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for Hyperspectral Unmixing
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Abstract—Sparse unmixing has been recently introduced in hy-
perspectral imaging as a framework to characterize mixed pixels.
It assumes that the observed image signatures can be expressed
in the form of linear combinations of a number of pure spectral
signatures known in advance (e.g., spectra collected on the ground
by a field spectroradiometer). Unmixing then amounts to finding
the optimal subset of signatures in a (potentially very large)
spectral library that can best model each mixed pixel in the scene.
In this paper, we present a refinement of the sparse unmixing
methodology recently introduced which exploits the usual very
low number of endmembers present in real images, out of a very
large library. Specifically, we adopt the collaborative (also called
“multitask” or “simultaneous”) sparse regression framework that
improves the unmixing results by solving a joint sparse regression
problem, where the sparsity is simultaneously imposed to all pixels
in the data set. Our experimental results with both synthetic and
real hyperspectral data sets show clearly the advantages obtained
using the new joint sparse regression strategy, compared with the
pixelwise independent approach.

Index Terms—Collaborative sparse regression, hyperspectral
imaging, sparse unmixing, spectral libraries.

I. INTRODUCTION

S PECTRAL mixture analysis of remotely sensed hyperspec-

tral images has been a very active research area in recent

years, since it faces important challenges [1]–[3]. Linear spec-

tral unmixing [2], [4]–[7] is a standard technique for spectral

mixture analysis that infers a set of pure spectral signatures,

called endmembers, and the fractions of these endmembers,

called abundances, in each pixel of the scene. This model

assumes that the spectra collected by the imaging spectrom-

eter can be expressed in the form of a linear combination

of endmembers, weighted by their corresponding abundances.
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Given the available spatial resolution of state-of-the-art imaging

spectrometers and the presence of the mixture phenomenon

at different scales (even at microscopic levels), in some cases

the assumption that the remotely sensed data contain one pure

observation for each distinct material present in the scene may

not be valid [2]. To address this issue, several endmember de-

termination techniques have been developed without assuming

the presence of pure signatures in the input data [8]–[12]. This

is in contrast with a plethora of algorithms designed under the

pure pixel assumption (see [13] and the references therein).

A recently developed approach to tackle the problems related

to the unavailability of pure spectral signatures is to model

mixed pixel observations as linear combinations of spectra from

a library collected on the ground by a field spectro-radiometer.

For this purpose, sparse linear regression techniques [14], [15]

can be used. Unmixing then amounts to finding the optimal

subset of signatures in a (potentially very large) spectral library

that can best model each mixed pixel in the scene [16]. In

other words, hyperspectral vectors are approximated with a

linear combination of a “small” number or regressors (spectral

signatures in the library). The regressor weights (fractional

abundances) are obtained by minimizing an objective function,

often containing a quadratic data term and a sparsity-inducing

regularizer, usually the ℓ1-norm.

Let A = [a1, . . . ,am] denote a spectral library with m spec-

tral signatures, each with L spectral bands. In real applica-

tions, the high mutual coherence of the hyperspectral libraries,

defined as the largest cosine between any two columns (i.e.,

η(A) ≡ max1≤k,j≤m,k �=j(|a
T
k aj |/‖ak‖2‖aj‖2)), imposes lim-

its to the performance of sparse unmixing techniques, namely

in what concerns the uniqueness of the solutions [17]. In other

words and, as expected, more similar signatures mean more

difficult unmixing. Recent works [2] and [16] present a detailed

analysis of the strong influence that high mutual coherences

of the libraries have on the hyperspectral unmixing solutions.

The mutual coherence is also related to the restricted isometric

properties (RIP) of the libraries [18] (see also [15], [19] and the

variant proposed in [20]), which establish sufficient conditions

under which the unmixing solutions can be exactly recovered

through linear programming techniques.

In this paper, we exploit the fact that a hyperspectral image

always contains a small number of endmembers to remove

part of the aforementioned limitations. This means that, if

the fractional abundances of the spectral library signatures are

collected in a matrix with the number of columns equal to the

number of pixels, there should be only a few lines with nonzero

entries. In other words, the nonzero abundance lines should

appear in a few distinct lines, which implies sparsity along the

0196-2892 © 2013 IEEE
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Fig. 1. Graphical illustration of the performance of the proposed collaborative regularizer. Active members of the considered spectral library A are represented
in blue color, and non-active members of the considered spectral library A are represented in white color.

pixels of a hyperspectral image in terms of the sub-pixel infor-

mation that they convey. At this point, the mutual coherence

should have a weaker impact on the unmixing, as the pixels are

constrained to share the same active set of endmembers. In fact,

the advantages of the collaborative sparse regression approach

over the noncollaborative ones have been demonstrated under

different approaches (see [21] and the references therein). Here,

we exploit the aforementioned observations by adopting a col-

laborative sparse model strongly related with works [21]–[24]

to refine the sparse unmixing methodology. For this purpose,

we use a new collaborative sparse regression algorithm based

on the ideas described in [25], which constitute a generaliza-

tion of the sparse unmixing by variable splitting and augmented

Lagrangian (SUnSAL) introduced in [26]. Both SUnSAL and

the newly developed algorithm, called collaborative SUnSAL

(CLSUnSAL) [25], are instances of the methodology intro-

duced in [27].

The remainder of the paper is organized as follows. Section II

introduces the proposed collaborative sparse regression frame-

work and summarizes the CLSUnSAL algorithm. Section III

shows a quantitative comparison between CLSUnSAL and pre-

vious sparse unmixing algorithms, using simulated hyperspec-

tral data. Section IV provides a comparative assessment using

a well-known hyperspectral scene collected by the Airborne

Visible Infra-Red Imaging Spectrometer (AVIRIS) instrument

[28] over the Cuprite mining district in NV. Finally, Section V

concludes the paper with some remarks and hints at plausible

future research lines.

II. COLLABORATIVE SPARSE REGRESSION

Let y denote an L× 1 column vector representing an L-

dimensional pixel vector of a hyperspectral image with L
spectral bands. The pixel observation y can be expressed in

terms of a linear combination of spectral signatures in a L×m
spectral library A as follows [16]:

y = Ax+ n (1)

where x is an m× 1 vector containing the estimated fractional

abundances and n is an L× 1 vector collecting the errors

affecting the measurements at each spectral band. Assuming

that the data set contains n pixels organized in the matrix

Y = [y1, . . . ,yn] we may write then

Y = AX+N

where X = [x1, . . . ,xn] is the abundance fraction matrix and

N = [n1, . . . ,nn] is the noise matrix. The constraints x ≥ 0

and 1Tx = 1 termed, in hyperspectral jargon, abundance non-

negativity constraint (ANC) and abundance sum-to-one con-

straint (ASC), respectively, are often imposed into the model

described in (1) [7].

Let ‖X‖F ≡
√

trace{XXT } be the Frobenius norm and

λ > 0 denote a regularization parameter. With these defini-

tions in mind, we propose to solve the following optimization

problem:

min
X

‖AX−Y‖2F + λ

m∑

k=1

‖xk‖2

subject to : X ≥ 0 (2)

where xk denotes the k-th line of X and X ≥ 0 is to be

understood componentwise. The convex term
∑m

k=1 ‖x
k‖2 is

the so-called ℓ2,1 mixed norm which promotes sparsity among

the lines of X, i.e., it promotes solutions of (2) with small

number of nonzero lines of X.

Fig. 1 illustrates the effect of the mixed ℓ2,1 norm∑m
k=1 ‖x

k‖2 imposing sparsity among the endmembers simul-

taneously (collaboratively) for all pixels. CLSUnSAL enforces

the presence of the same singletons in the image pixels. Note

that a term imposing sparsity for each individual pixel could

have been included in the objective function. However, from our

experience, the ℓ2,1 regularizer already imposes sparsity in the

solution, making an ℓ1 term in (2) somehow redundant. On the

other hand, the ℓ1 term slightly improves the unmixing results

in certain situations. The great advantage of CLSUnSAL, with

the objective function composed by only two terms, is that

there is only one regularization parameter used, which strongly

alleviates the computational load and the parameter setting

process.

Criterion (2) is similar to that of the collaborative (also

called “multitask” or “simultaneous”) sparse coding problem
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[21]–[24]. The only difference is the introduction of the con-

straint X ≥ 0. Accordingly, we term (2) the constrained col-

laborative sparse regression (CCSR) problem. Notice that the

classical nonnegative constrained least squares (NCLS) solu-

tion corresponds to setting λ = 0.

To solve the optimization problem in (2), we use the

Collaborative Sparse Unmixing via variable Splitting and

Augmented Lagrangian (CLSUnSAL) algorithm [25], which

is an ellaboration of the SUnSAL algorithm introduced in

[26]. SUnSAL solves the ℓ2 + ℓ1,1 norm optimization prob-

lem: minX ‖AX−Y‖2F + λ‖X‖1,1, subject to X ≥ 0, where

‖X‖1,1 =
∑n

j=1 ‖x
j‖1 is the ℓ1,1 norm of X ≥ 0 and xj

represents the vector of abundances corresponding to the j-th

pixel. Here, the first term accounts for the pixel reconstruction

error, while the second term imposes sparsity in the solution.

The main difference between SUnSAL and CLSUnSAL is that

the former employs pixelwise independent regressions, while

the latter enforces joint sparsity among all the pixels, which

is important in the unmixing due to the fact that the pixels

share the same support. CLSUnSAL solves an ℓ2 + ℓ2,1 opti-

mization problem in addition to the nonnegativity constraint.

CLSUnSAL is an instance of the methodology introduced in

[27] for solving ℓ2 plus a linear combination of convex regular-

izers, based on the alternative direction method of multipliers

(ADMM) [29].

In the literature, many efforts were dedicated to solving

problems in which structured variables appear, which is also

the case of CLSUnSAL. In [30], the authors study the risk

minimization problem for linear supervised learning with reg-

ularization by structured sparsity-inducing norms. The risk, in

this case, is defined as the sum between a loss function and an

ℓ2 norm regularization term (which, in more general cases, can

be replaced by the ℓq norm with q ≥ 1). The ℓ2 norm applied

to overlapping subsets of variables is used to infer allowed

nonzero patterns for the solutions. By comparison, CLSUnSAL

does not allow overlapping subsets, as all the subsets are

considered singletons. In [31], the same structured character-

istic of the variables (when the library atoms are organized

in groups according to their degree of similarity) is exploited

on a per-pixel basis to obtain sparse solutions at both group

and individual levels. This approach is known as sparse group

lasso and it was adapted for sparse hyperspectral unmixing to

minimize the number of groups of materials present in each

pixel of an image, treated individually [32]. CLSUnSAL could

be also regarded as an instance of the methodology presented

in [33], called collaborative hierarchical lasso, which also

considers the presence of groups of atoms in the library and

imposes sparsity across the pixels, both at group and individual

level. The major differences are that CLSUnSAL considers the

groups as being singletons while enforcing the ANC. Combined

ℓ2,1 and ℓ1,1 norm regularizers (i.e., sums of ℓ2 or ℓ1 norms,

respectively) are used in [34] to deal with multivariate response

regression problems in which the data are high-dimensional,

but a low number of samples is available. Other works [35],

[36] consider tree-organization models of the output to exploit

the structured nature of the dictionary or to exploit the group

characteristic of the variables. Another library organization was

tested in [37], in which the dictionary is organized in two

separate blocks, one accounting for texture representation and

one dealing with natural scene parts assumed to be piecewise

smooth. In the respective work, a total variation (TV) reg-

ularizer [38]–[40] is also employed such that the the image

fits the piecewise smooth model. The TV regularizer was also

used recently in hyperspectral unmixing (see [41]) and, despite

the relatively high computational complexity of the model,

it brings important improvements in the quality of the final

abundance maps. All the aforementioned methods constitute

examples of how the a priori information regarding the image

(on the one hand) and the library (on the other hand) can be

exploited to find sparse reconstructions with high accuracy of

the estimated coefficients. In this respect, as mentioned before,

CLSUnSAL looks for a structured solution as the matrix of

fractional abundances contains only a few nonzero lines. This

approach was not used before for hyperspectral unmixing and

the theoretical background is supported by the results shown

in [21], in which the authors exploit exactly the ℓ2,1 norm op-

timization problem for recovering jointly sparse multichannel

signals from incomplete measurements.

A valuable theoretical result of [21] is the proof of the su-

periority that multichannel sparse recovery has over the single

channel methods, as the probability of recovery failure decays

exponentially in the number of channels. In other words, sparse

methods have more chances to succeed when the number of

acquisition channels increases, which is extremely important

for the sparse unmixing applications, as the number of spectral

bands is often in the order of hundreds or even thousands.

Herein, we resume the results of Theorem [4.4] in [21], which

assumes that the dictionary A is normalized and composed by

i.i.d. Gaussian entries, the observations are generated by a set

of atoms whose support is S ⊂ {1, 2, . . . ,m} of cardinality k
(i.e., there are at most k rows in the solution matrix which are

not identically zero) and ‖A+
S al‖2 ≤ α < 1 holds for all l �∈ S,

where A+
S is the pseudoinverse of the matrix AS containing

the atoms from A corresponding to the indices in S. The same

Theorem states that, under these assumptions, the solution X of

the linear system of equations Y = AX is recovered by solving

an ℓ2,1-norm optimization problem with probability at least

1−m · exp(−(L/2)(α−2 − log(α−2)− 1)). The exponential

decay of the error is obvious as α < 1. Although the conditions

from the aforementioned Theorem are not met in common

hyperspectral data, in which the dictionary atoms (that is, the

pure spectral signatures) are highly correlated leading to high

values of ‖A+
S al‖2, we have systematically observed the same

type of behavior in our applications, for which we will give

experimental evidence.

We now introduce the details of the CLSUnSAL algorithm.

Using the notation ‖X‖2,1 =
∑m

k=1 ‖x
k‖2 to denote the ℓ2,1

norm, the optimization problem (2) can be written in the

following equivalent form:

min
X

‖AX−Y‖2F + λ‖X‖2,1 + ιR+(X) (3)

where ιR+(X) =
∑n

i=1 ιR+(xi) is the indicator function (xi

represents the i-th column of X and ιR+(xi) is zero if xi

belongs to the nonnegative orthant and +∞ otherwise).
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The optimization problem (3) has the following (constrained)

equivalent formulation:

min
U,V1,V2,V3

1

2
‖V1 −Y‖2F + λ‖V2‖2,1 + ιR+(V3)

subject to V1 = AU

V2 = U

V3 = U (4)

which, in compact, form, becomes

min
U,V

g(V) subject to GU+BV = 0 (5)

where

V ≡ (V1,V2,V3)

g(V) ≡
1

2
‖V1 −Y‖2F + λ‖V2‖2,1 + ιR+(V3)

G =

⎡
⎣
A

I

I

⎤
⎦ , B =

⎡
⎣
−I 0 0

0 −I 0

0 0 −I

⎤
⎦

.

Algorithm 1 Alternating direction method of multipliers

(ADMM) pseudocode for solving problem (5).

1. Initialization: set k = 0, choose μ > 0, U(0), V(0), D(0)

2. repeat:

3. U(k+1) ← argminU L(U(k),V(k),D(k))
4. V(k+1) ← argminV L(U(k+1),V(k),D(k))
5. D(k+1) ← D(k) −GU(k+1) −BV(k+1)

6. until some stopping criterion is satisfied.

The ADMM algorithm for the formulation (5) is shown in

Algorithm 1, where (see [27], [42])

L(U,V,D) ≡ g(U,V) +
μ

2
‖GU+BV −D‖2F (6)

is the augmented Lagrangian for problem (5), μ > 0 is a

positive constant, and D/μ denotes the Lagrange multipliers

associated to the constraint GU+BV = 0. In each itera-

tion, Algorithm 1 sequentially optimizes L with respect to U

(step 3) and V (step 4), and then updates the Lagrange multi-

pliers (step 5).

The convergence conditions from [29, Theorem 1] are met:

matrix G is full column rank and function g introduced in (5)

is closed, proper, and convex. Under these conditions, the same

theorem states that, for any μ > 0, if (5) has a solution, say U∗,

then the sequence {U(k)} converges to U∗. If (5) does not have

a solution, then at least one of the sequences {U(k)} or {D(k)}
diverges. The stopping criterion adopted in the algorithm is

‖GU(k) +BV(k)‖F ≤ ε.

In the ADMM scheme, the setting of the parameter μ has

a strong impact over the convergence speed. The evaluation

of such a parameter is an active research topic. For example,

previous works [43], [44] (see also [45]) use an adaptive scheme

(based on the primal and the dual ADMM variables) that

performs very well in our case. In this scheme, μ is updated with

the objective of keeping the ratio between the ADMM primal

and dual residual norms within a given positive interval, as they

both converge to zero.

The details of the optimizations with respect to U and V

of the ADMM Algorithm 1 (CLSUnSAL) are shown in [25]

and we include them in an Appendix, at the end of the paper,

for self-contentedness. The optimizations with respect to V1,

V2 and V3 are very light. The optimization of U amounts at

solving a linear system of equations of size m×m. The matrix

involved in this system of equations is fixed and then can be

precomputed involving low complexity as the rank of A is

min{L,m}. The optimization with respect to V is decoupled

with respect to V1, V2 and V3.

Concerning the computational complexity, the most expen-

sive step is the calculus of U, which has the order of complexity

O(nL2), while the others have complexity O(n), where L is

the number of bands and n is the number of pixels in the image.

The overall complexity is, then, O(nL2).

III. EXPERIMENTAL RESULTS WITH SYNTHETIC DATA

In this section, we give an illustration of the performance of

our newly proposed collaborative sparse unmixing approach in

a simulated environment. We will compare the results obtained

by our proposed method to those obtained with the SUnSAL

algorithm [26], and also to the classic NCLS solution. The

remainder of the section is organized as follows. Section III-A

describes how the simulated data sets have been generated. We

consider only scenes affected by noise, because in the noiseless

case the true solutions can always be recovered with very high

accuracy [2]. Section III-B describes the adopted performance

discriminators. Section III-C analyzes the performance of the

considered algorithms when the observations are affected by

white noise. Finally, Section III-D analyzes the performance of

the considered algorithms when the observations are affected

by correlated noise.

A. Simulated Datacubes

The spectral library that we use in our experiments is a

dictionary of minerals extracted from the USGS library de-

noted splib061 and released in September 2007. It comprises

spectral signatures with reflectance values given in 224 spectral

bands, distributed uniformly in the interval 0.4–2.5 μm. Our

library, denoted by A, contains m = 240 members with L =
224 bands. In real applications, it often happens that there

are several signatures assigned to a certain endmember, due

to the specific conditions of the sample whose spectrum was

acquired in the laboratory (e.g., grain size, particle orientation

etc.). This is also the case of the considered spectral library A,

in which there are 55 materials included, each endmember

having a number of variations that ranges between 1 and 17.

The mutual coherence of the library is very close to one. In the

library, the signatures are grouped such that the various spectra

corresponding to the same endmember are consecutive.

1Available online: http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 2. (a) Position of two groups of mineral signatures (alunite and olivine) in library A (delimited by black rectangles), and (b) Spectral signatures
corresponding to the same material (alunite) included in a group.

As an example, we show in Fig. 2 the position of two groups

of mineral signatures (alunite and olivine) within this library

[see Fig. 2(a)] and the spectral signatures corresponding to

different variations of the same mineral (alunite) collected in

one of such groups [see Fig. 2(b)]. We remind that CLSUnSAL

does not take into account any group structure. However, the

group structure of the library will be used for a more detailed

quality assesment of the unmixing results.

Using the library A, we generated various datacubes of

500 pixels, each containing a different number of endmembers:

k1 = 2 (generically denoted by DC1), k2 = 4 (DC2) and k3 =
6 (DC3). The endmembers were randomly chosen signatures

from the library. In each simulated pixel, the fractional abun-

dances of the endmembers follow a Dirichlet distribution [46].

In each group of materials, at most one endmember is used

for the generation of the images. The obtained datacubes were

then contaminated with both i.i.d. Gaussian noise and corre-

lated noise, having different levels of the signal-to-noise ratio

SNR(dB) = E‖Af‖2/E‖n‖2: 20, 30 and 40 dB. The correlated

noise was obtained by low-pass filtering i.i.d. Gaussian noise,

using a normalized cutoff frequency of 5π/L. Each noise level

corresponds to different sets of endmembers. The rationale be-

hind the experiments with correlated noise is that, as we argued

in our previous paper [16], the noise is highly correlated in

real hyperspectral applications as it represents mainly modeling

noise and the spectra are of low-pass type with respect to the

wavelength.

B. Performance Discriminators

Regarding the performance discriminators adopted in our

experiments, the quality of the reconstruction of a spectral

mixture was measured using the signal to reconstruction error:

SRE ≡ E[‖x‖22]/E[‖x− x̂‖22], expressed in dB: SRE(dB) ≡
10 log10(SRE). The higher the SRE, the better the quality of

the unmixing. We use this measure instead of the classical

root-mean-squared error (RMSE) as it gives more information

regarding the power of the signal in relation with the power

of the error. We also computed a so-called “probability of

success”, ps, which is an estimate of the probability that the

relative error power be smaller than a certain threshold. This

metric is a widespread one in sparse regression literature,

and is formally defined as follows: ps ≡ P (‖x̂− x‖2/‖x‖2 ≤
threshold). For example, if we set threshold = 10 and get

ps = 1, this means that the total relative error power of the

fractional abundances is, with probability one, less than 1/10.

This gives an indication about the stability of the estimation that

is not inferable directly from the SRE (which is an average). In

our case, the estimation result is considered successful when

‖x̂− x‖2/‖x‖2 ≤ 3.16 (5 dB). This threshold was demon-

strated in previous work to provide satisfactory results [16].

In addition, we use the same performance discriminators

applied for groups of materials, i.e. by considering that one

group represents an endmember and that the sum of the

abundances of the group members represent the abundance

of the respective endmember. We will define these perfor-

mance discriminators by SREg ≡ E[‖xg‖
2
2]/E[‖xg − x̂g‖

2
2]

measured in dBs: SREg(dB) ≡ 10 log10(SREg), and ps,g ≡
P (‖x̂g − xg‖

2/‖xg‖
2 ≤ threshold), where xg and x̂g are

vectors whose j-th element is the sum of the true and inferred

abundances of the members in group j, respectively. By using

this measure, we will show that, despite the similarity of

the signatures, CLSUnSAL is able to better infer the correct

endmembers, compared to the methods acting pixelwise.

Moreover, we count the number of nonzero inferred abun-

dances in the two situations: per member (i.e., considering

each member of the library as a potential endmember) and per

group (i.e., considering each group of materials as a potential

endmember). The unmixing problem is solved by NCLS, SUn-

SAL (which proved to outperform other methods which do not

impose sparsity explicitly, see [16]) and CLSUnSAL. For all

the algorithms, the parameters were carefully tuned for optimal

performance. Next, we describe the results obtained using

observations contaminated with white and correlated noise.
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TABLE I
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER MEMBER IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY WHITE NOISE

TABLE II
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER GROUP IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY WHITE NOISE

C. Performance in Simulated Data Cubes Contaminated

With White Noise

Table I shows the SRE(dB) and the ps (per member) obtained

after applying NCLS, SUnSAL, and CLSUnSAL to the three

simulated datacubes contaminated with white noise. Similarly,

Table II shows the same performance indicators, but this time

computed per group. From Tables I and II, it can be seen

that CLSUnSAL outperforms the other two techniques, both

in terms of unmixing accuracy per pixel and per group. As

shown by the tables, CLSUnSAL attains the highest SRE(dB)

and ps values in all cases. As expected, NCLS exhibits poorer

performance than SUnSAL and CLSUnSAL. The accuracy of

all algorithms decreases when the cardinality of the solution

increases, which is in line with our observations in [16]. This in-

dicates that the sparsity of the solution mitigates the difficulties

encountered in unmixing because of the high mutual coherence

of the libraries. In all cases, the performance per group is

superior to the one corresponding to individual endmembers.

On the other hand, Table III shows the average number

of nonzero fractional abundances obtained by each algorithm

when calculating the performance metrics reported in Tables I

and II, both for individual endmembers in the library and for

groups of materials. For simplicity, we declare the fractional

abundances larger than 0.001 as “nonzero abundances” to avoid

counting negligible values. From Table III it can be observed

that NCLS provides solutions containing many nonzero entries

(especially when the noise is high) while SUnSAL uses less

endmembers and attains better unmixing performance than

NCLS. Finally, CLSUnSAL not only provides the most accu-

rate SRE(dB) and ps values, but also proves to be the algorithm

with the sparsest solutions as it uses the lowest number of

individual endmembers and groups to explain the data.

D. Performance in Simulated Data Cubes Contaminated

With Correlated Noise

Table IV shows the SRE(dB) and the ps (per member)

obtained after applying NCLS, SUnSAL and CLSUnSAL to the

three simulated datacubes contaminated with correlated noise.

Similarly, Table V shows the same performance indicators, but

this time computed per group. From Tables IV and V, it can be

observed that CLSUnSAL outperforms the other algorithms in

terms of SRE(dB) and ps, regardless of whether these metrics

are computed per member or per group. This was already the

case in the experiments with white noise. As expected, NCLS

does not provide optimal performance although it exhibits high

values of ps when the noise is low. While SUnSAL is more

accurate than NCLS, it is also less accurate than the proposed

CLSUnSAL.



IORDACHE et al.: COLLABORATIVE SPARSE REGRESSION FOR HYPERSPECTRAL UNMIXING 347

TABLE III
AVERAGE NUMBER OF NONZERO FRACTIONAL ABUNDANCES OBTAINED BY DIFFERENT UNMIXING ALGORITHMS FOR INDIVIDUAL

ENDMEMBERS AND FOR GROUPS OF MATERIALS WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY WHITE NOISE

TABLE IV
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER MEMBER IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY CORRELATED NOISE

TABLE V
PERFORMANCE OF DIFFERENT UNMIXING ALGORITHMS (PER GROUP IN THE CONSIDERED LIBRARY A)

WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY CORRELATED NOISE

On the other hand, Table VI shows the average number

of nonzero fractional abundances obtained by each algorithm

when calculating the performance metrics reported in Tables IV

and V, both for individual endmembers in the library and for

groups of materials. From Table VI it can be observed that

CLSUnSAL uses a much lower number of nonzero abundances

than the other two algorithms. In turn, SUnSAL reduces signif-

icantly the cardinality of the solution when compared to NCLS

but it still needs a larger number of members/groups to explain

the observed data as compared to CLSUnSAL.

To illustrate further the advantages of the proposed collab-

orative framework using computer simulations, Fig. 3 shows

a graphical comparison of the performances of the consid-

ered unmixing algorithms in a simulated datacube containing
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TABLE VI
AVERAGE NUMBER OF NONZERO FRACTIONAL ABUNDANCES OBTAINED BY DIFFERENT UNMIXING ALGORITHMS FOR INDIVIDUAL

ENDMEMBERS AND FOR GROUPS OF MATERIALS WHEN THE SIMULATED OBSERVATIONS ARE AFFECTED BY CORRELATED NOISE

Fig. 3. (a) Ground-truth abundances in a simulated data set containing 50 pixels and k = 4 endmembers randomly extracted from library A. The data set is
contaminated with correlated noise having SNR of 30 dB. (b) Abundances estimated by NCLS. (c) Abundances estimated by SUnSAL. (d) Abundances estimated
by CLSUnSAL.

50 pixels and simulated using k = 4 endmembers randomly

extracted from library A. The datacube was contaminated with

correlated noise having SNR of 30 dB. The algorithms were

applied after tuning their corresponding parameters to obtain

the most accurate solution for each of them. The abundance

maps shown in Fig. 3 are in line with our previous observations.
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Note that CLSUnSAL produces abundance maps which are

more similar to the ground-truth maps than those produced by

the other algorithms. This is because CLSUnSAL constrains the

pixels to share the same set of endmembers. Even visually, the

superiority of CLSUnSAL with respect to the other algorithms

is clearly discernible.

In summary, the experimental results with simulated data

cubes reported in this section reveal that CLSUnSAL can

improve significantly the cardinalities of the solutions by de-

creasing the number of nonzero components used to explain

the observed data. Further, it is important to emphasize that

CLSUnSAL improves significantly the accuracy of the unmix-

ing solutions over those provided by other algorithms such as

NCLS or SUnSAL. In all cases, the performances obtained

by CLSUnSAL are higher when entire groups of materials

are considered as endmembers. This is a consequence of the

fact that, due to the noise affecting the simulated scenes, the

algorithms are not always able to correctly identify the exact

endmembers. Instead, they often identify variations of the

respective endmembers present in the spectral library. This is

particularly important when one endmember is represented by

several variants in the image, indicating the direction toward a

possible improvement of the CLSUnSAL algorithm, in which

sparsity should be enforced for groups of materials, similar to

the work presented in [33]. This will be a research topic for our

future work. The results obtained with simulated data sets are

very encouraging, but further evaluation with real hyperspectral

scenes is highly desirable. This will be accomplished in the

following section.

IV. EXPERIMENTAL RESULTS WITH

REAL HYPERSPECTRAL DATA

The scene used in our real data experiments is the well-

known AVIRIS Cuprite data set, available online in reflectance

units.2 This scene has been widely used to validate the perfor-

mance of endmember extraction algorithms. The portion used

in experiments corresponds to a 204 × 151-pixel subset of the

sector labeled as f970619t01p02_r02_sc03.a.rfl in the online

data. The scene comprises 224 spectral bands between 0.4 and

2.5 μm, with nominal spectral resolution of 10 nm. Prior to

the analysis, bands 1–2, 105–115, 150–170, and 223–224 were

removed due to water absorption and low SNR in those bands,

leaving a total of 188 spectral bands. The Cuprite site is well

understood mineralogically, and has several exposed minerals

of interest, all included in the USGS library considered in

experiments, denoted splib063 and released in September 2007.

In our experiments, we use spectra obtained from this library

as input to the unmixing methods described in Section II.

Specifically, the spectral library used in this experiment is the

same library A used in our experiments with simulated data.

We recall that it contains m = 240 members corresponding

to 55 minerals, with L = 224 bands. The noisy bands were

also removed from A. For illustrative purposes, Fig. 4 shows

a mineral map produced in 1995 by USGS, in which the

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3http://speclab.cr.usgs.gov/spectral.lib06

Tricorder 3.3 software product [47] was used to map different

minerals present in the Cuprite mining district.4 It should be

noted that the Tricorder map is only available for hyperspectral

data collected in 1995, while the publicly available AVIRIS

Cuprite data was collected in 1997. Therefore, a direct com-

parison between the 1995 USGS map and the 1997 AVIRIS

data is not possible. However, the USGS map serves as a

good indicator for qualitative assessment of the fractional abun-

dance maps produced by the unmixing algorithms described

in Section II.

Fig. 5 shows a qualitative comparison between the classi-

fication maps produced by the USGS Tetracorder algorithm

and the fractional abundances inferred by NCLS, SUnSAL and

the proposed CLSUnSAL algorithm for four different miner-

als (alunite, buddingtonite, chalcedony and montmorillonite)

which are very prominent in the considered hyperspectral

scene. The regularization parameter used for CLSUnSAL in

this experiment was empirically set to 0.01, while the one

corresponding to SUnSAL was set to 0.001. As it can be

seen in Fig. 5, the unmixing results show a good correlation

of the features present in the abundance maps estimated by

CLSUnSAL with regard to the classification maps produced

by the USGS Tetracorder algorithm. It is also worth noting

that the fractional abundances estimated by CLSUnSAL are

generally comparable or higher in the regions assigned to the

respective materials in comparison to NCLS and SUnSAL.

We also emphasize that the average number of endmembers

with abundances higher than 0.05 estimated by CLSUnSAL is

5.53 (per pixel), while the average number of groups with total

abundances higher than 0.05 is 5.07. The small difference be-

tween these two values leads to the conclusion that CLSUnSAL

enforces the sparseness both at the group and individual levels.

This means that, inside the selected groups, the algorithm uses a

minimum number of members to explain the data. This result is

in line with the information provided by the USGS Tetracorder

classification map, in which the four selected endmembers are

quite dominant in the scene. Overall, the qualitative results

reported in this section indicate the improvements that the

newly developed CLSUnSAL algorithm can provide by taking

advantage of the special characteristics of available spectral

libraries and hyperspectral images when conducting the sparse

unmixing process.

V. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated the performances of a

new collaborative sparse regression framework that improves

hyperspectral unmixing results by taking advantage of the fact

that the number of endmembers in a given hyperspectral scene

is generally low and all the observed pixels are generated by the

same set of endmembers. These aspects are addressed through

a new algorithm called CLSUnSAL which is shown in this

work to be able to accurately infer the abundance fractions in

both simulated and real environments. The proposed approach

reduces the number of endmembers needed to explain the data

and provides more robust solutions than those obtained by

4http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Fig. 4. USGS map showing the location of different minerals in the Cuprite mining district in NV. The map is available online at:
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.

other state-of-the-art competitors. Although the experimental

results obtained in this paper are very encouraging, further

experimentation with additional hyperspectral scenes is needed

to fully substantiate our contributions. Also, despite the fact that

the proposed algorithm is quite fast as compared to the other

tested methods, a possible direction in our future research is the

implementation of CLSUnSAL on high performance comput-

ing environments to fully exploit its inherently parallel nature

to accelerate its computational performance. Other possible

improvements of the methodology, including the optimization

of objective functions which impose sparsity for groups of

materials, will be investigated.

APPENDIX

In this appendix, we detail the CLSUnSAL algorithm in-

troduced in Section II. We start by expanding the augmented

Lagrangian introduced in (6)

L(U,V1,V2,V3,D1,D2,D3)

=
1

2
‖V1 −Y‖2F + λ‖V2‖2,1 + ιR+(V3)

+
μ

2
‖AU−V1 −D1‖

2
F +

μ

2
‖U−V2 −D2‖

2
F

+
μ

2
‖U−V3 −D3‖

2
F . (7)
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Fig. 5. Qualitative comparison between the fractional abundance maps estimated by NCLS, SUnSAL, CLSUnSAL and the classification maps produced by
USGS Tetracorder for the considered 204 × 151-pixel AVIRIS Cuprite scene. (a) USGS Tetracorder classification map for alunite; (b) NCLS abundance
map for alunite; (c) SUnSAL abundance map for alunite; (d) CLSUnSAL abundance map for alunite; (e) USGS Tetracorder classification map for
buddingtonite; (f) NCLS abundance map for buddingtonite; (g) SUnSAL abundance map for buddingtonite; (h) CLSUnSAL abundance map for budding-

tonite; (i) USGS Tetracorder classification map for chalcedony; (j) (f) NCLS abundance map for chalcedony; (j) SUnSAL abundance map for chalcedony;
(k) CLSUnSAL abundance map for chalcedony; (l) USGS Tetracorder classification map for montmorillonite; (m) NCLS abundance map for montmorillonite;
(n) SUnSAL abundance map for montmorillonite; (o) CLSUnSAL abundance map for montmorillonite.
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The pseudocode of CLSUnSAL is shown in Algorithm 2. It is

the expansion of the ADDM algorithm presented in Algorithm 1.

Algorithm 2 Pseudocode of the CLSUnSAL algorithm.

1. Initialization: set k = 0, choose μ ≥ 0, U(0), V
(0)
1 , V

(0)
2 ,

V
(0)
3 , D

(0)
1 , D

(0)
2 , D

(0)
3

2. repeat:

3. U(k+1) ← argminU L(U, V
(k)
1 , V

(k)
2 , V

(k)
3 ,

D
(k)
1 ,D

(k)
2 ,D

(k)
3 )

4. V
(k+1)
1 ← argminV1

L(U(k),V1,V
(k)
2 ,V

(k)
3 )

5. V
(k+1)
2 ← argminV2

L(U(k),V
(k)
1 ,V2,V

(k)
3 )

6. V
(k+1)
3 ← argmin

V
(k)
3

L(U(k),V
(k)
1 ,V

(k)
2 ,V3)

7. Update Lagrange multipliers:

D
(k+1)
1 ← D

(k)
1 −AU(k+1) +V

(k+1)
1

D
(k+1)
2 ← D

(k)
2 −U(k+1) +V

(k+1)
2

D
(k+1)
3 ← D

(k)
3 −U(k+1) +V

(k+1)
3

8. Update iteration: k ← k + 1
9. until some stopping criterion is satisfied.

The goal of the Step 3 in Algorithm 2 is to determine the

value of the variable U at each iteration. Given that we run

an optimization over the variable U, the terms of the objective

function (7) which do no contain this variable are not taken into

account. The reduced optimization function becomes, then

U(k+1) ← argmin
U

μ

2
‖AU−V

(k)
1 −D

(k)
1 ‖

2

F

+
μ

2
‖U−V

(k)
2 −D

(k)
2 ‖

2

F +
μ

2
‖U−V

(k)
3 −D

(k)
3 ‖

2

F . (8)

The solution of (8) is simply

U(k+1) ← (ATA+ 2I)−1(AT ξ1 + ξ2 + ξ3) (9)

where I is the identity matrix, AT represents the transpose

of A and: ξ1 = V
(k)
1 +D

(k)
1 , ξ2 = V

(k)
2 +D

(k)
2 , ξ3 = V

(k)
3 +

D
(k)
3 .

Steps 4–6 of CLSUnSAL compute the values of the variables

V1,V2,V3 at the current iteration. To compute V1, the opti-

mization problem to be solved is

V
(k+1)
1 ←argmin

V1

1

2
‖V1−Y‖2F +

μ

2
‖AU(k)−V1−D

(k)
1 ‖

2

F

(10)

whose solution is

V
(k+1)
1 ←

1

1 + μ

[
Y + μ

(
AU(k) −D

(k)
1

)]
. (11)

To compute V2, the optimization problem to be solved is

V
(k+1)
2 ←argmin

V2

λ‖V2‖2,1+
μ

2
‖U(k)−V2−D

(k)
2 ‖

2

F (12)

whose solution is the well-known vect-soft threshold (see,

e.g., [48]), applied independently to each row r of the update

variable

V
(k+1)
2,r ← vect-soft

(
ξ2,r,

λ

μ

)
(13)

where ξ2 = U(k) −D
(k)
2 and vect-soft(·, τ) denotes the row-

wise application of the vect-soft-threshold function b �→
y(max{‖y‖2 − τ, 0}/max{‖y‖2 − τ, 0}+ τ).

To compute V3, we solve the optimization problem

V
(k+1)
3 ←argmin

V3

ιR+(V3)+
μ

2
‖U(k)−V3−D

(k)
3 ‖

2

F . (14)

In (14), the role of the ιR+ term is to project the solution onto

the nonnegative orthant and the value of V3 is given by

V
(k+1)
3 ← max

(
U(k) −D

(k)
3 , 0

)
. (15)
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