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Abstract: In this paper, we consider a class of sensor networks where the data is not required in 
real-time by an observer; for example: a sensor network monitoring a scientific phenomenon for 
later play back and analysis. In such networks, the data must be stored in the network. Thus, in 
addition to battery power, storage is a primary resource; the useful lifetime of the network is 
constrained by its ability to store the generated data samples. We explore the use of collaborative 
storage techniques to efficiently manage data in storage constrained sensor networks. The 
proposed collaborative storage technique takes advantage of spatial correlation among the data 
collected by nearby sensors to significantly reduce the size of the data near the data sources. In 
addition, local coordination can be used to adjust the sampling rate to match the required 
application fidelity. We show that the proposed approach provides significant savings in the size 
of the stored data vs. local buffering. These savings allow the network to operate for a longer 
time without exhausting storage space. Furthermore, the savings reduce the amount of data that 
will eventually be relayed in response to queries or upon eventual collection of the data. In 
addition, collaborative storage performs load balancing of the available storage space if data 
generation rates are not uniform across sensors (as would be the case in an event driven sensor 
network), or if the available storage varies across the network. 
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1 Introduction 
In this paper, we consider a class of sensor networks where 
the information collected by the sensors is not collected in 
real-time. In such applications, the data must be stored, at 
least temporarily, within the network and used in response 
to dynamic queries until it is later collected by an observer, 
or until it ceases to be useful. For example, data may be 
collected for a scientific application in a sensor field. 
Scientists appear occasionally (e.g., every week) to check 
on the experiment and collect the data. Furthermore, some 
applications have sensors which collect data that may be 
needed by users of the networks that generate queries 
dynamically. In such applications, the data must be stored in 
the network: storage is a primary resource, which in 
addition to energy, determines the useful lifetime of the 
network. This is the problem considered in this paper: how 
to use limited persistent storage of a sensor to store sampled 
data effectively. 

One basic storage management approach is to buffer the 
data locally at the sensors that collect them. However, such 
an approach does not allow the neighbours to collaborate to 
reduce the size of their overall data. Two approaches for 
reducing the data size are possible if neighbours collaborate: 

• Aggregation. They can capitalise on the spatial 
correlation of data among neighbouring sensors to 
reduce the overall size of the stored data. Aggregation 
is well known in the context of traditional real-time 
monitoring sensors (Boulis et al., 2003; 
Intanagonwiwat et al., 2001). However, there are 
important differences in this case: aggregation relies on 
the presence of data from multiple sensors at 
intermediate nodes as it is being sent in real-time 
towards a sink. With local buffering this is not possible 
without forcing data exchange among sensors. There 
are other important differences from traditional 
aggregation such as the long term availability of the 
data and the ability to revisit aggregation decisions 
since storage is reassignable. 

• Coordination for redundancy control. More 
specifically, with local buffering, the sensors may be 
collecting and storing redundant data. By coordinating 
infrequently, redundancy can be estimated, allowing the 
sensors to sample less aggressively and save storage 
and energy. 

Collaborative storage management can provide the 
following advantages over a simple buffering technique: 

• More efficient storage allows the network to continue 
storing data for a longer time without exhausting 
storage space. 

• Load balancing is possible. If the rate of data 
generation is not uniform at the sensors (e.g., in the 
case where a localised event causes neighbouring 
sensors to collect data more aggressively), some 
sensors may run out of storage space while space 
remains available at others. In such a case, it is 

important for the sensors to collaborate to achieve load 
balancing for storage, and avoid or delay data loss due 
to insufficient local storage. 

• Dynamic, localised reconfiguration of the network 
(such as adjusting sampling frequencies of sensors 
based on estimated data redundancy and current 
resources). 

We describe a cluster based collaborative storage approach 
and compare it through simulations to a local buffering 
technique. Our experiments show that collaborative storage 
makes more efficient use of sensor storage and provides 
load balancing, especially if a high level of spatial 
correlation/redundancy among the data of neighbouring 
sensors is present. The tradeoff is that, using collaborative 
storage, data need to be communicated among neighbouring 
nodes, and thus collaborative storage expends more energy 
than local buffering in the data collection phase. However, 
since data is aggregated using collaborative storage, a 
smaller amount of data is stored and a smaller amount of 
data is eventually relayed to the observer, thereby reducing 
energy dissipation in this phase of operation. 

The remainder of this paper is organised as follows. 
Section 2 overviews the partitioned sensor network problem 
and motivates collaborative storage in more detail in the 
context of this problem. Section 3 discusses the design goals 
of a storage management scheme with an overview of 
important factors. Section 4 provides an overview of related 
work in this area. Section 5 presents the proposed storage 
management protocols and discusses the important design 
tradeoffs. In Section 6 we evaluate the storage alternatives 
under different scenarios. Finally Section 7 presents 
conclusion and our future research. 

2 Motivation 
In this section, we motivate the storage problem by 
describing applications that require ‘in network’ storage. 
We identify the following two classes of applications: 

• Offline monitoring. The sensors are deployed to collect 
detailed information about a phenomenon for later 
playback and analysis. Eventual data collection 
(reachback) can be accomplished by an observer who 
moves around the sensor field or relayed back through 
multihop communication among the sensors 
themselves. In either case, the data is stored 
continuously, but read only once. 

• ZebraNet (Juang et al., 2002) is an example of such a 
network: it is a sensor network for wildlife tracking, 
whose goal is to provide more insight into complex 
issues such as migration patterns, social structures and 
mobility models of various animal species. In this 
application, sensors are attached to animals. Scientists 
(aka observers) collect the data by driving around the 
monitored habitat, receiving information from Zebras 
as they come in range with them. Data collection is not 
pre planned: it might be unpredictable and infrequent. 
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The sensors do not have an estimate regarding the 
observer’s schedule. The observer would like the 
network to maintain all the new data samples available 
since the last time the data was collected. Further, we 
would like the collection time to be small since the 
observer may not be in range with the zebra for a  
long time. 

• Dynamic augmented reality. In this type of application, 
the sensors store data about ongoing events. The data is 
dynamically queried by users within the network.  
The queried data can be data about current and recent 
events or even historical data. For example, such a 
network deployed in a battlefield may be queried by 
soldiers to learn about nearby enemy units (current and 
recent data) or by commanders to learn about long term 
enemy movement. In such a network, collected data 
may be accessed multiple times (or not at all). 
Moreover, the importance of a piece of data may 
change with time. 

Storage may also be used to tolerate temporary network 
partitioning, where the observer is not reachable from the 
partitioned sensors, without losing potentially valuable data. 
For example, the Remote Ecological Micro-Sensor Network 
focuses on remote visual surveillance of federally listed rare 
and endangered plants (http://www.botany.hawaii.edu/ 
pods/overview.htm). This project aims to provide near  
real-time monitoring of important events such as visitation 
by pollinators and consumption by herbivores along with 
monitoring a number of weather conditions and events. 
Sensors are placed in different habitats, ranging from 
scattered low shrubs to dense tropical forests. 
Environmental conditions can be severe; e.g., some 
locations frequently freeze. In this application, network 
partitioning (relay nodes becoming unavailable) may occur 
due to the extreme physical conditions (e.g., deep freeze). 
Moreover, voluntary partitioning may occur if relay nodes 
operate in low duty cycles to conserve energy, to reduce 
interference with the observed phenomena. Important events 
that occur during disconnection periods should be recorded 
and reported once the connection is re-established. Effective 
storage management is needed to maximise the partitioning 
time that can be tolerated. 

In the next section, we discuss various factors that affect 
the design of a storage management scheme and then 
describe the design goals of such a system. 

3 Design goals 
A major area of sensor network research focuses on making 
sensor network design and operation, energy efficient. 
However, for storage bound applications, there is an 
additional finite resource: the available storage at the 
sensors. Once the available storage space is exhausted, a 
sensor can no longer collect and store data locally; unless  
 
 
 

they delete older data, the sensors that have run out of 
storage space cease to be useful. Thus, the sensor network 
utility is bound by two resources: its available energy and its 
available storage space. Effective storage management 
protocols must balance these two resources to prolong the 
network’s useful lifetime. 

Energy and storage are fundamentally different 
resources. Specifically, storage is a reassignable resource, 
while energy is not. For example, a node may free up some 
storage space by deleting or compressing data. This is not 
possible in the case of energy, as the battery power spent in 
either transmitting or receiving data can not be reassigned to 
new data. Additionally, storage at other nodes may be 
utilised, at the cost of transmitting the data to them. The 
alternative to storing the data locally is transmitting the data 
towards an observer or a collection point. 

In existing technology, storage devices consume 
significantly less energy than RF communication devices. 
Accordingly, the tradeoff between storage and energy is 
complex. Sensors may exchange their data with nearby 
sensors to take advantage of the spatial correlation in their 
data to reduce the overall data size. Another positive side 
effect is that the storage load can be balanced even if the 
data generation rates or the storage resources are not. 
However, the exchange of data among the sensors consumes 
more energy in the data collection phase; the energy cost of 
communicating the data far outweighs the energy savings in 
storage (due to the smaller data size). On the surface, it may 
appear that locally storing data is the most energy efficient 
solution. However, the extra energy spent in exchanging 
data may be counterbalanced by the energy saved by storing 
smaller amounts of data and more importantly, by the 
smaller energy expenditure when replying to queries or 
relaying the data back to observers. 

We now present the design goals of a storage 
management protocol. 

• Storage efficiency. Since the amount of storage 
available to a sensor is very limited, it is important to 
minimise the data that needs to be stored. Efficient  
use of storage space leads to better coverage, since a 
given sensor can continue to store data for a longer time 
period. 

• Storage load balancing. If the available storage resources 
or the data generation rates are nonuniform, it is desirable 
that the storage be load balanced to avoid exhausting 
the storage at important sensors and losing their data. 

• Data coverage. This is a measure of the fraction of the 
data samples that the network was able to collect and 
retain. 

• Energy efficiency. Sensors are constrained by the 
limited battery power available to them. Any storage 
management scheme should be designed with the goal 
of energy efficiency in mind. Energy is spent in two 
phases: 
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• During data collection. This is the energy spent to 
store the data, in addition to any communication 
that occurs, to take advantage of collaborative 
storage 

• During data access. This is the energy spent in 
relaying the data to one or more data sinks. In the 
offline monitoring model, data access occurs once. 
In the augmented reality model, it may be accessed 
any number of times. 

4 Related work 
Because of the wireless nature of sensors, the primary 
resource constraint is the limited battery energy. Energy 
awareness permeates all aspects of sensor design and 
operation, from the physical design of the sensor  
(Asada et al., 1998; Chandrakasan et al., 1999) to the design 
of its operating system (Hill et al., 2000), communication 
protocols and applications (Yao and Gehrke, 2002).  
In this section, we briefly overview some of the issues 
involved in storage management; for a more detailed review 
of these issues, please refer to our survey on this topic 
(Tilak et al., 2005). 

Ratnasamy et al. (2002) proposed using Data Centric 
Storage (DCS) to store data by name within a sensor 
network such that all related data is stored at the same  
(or nearby) sensor nodes using geographic hashing. GHT is 
a structured approach to sensor network storage that  
makes it possible to index data based on content, without 
requiring query flooding. GHT also provides load balancing 
of storage usage (assuming fairly uniform sensor 
deployment). GHT implements a Distributed Hash Table by 
hashing a key k into geographic coordinates. Thus,  
queries for data of a certain type are likely to be satisfied by 
a small number of nodes, significantly improving the 
performance of queries. However, this enhanced query 
performance requires moving related data from its point of 
generation to its appropriate keeper, as determined by 
geographic hashing. We view this work as a higher level 
management of data focusing on optimising queries rather 
than storage: our approach could compliment DCS by 
providing more effective storage of the data as it is 
collected. 

GHT targets retrieval of high level, precisely defined 
events. The original GHT implementation is limited to 
reporting whether a specific high level event occurred. 
However, it is not able to efficiently locate data in  
response to more complex queries. The Distributed  
Index for Features in Sensor Networks (DIFS)  
attempts to efficiently support range queries. Range queries 
(Greenstein et al., 2003) are the queries where only events 
within a certain range are desired. In DIFS, the authors 
propose a distributed index that provides low average search 
and storage communication requirements while balancing 
the load across the participating nodes  
 
 

Concurrently with us (Tilak et al., 2003), Ganesan  
et al. (2003) have explored protocols for storage constrained 
sensor networks. They consider a problem similar to ours 
and explore some of the solution space we are considering, 
with some important differences. More specifically, our 
work differs in the following ways: 

• We explore additional approaches to storage 
management, including those using coordination for 
redundancy control. 

• We explore issues that arise due to uneven data 
generation (e.g., due to event driven or adaptive 
sampling applications) and nonuniform storage 
distribution (e.g., due to nonuniform deployment of the 
sensors). In such applications, effective load balancing 
is required. 

• We study some additional characteristics of the storage 
protocols including coverage and collection time and 
energy. 

Conversely, Ganesan et al. (2003) consider some aspects of 
the problem that we do not examine in detail. For example, 
in storage constrained networks, one of the issues is how the 
algorithm behaves when storage is limiting. The proposed 
approach is to use multiresolution storage – adaptively 
reducing the resolution of the stored data based on its 
importance. They explore a policy for multiresolution 
storage based on the age of the data. They proposed and 
evaluated several novel ageing strategies (reduction of 
resolution based on age). 

5 Storage management protocols 
A primary objective of storage management protocols is to 
efficiently utilise the available storage space to continue 
collecting data for the longest possible time without losing 
samples in an energy efficient way. Storage management 
approaches can be classified as: 
• Local storage. This is the simplest solution where every 

sensor stores its data locally. This protocol is energy 
efficient during the storage phase since it requires no 
data communication. Even though the storage energy is 
high (due to all the data being stored), the current state 
of technology is such that storage costs less than 
communication. However, this protocol is storage 
inefficient since the data is not aggregated and 
redundant data is stored among neighbouring nodes. 
Local storage is unable to load balance if data 
generation or the available storage varies across  
sensors. 

• Collaborative storage. Collaborative storage refers to 
any approach where nodes collaborate. This includes 
cooperation to estimate local redundancy as well 
exchange of data for aggregation as well as load 
balancing. Collaboration leads to two benefits: 
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• Less data is stored. Measurements obtained from 
nearby sensors are typically correlated. This allows 
data samples from neighbouring sensors to be 
aggregated. 

• Load balancing. Collaboration among sensors 
allows them to load balance the storage. 

It is important to consider the energy implications of 
collaborative storage relative to local storage. Collaborative 
storage requires sensors to exchange data, causing them to 
expend energy during the storage phase. However, because 
they are able to aggregate data, the energy expended in 
storing this data to a storage device is reduced. In addition, 
once connectivity with the observer is established, less 
energy is needed during the collection stage to relay the 
stored data to the observer. We note that this holds true even 
if ‘in network’ aggregation is carried out for locally 
buffered data during the reachback stage, due to the 
following two reasons: 

• Initial communication (first hop) of the locally buffered 
data will not be aggregated. 

• Less efficient aggregation. A smaller amount of time 
and resources are available when near real-time data 
aggregation is applied during reachback as compared to 
aggregation during the storage phase. Aggregating data 
during reachback is limited because all the data 
collected during the storage phase is compressed in a 
short time. 

In the remainder of this section, we first discuss the use of 
collaboration for data aggregation and then for redundancy 
control. 

5.1 Collaborative storage protocols for data 
aggregation 

One use of collaboration is to take advantage of data 
aggregation. Aggregation in the application domain we are 
considering, differs from that in traditional sensor networks 
because of the non real-time nature. More specifically, in 
traditional applications, aggregation is carried out using a 
snapshot of the available data. Data cannot be delayed 
because it is assumed that an observer is interested in 
continuously monitoring the data. In the applications we are 
considering, the data is held locally for extended periods, 
allowing more effective ‘wide angle’ aggregation to be 
carried out. 

Aggregation is highly application dependent. Consider a 
tracking application where nearby sensors exchange a local 
estimate of distance to a phenomenon. Once this 
information is available at a single node, it may be 
triangulated into a single location estimate. In another 
application, multiple samples from nearby sensors are 
‘beam formed’ to produce a single high quality sample.  
In order to develop the general storage tradeoff, we  
abstract the details of the aggregation model and  
consider only the resulting data size reduction.  
Primarily, we model aggregation as compression of the 

collected data samples and vary the compression ratio.  
This model is not representative of all applications  
(e.g., beam forming); we discuss the effect of alternative 
aggregation models later. 

A number of organisations are possible for collaborative 
storage. Data is most correlated and redundant among 
nearby sensors. Moreover, to minimise data exchange cost, 
we restrict data exchange within and among neighbouring 
sensors (recall that the cost of communication is extremely 
high compared to storage). Finally, data must be collected at 
a single location for aggregation. As a result of these  
three factors, a cluster based model suggests itself. 
Clustering has been widely studied in sensor and ad hoc 
networks; the specific clustering algorithm used is not 
important – virtually any existing clustering algorithm can 
be used. In the remainder, we briefly describe the features of 
the Cluster Based Collaborative Storage (CBCS) protocol 
used in our evaluation study. CBCS uses collaboration to 
take advantage of data aggregation. 

In CBCS, clusters are formed in a distributed 
connectivity based or geography based fashion. Each sensor 
sends its observations to the elected Cluster Head (CH) 
periodically. The CH then aggregates the observations and 
stores the aggregated data. Only the CH needs to store 
aggregated data, thereby resulting in low storage. The 
clusters are rotated periodically to balance the storage load 
and energy usage. Note that only the CH needs to keep its 
radio on during its tenure, while a cluster member can turn 
off its radio except when it has data to send. This results in 
high energy efficiency: idle power consumes significant 
energy in the long run if radios are kept on. The reception of 
unneeded packets while the radio is on also consumes 
energy. 

Operation during CBCS can be viewed as a continuous 
sequence of rounds until an observer/base station is present 
and the reachback stage can begin. Each round consists of 
two phases: 

• CH selection phase. In this phase, each sensor 
advertises its resources to its one hop neighbours. 
Based on this resource information, a cluster head (CH) 
is selected. The remaining nodes then attach themselves 
to that CH during the data transfer phase 

• Data exchange phase. If a node is connected to a CH, it 
sends its observations to the CH; otherwise, it stores its 
observations locally. 

The CH selection approach used in CBCS is based on the 
characteristics of the sensor nodes such as available storage, 
available energy or proximity to the ‘expected’ observer 
location. The criteria for CH selection can be arbitrarily 
complex; in our experiments we used available storage as 
the criteria. 

We borrow the idea of cluster head rotation for load 
balancing from the LEACH protocol (Heinzelman, 2000). 
CH rotation is done by repeating the cluster selection phases 
with every round. The frequency of cluster rotation 
influences the performance of the protocol. Depending on 
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the cluster formation criteria, there is an overhead for cluster 
formation due to the exchange of messages. 

The cluster selection approach above may result in a 
situation where a node A selects a neighbour B to be its CH, 
when B itself selects C (which is out of range with A) to be 
its own CH. This may result in chains of cluster heads 
leading to ineffective/multi-hop clustering. To eliminate the 
above problem and restrict clusters to one hop, geographical 
zoning is used: an idea that is similar to the approach of 
constructing virtual grids (Xu et al., 2001). More 
specifically, the sensor field is divided into zones, such that 
all nodes within a zone are in range with each other. Cluster 
selection is then localised to a zone such that, a node only 
considers cluster advertisements occurring in its zone. Only 
one CH is selected per zone, eliminating CH chaining as 
discussed above. We note that this approach requires either 
preconfiguration of the sensors or the presence of a location 
discovery mechanism (GPS cards or a distributed 
localisation algorithm (Bulusu et al., 2000)). In sensor 
networks, localisation is of fundamental importance, as the 
physical context of the reporting sensors must be known, in 
order to interpret the data. We therefore argue that our 
assumption that sensors know their physical coordinates is 
realistic. In any case, we emphasise that cluster formation is 
orthogonal to collaborative storage and other cluster 
formation approaches can be used. 

5.2 Coordination for redundancy control 

One idea we explore is coordination among the sensors. 
Specifically, each sensor has a local view of the 
phenomenon, but cannot assess the importance of its 
information, given that other sensors may report correlated 
information. For example, in an application where three 
sensors are sufficient to triangulate a phenomenon, ten 
sensors may be in a position to do so and be storing this 
information locally or sending it to the cluster head for 
collaborative storage. Through coordination, the cluster 
head can inform the nodes of the degree of the redundancy, 
allowing the sensors to alternate triangulating the 
phenomenon. Coordination can be carried out periodically 
at low frequency, with a small overhead (e.g., with CH 
election). Similar to CH selection, the nodes exchange meta 
data describing their reporting behaviour and we assume 
that some application specific estimate of redundancy is 
performed to adjust the sampling rate. 

Coordination can be used in conjunction with local 
storage or collaborative aggregated storage. In Coordinated 
Local Storage (CLS), the sensors coordinate periodically 
and adjust their sampling schedules to reduce the overall 
redundancy, thus reducing the amount of data that will be 
stored. Note that the sensors continue to store their readings 
locally. Relative to Local Storage (LS), CLS results in a 
smaller overall storage requirements and savings in energy  
in storing the data. This also results in a smaller and  
more energy efficient data collection phase. Similarly, 
Coordinated Collaborative Storage (CCS) uses coordination 
to adjust the sampling rate locally. Similar to CBCS, the 
data is still sent to the cluster head where aggregation is 

applied. However, as a result of coordination, a sensor can 
adapt its sampling frequency/data resolution to match the 
application requirements. In this case, the energy expended 
in sending the data to the cluster head is reduced because of 
the smaller size of the generated data, but the overall size of 
the data is not reduced. We evaluate CLS and CCS 
compared to the noncoordinated counterparts, LS and 
CBCS. 

6 Experimental evaluation 
We simulated the proposed collaborative storage protocols 
using the NS-2 simulator. We use a CSMA based MAC 
layer protocol. A sensor field (http://www.isi.edu/nsnam/ 
ns/) of 350 m2 × 350 m2 is used with each sensor having a 
transmission range of 100 metres. We considered three 
levels of sensor density: 50 sensors, 100 sensors and 150 
sensors deployed randomly. We divide the field into 25 
zones (each zone is 70 × 70 m2 to ensure that any sensor in 
the zone is in range with any other sensor). The simulation 
time for each scenario was set to 500 seconds and each 
point represents an average of over five different topologies. 
Cluster rotation and coordination are performed every 100 
seconds in the appropriate protocols. 

We assume that the sensors have a constant sampling 
rate (set to one sample per second). For the coordinated 
redundancy control protocols, we used a scenario where the 
available redundancy was, on average, 30% of the data 
size–this is the percentage of the data that can be eliminated, 
using coordination. We note that this reduction in the data 
size represents a portion of the reduction possible, using 
aggregation. With aggregation, the full data is available at 
the cluster head and can be compressed at a higher 
efficiency. 

Several sensor nodes that are appearing on the  
market, including Berkeley MICA nodes, have  
Flash memories. Flash memories have excellent power 
(http://www.xbow.com) dissipation properties and small 
form factor. As a representative we consider a Simple  
Tech flash memory USB cards it Transfer Energy/Mbyte 
0.055 J. In current wireless (http://www.simpletech.com/ 
products/consumer/datasheets/R187.pdf) communication 
technologies (Radio Frequency based), the cost of 
communication is high compared to the cost of storage. For 
example, representative radios following the Zigbee IEEE 
802.15.4 standard, consume energy at roughly 40 times the 
cost of the Simple Tech USB card above per unit data. Our 
energy models in the simulation are based on these two 
devices. Further, we adjust the radio properties to match 
those of a Zigbee device. 

Note that both the possible data aggregation 
/compression and the reduction due to redundancy control 
are application as well as topology dependent. Consider a 
temperature sensing application. For this application, a 
given sensor can collect data from all its neighbours and 
then simply take the average and store a single value  
(or maybe minimum, mean and maximum values) as 
representative. However, if the sensors are sending video 
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data, then such high spatial compression might not be 
possible. In this paper, instead of considering a specific 
application, we assume a data aggregation model where the 
cluster head is able to compress the size of the data by an 
aggregation ratio α. By controlling α, we can consider 
different applications with different levels of available 
spatial correlation. While this model is useful in exposing 
the tradeoff space for collaborative storage, it is not 
representative of all applications. More specifically, the size 
of the aggregated data grows linearly with the number of 
available sensors, rather than as a function of the 
phenomenon, as should be the case under effective 
monitoring. We consider the implications of this model on 
collaborative storage and explore other possible models 
later in this section. 

6.1 Storage and energy tradeoffs 

Figure 1 shows the average storage used, per sensor, as a 
function of the number of sensors (50, 100 and 150 sensors) 
for the four storage management techniques: 

• local storage (LS) 

• cluster-based collaborative storage (CBCS) 

• coordinated local storage (CLS) 

• coordinated collaborative storage (CCS). 

Figure 1 Storage space vs. network density 

 

In the case of CBCS, aggregation ratio was set to 0.5. The 
storage space consumption is independent of the density for 
LS and is greater than storage space consumption in CBCS 
and CCS (roughly in proportion to the aggregation ratio).  
 
 
 
 
 
 
 
 

CLS storage requirement is in between the two approaches 
because it is able to reduce the storage requirement using 
coordination (we assumed that coordination yields 
improvement uniformly distributed between 20% and 40%). 
Note that after data exchange, the storage requirement  
for CBCS and CCS are roughly the same, since  
aggregation at the cluster head can reduce the data to a 
minimum size, regardless of whether coordination took 
place or not. 

Surprisingly, in the case of collaborative storage, the 
storage space consumption decreases slightly as the density 
increases. While this is counter intuitive, it is due to higher 
packet loss observed during the exchange phase as the 
density increases; as density increases, the probability of 
collisions increases. These losses are due to the use of a 
contention based unreliable MAC layer protocol: when a 
node wants to transmit its data to the CH. The negligible 
difference in the storage space consumption between CBCS 
and CCS is also an artefact due to the slight difference in the 
number of collisions observed in the two protocols. The use 
of a reliable protocol such as that in IEEE 802.11 or a 
reservation based protocol such as the TDMA based protocol 
employed by LEACH (Heinzelman, 2000) can be used to 
reduce or eliminate losses due to collisions (at an increased 
communication cost). Regardless of the effect of collisions, 
one can clearly see that the collaborative storage  
achieves significant savings in storage space compared  
to local storage protocols (in proportion to the aggregation 
ratio). 

Figure 2(a) shows the consumed energy for the 
protocols in Joules as a function of network density.  
The X axis represents protocols for different network 
densities: L and C stand for local buffering and CBCS 
respectively. L-1, L-2, and L-3 represents the results with 
local buffering technique for network size 50, 100 and 150 
respectively. The energy bars are broken into two parts: 
preenergy, which is the energy consumed during the storage 
phase, and postenergy, which is the energy consumed 
during data collection (the relaying of the data to the 
observer). The energy consumed during storage phase is 
higher for collaborative storage because of the data 
communication among neighbouring nodes (not present in 
local storage) and due to the overhead for cluster rotation. 
CCS spends less energy than CBCS due to reduction in data 
size that results from coordination. However, CLS has 
higher expenditure than LS since it requires costly 
communication for coordination. This cost grows with the 
density of the network because our coordination 
implementation has each node broadcasting its update, and 
receiving updates from all other nodes. 
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Figure 2 Energy consumption and collection time study (a) Energy consumption vs. density and (b) Mean collection time vs. density 

        
 (a) (b) 
 
For the storage and communication technologies used, the 
cost of communication dominates that of storage. As a 
result, the cost of the additional communication during 
collaborative storage might not be recovered by the reduced 
energy needed for storage except at very high compression 
ratios. This tradeoff is a function of the ratio of 
communication cost to storage cost; if this ratio goes down 
in the future (for example, due to the use of infrared 
communication or ultra low power RF radios), collaborative 
storage becomes more energy efficient compared to local 
storage. Conversely, if the ratio goes up, collaborative 
storage becomes less efficient 

The data collection model depends on the application 
and network organisation; several models are in use for 
deployed sensor networks. We use a simple collection 
model where we only account for the cost of transferring the 
data one hop. This model is representative of an observer 
that moves around and gathers data from the sensors. Also, 
in cases where the local buffering approach carries out 
aggregation at the first hop towards the observer, the size of 
the data becomes similar in the two approaches and the 
remainder of the collection cost is the same. However, this 
is optimistic in favour of local storage because near  
real-time data aggregation will not, in general, be able to 
achieve the same aggregation level during collection as is 
achieved during collaborative storage. This is due to the fact 
that collaborative storage can afford to wait for samples and 
compress them efficiently. Moreover, in collaborative 
storage, the aggregation is done incrementally over time, 
requiring fewer resources than aggregation during 
collection, where large amounts of data are processed 
during a short time period. The collaborative storage 
approaches outperform the local storage ones according to 
this metric due to their smaller storage size. CLS 
outperforms LS for the same reason. 
 
 
 

Finally, we assumed a reachback model (eventual data 
collection) where the data is read once at the end, consistent 
with offline monitoring applications. In case of dynamic 
applications, data may be accessed multiple times by 
different observers. In this case, the energy saving in the 
post phase will be further in favour of collaborative storage 
because the reduced data size ends up benefiting multiple 
queries. 

Figure 2(b) shows that, with collaborative storage, the 
collection time is considerably lower than that of local 
buffering. In addition, CLS outperforms LS. Low collection 
time and energy are important parameters from a practical 
standpoint. After exploring the effect of coordination, the 
remainder of the paper presents results only with the two 
uncoordinated protocols (LS and CBCS). 

6.2 Storage balancing effect 

In this study, we explore the load balancing effect of 
collaborative storage. More specifically, the sensors are 
started with a limited storage space and the time until this 
space is exhausted is tracked. We consider an application 
where a subset of the sensors generates data at twice the rate 
of the others, for example, in response to higher observed 
activity close to some of the sensors. To model the data 
correlation, we assume that sensors within a zone have 
correlated data. Therefore all the sensors within a zone will 
report their readings with the same frequency. We randomly 
select zones with high activity; sensors within those zones 
will report twice as often as those sensors within low 
activity zone. 

In Figure 3, the X-axis denotes time (in multiples of 100 
seconds), whereas the Y-axis denotes the percentage of 
sensors that have no storage space left. Using LS,  
in the even data generation case, all sensors run  
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out of storage space at the same time and all data collected 
after that is lost. In comparison, CBCS provides longer time 
without running out of storage, because of its more efficient 
storage. 

Figure 3 Percentage of storage depleted sensors vs. time 

 

The uneven data generation case highlights the load 
balancing capability of CBCS. Using LS, the sensors that 
generate data at a high rate exhaust their storage quickly; we 
observe two subsets of sensors getting their storage 
exhausted at two different times. In comparison, CBCS has 
much longer mean sensor storage depletion time due to its 
load balancing properties, with sensors exhausting their 
resources gradually, extending the network lifetime much 
longer than LS. 

6.3 Coverage analysis 

Physically colocated sensors have redundant data. For 
simplicity, we assume that all sensors within a zone have 
correlated data. In this work we consider two types of 
coverage, namely, binary coverage and manifold coverage, 
defined as follows:  

• Binary coverage. A given zone Zi is said to be covered 
at time t if any one of the sensors S1, …, Sk in Zi is 
reporting and storing the reading. Binary coverage can 
be visualised as a step function. 

• Manifold coverage. a given zone Zi is said to be 
covered at time t proportional to the number of sensors 
j(j < k) out of its given set of sensors S1, …, Sk that are 
reporting and storing the reading. 

This coverage function can be visualised as a monotonically 
increasing function (which might have diminishing returns 
after some point). This means that the higher the number of 
reporting sensors, the better is the coverage. 

Figure 4 shows the Binary Coverage as a function  
of time. One can see that CBCS has a higher percentage of 
active zones compared to LS for both data generation 
models. 

Figure 4 Binary coverage 

 

Similar trends are seen when considering Manifold 
Coverage (Figure 5). Each line represents the percentage of 
zones with some specific coverage level: for example, the 
line ‘quarter’ represents the percentage of zones where at 
least 25% of the sensors have storage space left.  
One can clearly see that in the case of LS, with even  
data generation (Figure 5(a)) the percentage of zones with 
full coverage is 100% at 300 seconds, whereas with uneven 
data generation it reduces to less than 50% within 300 
seconds. In CBCS, at the same times, the coverage is around 
96% with the even data generation model and with the 
uneven data model it is around 77%. Note that, a CH stored 
more data than an individual sensor; therefore if the round 
time is very long, it might happen that the given  
CH runs out of storage sooner than a sensor storing its data 
locally. In LS, the percentage of dead zones (zones with all 
sensors out of storage space) rises in two waves for the 
uneven data model, reaching up to 30% within 300 seconds 
and 50% in 500 seconds However, with CBCS, with  
the uneven data model, the percentage of dead zones  
rises slowly and is below 30% even at the end of the 
simulation. 

In general, from these figures, one can see that the 
manifold coverage changes are abrupt for local buffering.  
In contrast, collaborative storage provides smooth 
degradation of coverage. Moreover, the average coverage is 
higher for collaborative storage due to the data aggregation 
and load balancing ability, by transferring data from high 
activity zones to low activity zones. 
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Figure 5 Manifold coverage (a) LS manifold coverage (even data generation); (b) CBCS manifold coverage (even data generation);  
(c) LS manifold coverage (uneven data generation) and (d) CBCS manifold coverage (uneven data generation) 

        
 (a) (b) 

        
 (c) (d) 
 
6.4 Effect of the aggregation model 

Figure 6 shows effect of storage space consumption  
as a function of aggregation ratio. As expected,  
the amount of storage space consumed in the case  
of CBCS protocol is proportional to the extent of 
aggregation ratio. Collaborative storage management will 
work well for the applications with high spatio-temporal 
coverage. 

One limitation of the aggregation model we have used 
so far is that the required storage size under collaboration 
grows in direct proportion to the number of sensors in the 
cluster; that is, the storage consumed in a round is αN ⋅ D, 
where α is the aggregation ratio, N is the number of sensors 
and D is the data sample size. Since the available storage 
(N ⋅ S, where S is the available storage per sensor) is also a 
function of the number of sensors, storage is consumed at a 
rate (fracαDS) which is independent of the number of 
sensors present in the zone, assuming perfect load 
balancing. For most applications, this will not be the case: 
the aggregated data necessary to describe the phenomenon 
in the zone does not grow strictly proportionately to the 

number of sensors and we expect storage lifetime to be 
longer in dense areas than in sparse ones. 

Figure 6 Storage space vs. aggregation ratio 

 



 Collaborative storage management in sensor networks 57 

To highlight the above effect, we consider the case of a 
biased deployment where sensors are deployed randomly 
but with nonuniform density. In addition to the aggregation 
model considered so far, we consider a case where the CH, 
upon receiving packets from its N members, just needs to 
store one packet; for example, if the aggregation function is 
to store the average value of the N samples (e.g. average 
temperature reading). Clearly, in the second case, the size of 
the aggregated data is independent of network density. We 
now study how these applications with different aggregation 
functions perform on top of a biased deployment. To model 
biased deployment, we consider four zones with sensors 
respectively. In these simulations, the round time was set to 
10 seconds (CH selection happens every 10 seconds). 

In Figure 7, the X-axis shows time (in multiple of 10 
seconds), whereas the Y-axis shows the percentage of 
coverage sensors within a given zone. As described  
earlier we considered 4 zones for this study and  
each line in the Figure 7 represents a particular zone.  
 

For example line Z-5 stands for a zone with five sensors in it 
and Z-2 denotes the zone with two sensors in it and so on. 
As shown in Figure 7(a), when the aggregation ratio is a 
constant (0.5), all the zones provide coverage for almost 
same duration. However, in the second case, as shown in 
Figure 7(b), coverage is directly proportional to the  
network density; the higher the density, the longer is the 
coverage. 

The sensor network coverage from a storage 
management perspective depends on the event generation 
rate, the aggregation properties as well as the available 
storage. If the aggregated data size is independent of the 
number of sensors (or grows slowly with it), the density of 
the zone correlates with the availability of storage resources. 
Thus, both the availability of storage resources as well as 
the consumption of them may vary within a sensor network. 
This argues for the need of load balancing across zones to 
provide long network lifetime and effective coverage. This 
is a topic for future research. 
 

Figure 7 Biased deployment vs. coverage (a) Aggregation ratio = 0.5: Coverage and (b) Aggregation ratio = 1/N: Coverage 

       
 (a) (b) 

 
7 Conclusion and future work 
In this paper, we considered the problem of storage 
management in sensor networks where the data is not 
continuously reported in realtime and must therefore be 
stored within the network. Collaborative storage is a 
promising approach for storage management because it 
enables the use of spatial data aggregation and redundancy 
control among neighbouring sensors to compress the stored 
data and optimise the storage use. Collaborative storage also 
allows load balancing of the storage space to allow the 
network to maximise the time before data loss due to 
insufficient memory. Collaborative storage results in lower 
time to transfer the data to the observer during the 
reachback stage and has better binary and manifold 
coverage than a simple local buffering approach. 
 

While collaborative storage reduces the energy  
required for storage, it requires additional communication. 
Using current technologies, collaborative storage  
requires more energy than local buffering. Network 
effectiveness is bound both by storage availability  
(to allow continued storage of collected data) as  
well as energy. Thus, protocol designers must be  
careful to balance these constraints: if the network is  
energy constrained, but has abundant storage, local  
storage is most efficient from an energy perspective. 
Alternatively, if the network is storage constrained, 
collaborative storage is most effective from a storage 
perspective. When the network is constrained by both, a 
combination of the two approaches would probably perform 
best. 
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We did not examine the implications of collaborative 
storage on data indexing and retrieval strategies. 
Furthermore we did not consider the effect on the file 
system design: often sensor network files have simple 
sequential ‘append access’ interfaces that are suitable for 
data logging, but not necessarily collaborative storage. 
These issues are among the areas of future research interest. 

As part of our future research, we would like to 
implement these protocols on real sensor hardware 
platforms such as the Berkeley motes. Furthermore, in this 
study we consider all events to be of the same importance, 
and thus they are stored with the same compression ratio 
(resolution). In our future research, we will explore the 
protocol space wherein different events are stored with 
different resolutions (important events are stored in detail 
whereas unimportant events are stored with a coarser 
granularity). 
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Websites 
A remote ecological micro-sensor network, 

http://www.botany.hawaii.edu/pods/overview.htm 
Crossbow–smart sensors in silicon (crossbow website) (2003) 

Commercial product based on Berkeley MICAs 
http://www.xbow.com. 

Network Simulator, http://isi.edu/nsnam/ns. 
SimpleTech flash memory card datasheet, 

http://www.simpletech.com/products/consumer/ 
datasheets/R187.pdf. 


