical separation of the sources and, for
each source signal, the SINR is maximized in the ML sense.
Note that no closed-form solution can be obtained in (4). In
the multiple source case, the computational complexity of
the AML algorithm requires multidimensional search,
which is much higher than the MUSIC type algorithm that
requires only 1D search. Various numerical solutions were
proposed to obtain the AML estimate. These include the
Alternating Projection (AP), Gauss-Newton (GN), and
Conjugate-Gradient (CG). For detail derivation of these
methods, see [15].

3 SOURCE LOCALIZATION BASED

ON LS ESTIMATION OF DOAs

In an idealized free-space (nonreverberant) model, each
sensor receives one direct path ray (i.e., wavefront) from a
source. A subarray of such sensors using various methods
[16], [17], and [13] can exploit the information from these
rays to estimate the direction-of-arrival (DOA) of the
source. If a second subarray is not colinear with the first
subarray and the source, then the crossing of these two
DOAs yields the location of the source. Due to uncertainties
in the estimation of these two DOAs, there will be an
uncertainty region about the location of the source. By using
three or more noncolinear subarrays and appropriate least-
squares (LS) estimation technique, the uncertainty region
about the true location of the source can be reduced. This
technique can be extended to two or more sources, as
shown below.

Instead of describing the LS estimation technique for
completely arbitrary subarray(s) and source(s) geometry,
consider the simplified model of having two sources and
three subarrays, as shown in Fig. 2. In this model,
source j; j ¼ 1; 2, is located at ðsjx; sjyÞ and subarray
k; k ¼ 1; 2; 3, is located at ðxk; ykÞ: In Fig. 2, for simplicity,
we set ðx1; y1Þ ¼ ð0; 0Þ, ðx2; y2Þ ¼ ðx2; 0Þ, and ðx3; y3Þ ¼
ðx3; 0Þ: The six DOAs at these subarrays directed toward
sources 1 and 2 are denoted by f�i; i ¼ 1; . . . ; 6g, as shown in
this figure. In this model, we assume the locations of the two
sources are unknown and need to be determined, but the
locations of the three subarrays are known and the DOAs are
known by some estimation method.
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Fig. 2. Simplified model of two sources and three subarrays.



From trigonometry, the six DOA angles satisfy the
following six equations:

tanð�1Þ ¼ s1y=s
1

x;

tanð�2Þ ¼ s1y=ðx2 � s1xÞ;
tanð�3Þ ¼ s1y=ðx3 � s1xÞ;
tanð�4Þ ¼ s2y=x

2

x;

tanð�5Þ ¼ s2y=ðx2 � s2xÞ; and
tanð�6Þ ¼ s2y=ðx3 � s2xÞ:

These six equations can be expressed as a linear system of
equation AZ ¼ B; where A is a 6� 4 matrix, Z is a 4� 1

vector, and B is a 6� 1 vector defined by

A ¼

� tanð�1Þ 0 1 0

0 � tanð�4Þ 0 1

tanð�2 0 1 0

0 � tanð�5Þ 0 1

� tanð�3Þ 0 1 0

0 � tanð�6Þ 0 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

;

Z ¼

s1x
s2x
s1y

s2y

2

6

6

6

6

4

3

7

7

7

7

5

; B ¼

0

0

�x2 tanð�2Þ
�x2 tanð�5Þ

�x3 tanð�3Þ þ y3

�x3 tanð�6Þ þ y3

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

ð6Þ

From Fig. 2, by observation, we know source 1 is
associated with DOAs f�1; �2; �3g and source 2 is associated
with DOAs f�4; �5; �6g. In practice, for the three subarrays
and two sources case, we have to try 23 ¼ 8 possible ways of
associating each of the two sources with the estimated
DOAs f�1; �2; �3; �4; �5; �6g. In other words, we need to solve
(6) for each of the eight possible sets of these DOAs. For
example, suppose we solve (6), using f�1; �2; �3g for source 1
and f�4; �5; �6g for source 2. Then, the norm of the residual
�2 ¼ jjAZ �Bjj2, will be zero, yielding the correct source
locations ðs1x; s1yÞ and ðs2x; s2yÞ when the locations of the three
subbarrays are known exactly, and the estimated DOAs are
also estimated perfectly. On the other hand, suppose we
associate DOA �1 with source 2 and DOA �4 with source 1
and solve (6) with �1 and �4 interchanged, then the residual
�2 will be nonzero since there is no set of consistent
solutions ðs1x; s1yÞ and ðs2x; s2yÞ satisfying (6). Under ideal
conditions, only one of the residuals will be zero and the
other residuals will yield nonzero residuals. In practice,
with imperfect DOA estimations and uncertainties in the
subarray locations, the solution of ðs1x; s1yÞ and ðs2x; s2yÞ
associated with the minimum residual is used as the best
LS criterion source locations.

Clearly, the above considered LS technique for source
localization proposed for dealing with multiple real sources
and multiple subbarrays can equally be applied to multiple
real sources and multiple virtual subarrays as proposed in
Section 4. In the example to be considered in Fig. 3 with two
reflecting walls, there is one source and four equivalent
subbarrays (one real and three virtual). As the number of

real sources, reflecting surfaces, and real subarray increases,
the number of equivalent sources, equivalent subarrays,
and DOAs increase rapidly. The ability of each subarray to
resolve these DOAs also becomes critical. We show the
operation of this proposed LS method in Section 7 for
various open-field and reverberant scenarios.

4 VIRTUAL ARRAY MODEL

For source localization in a reverberant scenario, the most
frequently used model is the “Virtual Source Model”
proposed by Allen and Berkley [18] in 1979. According to
this model, the effect of reverberation is represented by
finding the mirrored image of the real source with respect
to the surrounding walls. So, each of these images behaves
like a virtual source which sends the same signal to the
sensor as the real source but with different time delay and
different power. The time delay for each source (virtual or
real) is dependent on the distance between the correspond-
ing source and sensor. The power of the received signal
from each virtual source is affected by the reflection
coefficient of the corresponding reflective wall. Although
this model is useful in analyzing and simulating the
behavior of an acoustic reverberant space, for example,
finding the impulse response of a reverberant room, it is not
useful for source localization in a reverberant room because,
even though we are able to estimate the direction of arrivals
(DOAs) from real and virtual sources correctly, locating real
source from the DOAs is not obvious. In this paper, we
propose a new model which is named “Virtual Array Model”
in comparison to the “Virtual Source Model” of Allen-
Berkley. We claim using this model makes source localiza-
tion in a reverberant room possible.

In a reverberant room, each subarray receives various
multipath rays from the source in addition to the direct path
ray. The number of these multipath rays is dependent on
the number of surrounding walls and, consequently, the
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Fig. 3. Rays for a source and subarray in a reverberant scenario with two

walls.



order of reflections grows rapidly with increasing the
number of surrounding walls. For example, in a simple
case of having two perpendicular walls, we have at most
second order reflection and, so, for each subarray, there
would be four rays (i.e., the direct path ray, the multipath
ray reflected only from wall 1, the multipath ray reflected
only from wall 2, and the multipath ray resulted from
reflection on wall 1 and wall 2 consecutively). In the
“Virtual Array Model,” we find the mirrored image of the
subarray and its corresponding rays with respect to each of
the surrounding walls. As the result of this imaging, we
would have some virtual subarrays and also some virtual
rays in addition to the real subarray and real rays. The
number of virtual subarrays is also dependent on the
number of surrounding walls. In this model, we assume the
location of the real subarray is known and the DOAs are
estimated by the AML algorithm. Our goal is to locate the
source. Suppose we are in a reverberant scenario with only
two walls, the left wall (wall 1) and the below wall (wall 2)
and we have only one source at ðs1x; s1yÞ and one subarray at
ðx1; y1Þ. Fig. 3 shows the virtual subarrays and their
corresponding virtual rays in such a condition. The direct
path DOA at the real subarray toward the source is denoted
by �. The multipath DOA which is reflected on wall 1 is
denoted by �1 and the multipath DOA which is reflected on
wall 2 is denoted by �2. Finally, the multipath DOA which is
reflected from wall 1 and wall 2 consecutively is denoted by
�3. Although each subarray has four rays (four real rays for
the real subarray and four virtual rays for each of the three
virtual subarrays), only one consistent ray from each
subarray passes through the location of the source. The
consistent rays for our two wall scenario is shown in Fig. 4.
Because we assumed the location of the real subarray is
known, then the location of the virtual subarrays is also
known. So, by estimating the set of the DOA angles
�; �1; �2; �3, we can write the linear equation for each of the
consistent rays. Note that the tangent of the consistent ray

for the real array, virtual array 1, virtual array 2, and virtual

array 3 is �, ð�� �1Þ, ð2�� �2Þ, and ð�3 � �Þ, respectively.
These four linear equations for consistent rays can be

expressed in the matrix form of AZ ¼ B, where A is a 4� 2

matrix, Z is a 2� 1 vector, and B is a 4� 1 vector defined by

A ¼

� tanð�Þ 1

þ tanð�1Þ 1

þ tanð�2Þ 1

� tanð�3Þ 1

2

6

6

6

4

3

7

7

7

5

;

Z ¼
s1x
s1y

" #

; B ¼

þy1 �
�

x1 tanð�Þ
�

þy1 �
�

x1 tanð�1Þ
�

�y1 þ
�

x1 tanð�2Þ
�

�y1 þ
�

x1 tanð�3Þ
�

2

6

6

6

4

3

7

7

7

5

:

ð7Þ

In practice, because of imperfect DOA estimation, we

need to find the location of the source by using the LS

solution. From Fig. 4, by observation we know the

consistent ray from real array, virtual array 1, virtual

array 2, and virtual array 3 are associated with DOAs �, �1,

�2, and �3, respectively. In practice, we have to try all

different permutations of the four estimated angles (4! ¼ 24

different possible ways) and choose the final solution based

on the minimum residual � ¼ kAZ �Bk. Note that, based

on the quadrant where the source is located relative to the

sensor subarray, we need to place some constraints on the

vector Z; otherwise, an incorrect source location can result

just by selecting the minimum residual solution. The

necessary constraints on Z are described below based on

the quadrant where the source is located relative to the

subarray.

Case 1. The source is located in the first quadrant relative to

the subarray. For this case, we have 0 � � < �=2,

�=2 � �1 < �, 3�=2 � �2 < 2�, � � �3 < 3�=2. Thus, the

constraint on Z is described as

x1

y1

� �

< Z:

Case 2. The source is located in the second quadrant relative

to the subarray. For this case, we have �=2 � � < �,

�=2 � �1 < �, � � �2 < 3�=2, � � �3 < 3�=2. Thus, the

constraint on Z is described as

0

y1

� �

< Z � x1

þ1

� �

:

Case 3. The source is located in the third quadrant relative to

the subarray. For this case, we have � � � < 3�=2�,

� � �1 < 3�=2, � � �2 < 3�=2, � � �3 < 3�=2. Thus, the

constraint on Z is described as

0

0

� �

< Z � x1

y1

� �

:

Case 4. The source is located in the fourth quadrant relative

to the subarray. For this case, we have 3�=2 � � < 2�,

� � �1 < 3�=2, 3�=2 � �2 < 2�, � � �3 < 3�=2. Thus, the

constraint on Z is described as
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Fig. 4. Consistent rays for each subarray (real or virtual) in a reverberant
scenario with two walls.



x1

0

� �

< Z � þ1
y1

� �

:

To solve this LS problem with the box boundary constraints,
we use quadratic programming. So, for each permutation,
we first determine the case number based on the values of
four estimated angles, then we apply the corresponding
constraints on Z and find the solution by quadratic
programming. Sometimes, the imperfection in DOA estima-
tion is such that none of the permutations falls in any of the
above cases. In that situation, we use only three of the four
estimated angles instead of the four angles and use the
same method. We have 4

3

� �

¼ 4 different ways for selecting
three angles from the four angles. For each of those
permutations matrices, A would be 3� 2 and vector B
would be 3� 1. Again, the final solution is obtained based
on minimum residual criterion. Even if, by considering
three angles, it was not possible to find a solution, we have
to use two of the four estimated angles with the same
method. In that case, A would be a 2� 2 matrix and B
would be a 2� 1 vector and we would have 4

2

� �

¼ 6

different permutations. So, by this approach, if at least
two of the four estimated angles are accurate, we can still
locate the source.

5 DESCRIPTION OF THE TESTBED

For low cost and readily availability, we chose COTS iPAQs
3670s [10] with external 11Mbps Orinoco PCMCIA cards to
form the integrated sensor nodes. Each has a modest
(206 MHz Intel StrongARM-1110) CPU and a moderate
memory space (64 MB RAM and 16 MB ROM) for data
processing. It has a built-in microphone and a built-in audio
codec for acoustic data acquisition (8-48 kHz signed 16-bit
integer). In addition, it has a 950 mAh Lithium polymer
battery that lasts about 2.5 hours with the wireless
communication on. We installed the open-source GNU/
Linux Familiar distribution [11] on iPAQs. Together, these
features make iPAQ 3760 a convenient platform for
developing the acoustic wireless sensor network.

In our testbed, nodes are organized into subarrays. Each
subarray forms an independent unit for beamforming.
Because of the coherent nature of beamforming, the audio
codecs of iPAQs (in the same subarray, at least) must either
share the same time reference or be able to convert their
time references back and forth in a fine grain. We use the
Reference Broadcast Synchronization (RBS) protocol [12] to
estimate the clock offsets among the iPAQ CPUs. The
reference packets are periodically broadcast through the
IEEE 802.11b channels by iPAQs in rotation. By comparing
the receiving time of the same reference packet, the clock
offsets among CPUs of the receiving iPAQs are estimated.
Our testbed achieved a time synchronization accuracy of a
few microseconds within each beamforing subarray.

The low-end consumer-grade audio codecs on iPAQ
3760s have large nondeterministic latencies when they are
asked to start recording. Simply to invoke the recording
command at the same time on all iPAQs does not guarantee
obtaining audio data starting from the same time even if all
iPAQ CPUs are perfectly synchronized. A solution to this
problem is provided by the “audio server” [19]. The audio

server is a process that continuously reads samples from the
audio codecs, timestamps the audio samples, buffers the
most recent 10 seconds of data, and makes that buffer
available to user applications through a library function.

In a subarray, although all nodes carry out the acoustic
data acquisition tasks, only one node, the Master Node is
designated for the beamforming computation. The data
acquisition nodes are modeled as data servers, and the
MasterNode ismodeled as a client that requests acoustic data
from the data servers in its subarray. The Master Node first
picks a starting time of data in terms of its own clock, then
converts it to the time stamps in termsof the local clocks of the
dataacquisitionnodes. TheMasterNodesendsa requestwith
the starting timestamp and the data length to a designated
TCP port of the data acquisition nodes. Each data acquisition
node continuously listens to the designated TCP port for
incoming data requests. When receiving such a request, the
data acquisition node will fetch the corresponding data
segment from the audio server and then sends the data back
to the Master Node. The requested data can be either sound
samples or FFT. In the testbed, Master Node requests FFT.
Finally, after the Master Node receives all requested data
segments, it canperform thebeamforming. Ifmanyarrays are
considered, they need to exchange the estimated angle to
perfom the triangulation algorithm. In order to do that, one of
the Master Nodes, is elected to be Central Node and it is
supposed to receive the estimated angle from the other
Master Nodes and to perform the triangulation.

6 COMPUTATIONAL TIMES

In this section, we present the computational and transfer-
ring times required by the iPAQs to perform various steps
of the AML algorithm. See Table 1.

6.1 Sampling Time (ST)

In our testbed, we acquired 256 samples from each sensor at
48kHz; the time required to accomplish this operation is
ST ¼ 256 � 1=48kHz ¼ 5:33ms.

6.2 FFT Time (FT)

The time required for FFT takes about FT ¼ 80ms. It was
performed using an FFT with floating-point variables
utilizing the floating-point emulator. However, iPAQs
obtains integer samples. Nevertheless, we chose to use a
floating-point algorithm. Up to now, we chose accuracy
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TABLE 1
Times Consumed to Perform the Entire AML System



instead of computational efficiency. In the final version of
the testbed, the FFT code will use integer code. It should
be remarked that each sensor computes the FFT at the
same time.

6.3 FFT Data Transferring (DT)

After the computation of the FFT, each sensor transfers it to
themaster node.Obviously, the required time is proportional
to the data length. When the 256 raw samples are applied to
the FFT, the result is 256 complex variables. Each complex
value is represented by two float variables of six bytes each.
In future implementations, wewill only transmit the positive
frequency components since the FFT of a real sequence has
symmetry about DC. In the current implementation, data
length is about 3kB. It takes about 3kB=ð11Mb=sÞ ’ 3mswith
a wireless IEEE 802.11b connection.

While the FFTs are performed at the same time by each
sensor of the subarray, the data transferring to the master
node is sequential.

6.4 AML Time (AT)

The actual time required for the AML operation is affected
basically by three parameters. The first is the number of
sources M we need to localize at the same time. As
previously discussed, AML can estimate more than one
DOA angle. The second parameter that affects AT is the
number of bins NB that is the number of the most active
bins considered for the AML. We used NB ¼ 20; 30; 40; and
50. The third parameter is the search angle step size �a. The
smaller the minimum step size considered, the longer the
computational time. In this paper, we used �a ¼ 1; 2; 3; 4;

and 5 degrees.
Figs. 5, 6, 7, and 8 show some of our earlier measured

system performance results. They show the computation
time as a function of the angle precision for different values
of NB. So far, we used a floating-point-based code in the
most part of the code. Fig. 5 shows interesting results. We
can see that the delay due to the AML computation for one
source is equal to 4.0 seconds for NB ¼ 20 bins and angle
accuracy equal to 5 degrees. With such settings, the system
is not very accurate if the source has a large number of

frequency bands. We argue that it could be reasonable if the

source has some (few) characteristic frequencies.

6.5 Angle Sending Time (AS)

When the master nodes have performed the AML algo-

rithm, they send the estimated angle(s) to the central node.

The Angle Sending time (AS) denoted by AS ’ 1ms is the

sum of all the transmissions. It is only performed over the

wireless channel.

6.6 Bearing Crossing Time (CT)

The central node is assumed to know the location of the

subarrays, so it can estimate the location of the the source(s)

by crossing the estimated DOAs. The bearing crossing Time

(CT ) takes about CT ’ 1ms.

6.7 Some Example of the Entire Computation

Our preliminary testbed can localize one audio source at

least in 4.1 seconds with 5 degrees of angle search step size

and 20 bins. In order to have greater accuracy and/or to

localize a greater number of sources, the code needs to be
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Fig. 5. Computation time as a function of search angle step size (with

NB ¼ 20).

Fig. 6. Computation time as a function of search angle step size (with

NB ¼ 30).

Fig. 7. Computation time as a function of search angle step size (with
NB ¼ 40).



modified for fixed point computations. We plan to do this
in the future.

7 RESULTS

In order to verify the AML algorithm and the wireless
acoustical testbed, we perform several outdoor measure-
ments with different sources and array configurations in
free-space and reverberant scenarios. In the following, we
show different array and subarray geometries. The first
three cases are for free-space and the last case is for a
reverberant scenario. We use only 256 samples (sampling
rate of 48kHz, 16 bits per sample). The choice of 256 samples
is to not overload the processor of each master node and to
run the system as fast as possible. For each geometry,
localization results are reported.

7.1 Triangular Subarray Configuration

Fig. 9 shows the configurations of the subarrays we
consider for the the far-field bearing crossing source
localization. The subarrays are deployed on plastic tables
of the same height (at 0:50m from the floor). The first
measurement set is conducted with triangular sensor
subarrays as shown at Fig. 9. The distance of the sensors

is 0:30m. A low frequency source recording of a tracked
vehicle sound is played at four different source location,
S1; . . . ; S4, sequentially.

For the experimental setting depicted in Fig. 9 (relative to
each subarray), the DOA of the source is independently
estimated in each subarray and the bearing crossing is used
to obtain the location estimate. Fig. 10 shows results at the
four locations. We note better results are clearly obtained
when the source is inside the convex hull of the overall array.

7.2 Linear Subarray Configuration

In the configuration of Fig. 11, we place linear subarray with
three sensors positioned 0:3m far away from each other. The
tables are at the same height as that of the triangular
subarray setup. Three bearing estimates locate six different
locations of the source, S1; . . . ; S6, which play recorded
organ music, with 2kHz bandwidth and 1:75kHz central
frequency.

Fig. 12 shows the one-snapshot results of the two
algorithms at the six locations. The RMS error calculation
shows similar performance of the first experiment, which
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Fig. 8. Computation time as a function of bins (NB) (�a ¼ 3 degrees).

Fig. 9. Trianular subarray configuration.

Fig. 10. Bearing crossing localization results of a vehicle source at

different locations.

Fig. 11. Linear subrray configuration.



demonstrates that both the AML algorithm and the TDOA-

CLS algorithm (proposed in [17]) can locate the source.

7.3 Square Subarray Configuration

The last free-space experimental setting is depicted in
Fig. 13, where four square subarrays each with four iPAQs
form a single network. As before, the subarrays are set at
0:5m above the floor on plastic table. Two speakers, one
playing the vehicle sound and the other one playing the
music sound simultaneously, are placed inside the convex
hull of the overall array. Fig. 14 shows the picture of one of
the subarray used in this experiment. Fig. 15 shows the
results when only speaker 1 is played. When both sources
are playing simultaneously, we have the results show in
Fig. 16. Comparing Figs. 15 and 16 we still have quite good
results for localizing two sources, but not as good as the
performance with only a single source.

Note, as the number of subarray element increases, the
localization accuracy of the results reported above im-
proves, which agrees with the Cramer-Rao bound analysis
reported in [20].

7.4 Reverberant Scenario
(Circular Subarray Configuration)

For the reverberant scenario, we use the configuration in

Fig. 17. We consider two perpendicular walls, the left wall

(wall 1) and the floor (wall 2). We assume that both walls

have a reflection coefficient of 0.9 in amplitude. This means

that the walls are quite reflective.

The subarray is composed of eight sensors in a circle

with radius r ¼ 0:5m. The sensors are positioned with

angles ð0; �=4; �=2; 3�=4; �; 5�=4; 3�=2; 7�=4Þ on the circle,

respectively. Note that, while the other experiments were

conducted in a plane parallel to the floor, in the reverberant

scenario, the plane is perpendicular to the floor. Since the

microphone of iPAQs is built-in inside the body and it is not

external, the main body of the iPAQs would block the

bouncing ray from the floor. So, we had to conduct the

reverberant experiments in a plane perpendicular to the

floor.
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Fig. 12. Bearing crossing localization of a music source at different

locations.

Fig. 13. Square subrray configuration.

Fig. 14. A square subarray consisting of four iPAQs used in free-space

experiments.

Fig. 15. AML bearing crossing localization of a vehicle source.



For the simulation, the source is placed in the same plane

as the subarray, but at different angles relative to it. The

centroid of the subarray is at ½6:5m 4m� and the distance

between source and subarray is 2
ffiffiffi

3
p

m. The different angles

that we have used for placing the source relative to the

subarray are 0, 4�=6, and 4�=3 radians.
For the reverberant experiments, we considered eight

different positions of the subarray and the source, but the
centroid of the subarray is always at h ¼ 1:3m from the
ground. Fig. 18 shows the circular subarray that we used for
our experiments. As discussed previously, four rays are
considered here. The first is the direct ray. The second is the
ray that bounces off the floor. The third is the ray that
bounces off the wall (the subarray stands between the
source and a wall) and the fourth is the ray that bounces off
the floor and then on the wall before reaching the subarray.

The source we used is the tracked vehicular source. For

these parameters, simulation and testbed results are shown

below.

7.4.1 Reverberant Simulation Results

For each of the three cases, we estimated the location of the

source for different SNRs. The number of iterations for each

case is 10. The results are plotted in Figs. 19, 20, and 21,

respectively. From these figures, we note that our proposed

method can locate the source accurately most of the time.

We also note that, by decreasing the SNR, the accuracy of

the source localization is decreased as expected.
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Fig. 16. AML bearing crossing localization of two sources using alternating projection method.

Fig. 17. Circular subrray configuration. Fig. 18. Circular subrray facing one cement wall and one cement floor.



7.4.2 Reverberant Real-Time Testbed Results

Now, we consider eight reverberant real-time testbed
results. For each of the eight cases, the results are for
40 iterations. For Experiments 1, 2, and 3, the localization
results are shown in Fig. 22. Here, we place the centroid of
the subarray at dc ¼ 2:5m away from wall 1 and h ¼ 1:3m
high. The source is ds ¼ 2:5m away from the centroid of the
subarray at 1m, 1:3m, and 1:7m high, respectively, for
Experiments 1, 2, and 3. The accuracies of all three
experiments are quite good.

For Experiments 4, 5, and 6, the localization results are
shown in Fig. 23. We kept the centroid of the subarray at the
same location of the previous experiments (dc ¼ 2:5m and
h ¼ 1:3m). The source is moved further away to dc ¼ 3:5m
from the centroid and at 1m, 1:3m, and 1:7m high,

respectively, for Experiments 4, 5, and 6. The accuracies of

all three experiments are slightly worsened but are still

quite good.
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Fig. 19. Simulation results for different SNR when the centroid of the

subarray is at ½6:5m 4m� and the source is at ð0rad; 2
ffiffiffi

3
p

mÞ relative to the

subarray.

Fig. 20. Simulation results for different SNR when the centroid of the

subarray is at ½6:5m 4m� and the source is at ð4�=6rad; 2
ffiffiffi

3
p

mÞ relative to

the subarray.

Fig. 21. Simulation results for different SNR when the centroid of the

subarray is at ½6:5m 4m� and the source is at ð4�=3rad; 2
ffiffiffi

3
p

mÞ relative to

the subarray.

Fig. 22. Circular subarray: Experiments 1, 2, and 3.



In Experiments 7 and 8, with results shown in Fig. 24, we

moved the subarray further away (at dc ¼ 3:5m) from wall

1, keeping the height the same as before (h ¼ 1:3m), but

placed the locations of the source the same as those of

Experiments 5 and 6, respectively (ds ¼ 2:5m at 1:3m and

1:7m high, respectively). The error dispersions now are

even lower than those in Experiments 5 and 6. Again, these

results are reasonable since the subarray encounters fewer

reverberations.

7.4.3 Comments on the Experimental Results

The results presented above demonstrated the effectiveness

of our proposed AML algorithm and testbed. It should be

noticed that the testbed is working quite well even in the

controlled limited reverberant scenario, while the radius of

the subarray is quite large, but the distances from the source

to the sensors are quite small. In practice, the sensing area

clearly needs to be much larger than that considered here.

However, to perform controlled reverberation experiments

with two (or more) large perpendicular walls will be

difficult. At least for the distances considered here, no

calibration was performed on these low-cost microphones

in the iPAQs, which demonstrated the robustness of the

algorithms. For larger distances, we may need to use better

quality microphones and possibly need to calibrate/equal-

ize these microphones.

8 CONCLUSIONS

In this paper, we first presented the AML algorithm for
DOA estimation. Then, we showed the LS method applied
to the estimated angles can be used for source localization
in free-space. Upon introducing a novel virtual array
model, source localization in the reverberant case was also
shown to be feasible. Then, details on the testbed hardware
and processing algorithms were given. Finally, extensive
results on subarray configurations and measured results for
free-space and controlled limited reverberant scenarios
were presented.

The above results on the algorithms and the testbed
clearly demonstrated their proper real-time acoustical
beamforming operations in limited scenarios. In order to
extend their operations to longer ranges and more realistic
reverberant conditions with multiple sources, we need to
solve various additional fundamental and practical issues.
As mentioned in the last section, in order to increase the
range of the array, higher quality microphones with tighter
control of the parameters of these microphones need to be
used. To operate in a more general reverberant condition,
knowledge of the parameters of the dominant reflecting
rays needs to be estimated by adaptive probing of the
environment. In order to increase the throughput of the
system, more capable floating-point processors (such as
those in DSP processors) may need to be used since some of
the existing throughput bottlenecks have been in the
software emulation of floating-point operations in the
IPAQs. Whether these needed requirements for real-time
acoustical beamforming can be obtained from existing latest
single unit iPAQ-like devices, instead of using multiunit
systems (with discrete microphones, codecs, DSPs, radios,
etc.), remains unclear and poses a challenge for future work
in this area.
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Fig. 23. Circular subarray: Experiments 4, 5, and 6.

Fig. 24. Circular subarray: Experiments 7 and 8.
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