
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015 81

Collaborative Task Execution in Mobile Cloud
Computing Under a Stochastic Wireless Channel

Weiwen Zhang, Yonggang Wen, Senior Member, IEEE, and Dapeng Oliver Wu, Fellow, IEEE

Abstract—This paper investigates collaborative task execution
between a mobile device and a cloud clone for mobile applica-
tions under a stochastic wireless channel. A mobile application
is modeled as a sequence of tasks that can be executed on the
mobile device or on the cloud clone. We aim to minimize the
energy consumption on the mobile device while meeting a time
deadline, by strategically offloading tasks to the cloud. We for-
mulate the collaborative task execution as a constrained shortest
path problem. We derive a one-climb policy by characterizing the
optimal solution and then propose an enumeration algorithm for
the collaborative task execution in polynomial time. Further, we
apply the LARAC algorithm to solving the optimization problem
approximately, which has lower complexity than the enumeration
algorithm. Simulation results show that the approximate solution
of the LARAC algorithm is close to the optimal solution of the
enumeration algorithm. In addition, we consider a probabilistic
time deadline, which is transformed to hard deadline by Markov
inequality. Moreover, compared to the local execution and the
remote execution, the collaborative task execution can significantly
save the energy consumption on the mobile device, prolonging its
battery life.

Index Terms—Collaborative task execution, mobile cloud com-
puting, scheduling policy, Markov decision process, stochastic
wireless channel.

I. INTRODUCTION

MOBILE devices, owing to the latest technology advances
in wireless communication and computer architecture,

are being transformed into a ubiquitous computing platform.
Cisco VNI report [1] predicts that the number of mobile
users will continue to increase in the following years, with
3.8 billion in 2012 growing to 4.6 billion by 2017. In the
meanwhile, new mobile applications with advanced features
(e.g., video capturing, data mining, etc.) are being created on
smartphones, finding their way into our lives. However, this
trend toward omnipotent mobile Internet is hampered by the

Manuscript received January 27, 2014; revised April 23, 2014; accepted
June 9, 2014. Date of publication June 30, 2014; date of current version
January 7, 2015. The work of W. W. Zhang and Y. G. Wen was supported
by Start-Up Grant from NTU, MOE Tier-1 Grant (RG 31/11) from Singapore
MOE, and EIRP02 Grant from Singapore EMA. The work of Y. G. Wen
was also supported by the Singapore National Research Foundation under
its IDM Futures Funding Initiative and administered by the Interactive and
Digital Media Programme Office, Media Development Authority. The work of
D. P. Wu was supported in part by the NSF under Grant ECCS-1002214 and in
part by the NSFC under Grant 61228101. The associate editor coordinating the
review of this paper and approving it for publication was P. Wang.

W. Zhang and Y. Wen are with the School of Computer Engineering,
Nanyang Technological University, Singapore 639798 (e-mail: wzhang9@
ntu.edu.sg; ygwen@ntu.edu.sg).

D. O. Wu is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32601 USA (e-mail: wu@ece.ufl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2014.2331051

resource limitation of mobile devices. Compared to their desk-
top counterparts, mobile devices have rather limited computing
power and battery lifetime [2], [3]. As a result, one needs to
consider the resource poverty of mobile devices when designing
applications on mobile devices.

The emerging cloud computing technology [4] offers a
natural solution to extend the capabilities of mobile devices, by
providing extra resources (e.g., computing, storage and band-
width). Various cloud-assisted mobile platforms have been pro-
posed for remote task execution, which can be divided into two
categories, i.e., an infrastructure-based cloud (e.g., MAUI [5],
CloneCloud [6], [7], and Cloudlets [8]) and an ad-hoc virtual
cloud [9], [10]. The infrastructure-based cloud is empowered by
cloud clones and remote execution engines, which execute ap-
plications on behalf of mobile devices, thus extending the com-
puting power and reducing the energy consumption for mobile
devices. The ad-hoc virtual cloud is formed by a cluster of mo-
bile devices (e.g., smartphones and tablets) that work coopera-
tively to accomplish application offloading. Both architectures
require offloading policy to decide whether to offload applica-
tions from mobile devices to cloud, and offloading mechanism
to implement the function of application offloading [11].

Offloading mechanism has been studied extensively [5]–
[9], but research efforts of offloading policy are still limited.
Reference [3] provided energy analysis of computation offload-
ing under a static network, asserting that not all applications
are suitable for offloading computation to cloud for execution.
Reference [12] derived the offloading policy whether an entire
application should be offloaded to cloud or executed locally to
reduce energy consumption on the mobile device. Nevertheless,
neither of them have the flexibility on selectively offloading
tasks to the cloud in a finer granularity for the energy-efficient
offloading policy.

In this research, we investigate the problem of how to
conserve the energy consumption on the mobile device by
offloading tasks to the infrastructure-based cloud. We illustrate
an architecture of cloud-assisted mobile application platform
in Fig. 1. In this architecture, there is a cloud clone for each
mobile device. One can execute a task on the mobile device or
offload the task to the associated cloud clone for execution. As
such, tasks within an application can be alternately executed on
the mobile device or on the cloud clone, which is referred to as
collaborative task execution. We will show that the collabora-
tive task execution is more energy-efficient and flexible than the
approach of offloading an entire application to the cloud [12].

We aim to develop an energy-efficient scheduling policy for
collaborative task execution between the mobile device and
the cloud clone. The objective is to minimize the expected

1536-1276 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

82 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Fig. 1. Collaborative task execution in a cloud-assisted mobile application
platform. Each task within an application can be executed on the mobile device
or offloaded to the cloud for execution.

energy consumption of the mobile device while meeting a time
deadline. To gain insight into the policy, we consider a simple
and yet practical task model, in which each task is sequentially
executed, forming a linear topology. For this task model, we
formulate the energy-efficient task scheduling problem as a
constrained stochastic shortest path problem on a directed
acyclic graph. This problem is addressed under three alternative
wireless channel models, including: i) a block-fading channel,
ii) an IID stochastic channel, and iii) a Markovian stochastic
channel. We propose an enumeration search algorithm and an
adapted LARAC (Lagrangian Relaxation Based Aggregated
Cost) algorithm to obtain the optimal and approximate solu-
tion to the constrained optimization problem, respectively. In
addition, we also consider a probabilistic time deadline of the
mobile application. Using Markov inequality, we transform the
probabilistic time constraint into a hard time constraint, which
can provide a suboptimal policy. Our findings are multi-fold,
including:

• We show that a one-climb policy (i.e., the execution only
migrates once between the mobile device and the cloud
clone if ever) is optimal under three channel models for
the linear topology. The one-climb policy can shed light
on the design of scheduling tasks of mobile applications in
general topology.

• We derive a set of necessary conditions for which the
optimal execution should migrate forward to the cloud and
back to the mobile device, under the block-fading channel.
This analysis suggests a rule of thumb for the optimal
scheduling policy.

• We show via simulations that the collaborative task exe-
cution can significantly save the energy consumption on
the mobile device under the stochastic wireless channel,
compared to the local execution and the remote execution.

When deployed, our proposed collaborative task execution
strategy would prolong the battery lifetime for mobile devices.

The rest of the paper is organized as follows. Section II
provides the related work. Section III presents system mod-
els and a mathematical formulation for the scheduling policy
of the collaborative task execution. Section IV provides the
characterization of the optimal solution to the optimization
problem with a hard deadline. Section V provides the approx-
imate algorithm to solve the optimization problem with the
hard deadline. Section VI provides a sub-optimal solution to
the optimization problem with a probabilistic delay constraint.
Simulation results are provided in Section VII. Section VIII
further discusses the scheduling of tasks in general topology.
Section IX concludes the paper and suggests future work.

II. RELATED WORK

A vast amount of previous work [6]–[10], [13], [14] have
investigated computation offloading to extend the capabilities
of mobile devices. Using experimental approach, [13], [14]
showed that significant power can be saved through remote
processing. Under the technology of visualization, [6], [7]
proposed to augment smartphone applications by CloneCloud
execution; [8] proposed to deploy Cloudlets on nearby in-
frastructure via a wireless LAN in order to reduce the re-
sponse time. Moreover, [9], [10] leveraged mobile devices as
computing resources to save the energy consumption of the
conventional cloud-based servers. All of those work focused
on the offloading mechanism, by presenting system architecture
and performance evaluation (e.g., energy consumption and time
delay), without any discussion of theoretical framework for
offloading policy.

Some research has worked on the offloading policy. Refer-
ence [3] analyzed the offloading policy on whether to offload
application under a static network, which required the predic-
tion of the network condition. MAUI [5] provided a formulation
of 0–1 integer linear programming to decide at runtime which
methods should be remotely executed, in order to optimize the
energy savings under the mobile device’s current connectivity
constraints. But that work did not provide the guarantees of
the execution time. Reference [15] constructed a consumption
graph to represent an application and proposed partition algo-
rithms to find a cut in the consumption graph for the application
execution. It minimized the interaction between the mobile
device and the cloud as well as the amount of exchanged data,
but the consideration of the energy consumption on the mobile
device is absent. Reference [16] presented a dynamic offloading
algorithm based on Lyapunov optimization, which provides
a suboptimal solution to save energy on the mobile device
while meeting the application deadline. Reference [12] derived
the offloading policy whether an entire application should be
offloaded to a cloud server or executed by a standalone mobile
device. But it did not take the benefits of offloading for a finer
granularity of the application.

This work investigates offloading policy in a more fine-
grained manner, which is an extension of our previous work
[17]. Compared to [17], we have the following contributions.
First, we show that one-climb policy is optimal for task offload-
ing under the stochastic wireless channel. Second, we introduce
a probabilistic constraint of time deadline into the optimization
problem. Finally, based on the mathematical framework, we
provide more results for offloading policy.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the model for the collaborative
task execution between the mobile device and the cloud clone.

A. Task Model

We assume that a mobile application is presented by a
sequence of tasks with a linear topology, in the granularity
of either method [5] or module [15]. Fig. 2 illustrates the
task model in the linear topology. There are n tasks in the

ZHANG et al.: COLLABORATIVE TASK EXECUTION IN MOBILE CLOUD COMPUTING UNDER A STOCHASTIC WIRELESS CHANNEL 83

Fig. 2. Illustration of the task model in a linear topology.

mobile application. Each task is sequentially executed, with
output data as the input of its subsequent task. To describe the
parametric context of each task, we define a tuple representation
as φk = (ωk, αk, βk), where k = 1, 2, . . . , n. Specifically, ωk

is the computing workload of the kth task. As such, the total
computing workload of the application is

∑n
k=1 ωk. We denote

the input and output data size of the kth task as αk and
βk, respectively. Notice that the output of the (k − 1)th task
is the input of the kth task, i.e., αk = βk−1. In this paper,
we focus on this task model; other task topologies are dis-
cussed in Section VIII and will be addressed in details in the
future work.

One typical application example of the task model in the lin-
ear topology is eyeDentify [18], which matches an image based
on the object recognition algorithm. Particularly, eyeDentify
consists of a series of steps for feature extraction process to
convert the raw image into a feature vector. First, a number of
circular areas are designated for a given image. Second, for each
of these circular areas, color histograms are established. Third,
the shape of the histograms are approached by a Weibull fit.
All of these fits constitute a feature vector that represents the
description of the image. Finally, object recognition is achieved
by selecting the best match for the feature vector from the
local database of objects. However, [18] only considered two
execution cases: the entire computation is either performed on
the mobile device or on the cloud. In this paper, we take the
advantage of the task model in the linear topology to investigate
the collaborative task execution between the mobile device and
the cloud.

B. Channel Model

Wireless channel in this paper is modeled as a random
process of gt under a time-slot scheme, where gt denotes
the channel state at time t. Specifically, we consider three
alternative models, including:

• Block-fading channel: the channel states {gt} do not
change over the duration of application execution.

• IID stochastic channel: {gt} are independent and identi-
cally distributed (IID) random variables.

• Markovian stochastic channel: {gt} form a Markovian
random process with a discrete state space.

In this paper, we make an assumption that the transmission
power on the mobile device is fixed. As a result, the data rate
Rt is fully determined by the channel state of gt. Our results
obtained in this simple model would shed light on more realistic
case when power adaptation is available.

For the Markovian stochastic channel, we adopt
Gilbert–Elliott (GE) channel model [19], [20], where there are
two states: “good” and “bad” channel conditions, denoted as G
and B, respectively. The two states correspond to a two-level
quantization of the channel gain. If the measured channel

gain is above some value, the channel is labeled as good.
Otherwise, the channel is labeled as bad. As such, we define
the channel gains {gt} of the good and bad states to be gG and
gB , respectively. In this case, the data rate can be assumed to
take two values, RG and RB , for the good and bad channel
state, respectively,

Rt =

{
RG, gt = gG;
RB , gt = gB .

The transition matrix of the channel state is

P =

(
pGG pGB

pBG pBB

)
.

C. Execution Model

In this paper, we focus on the collaborative task execution
between the mobile device and the cloud clone. Specifically,
each task in the linear topology can be executed on the mobile
device or offloaded to the cloud clone for execution, based on
the context of the task φ and the data rate Rt.

In this configuration, we consider four atomic modules in-
volved during the collaborative task execution, including:

• Mobile Execution (ME). If the kth task is executed on the
mobile device, the completion time is given by

dm(k) = ωkf
−1
m , (1)

and the energy consumption of the mobile device is
given by

em(k) = dm(k)pm, (2)

where fm and pm are the clock frequency and the compu-
tation power of the mobile device. We assume that pm is
fixed and does not change during the computation.

• Cloud Execution (CE). If the kth task is executed on the
cloud clone, the mobile device is idle and wireless network
interface card is turned off during the cloud execution.
We denote dc(k) as the completion time of the kth task
executed on the cloud, given by

dc(k) = ωkf
−1
c , (3)

where fc is the clock frequency of the processing unit
on the cloud clone, assumed to be faster than the CPU
clock frequency of the mobile device, i.e., fc > fm. In
this case, we have dc(k) < dm(k). Correspondingly, the
energy consumption of the mobile device is given by

ec(k) = dc(k)pi, (4)

where pi is the power of the mobile device for being idle.
We assume that pi < pm and hence ec(k) < em(k).

• Sending Input Data (SID). If the kth task is offloaded to the
cloud for execution, the input data αk is sent to the cloud
before execution. We denote ds(k) as the transmission
time. Supposing the current time slot is i, we have

ds(k) = min

{
j :

i+j−1∑
t=i

Rt ≥ αk

}
. (5)

84 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Fig. 3. The representation of the task execution flow. Node k represents that
the kth task has been completed on the mobile device, while node k represents
that the kth task has been completed on the cloud.

In this case, the energy consumption of the mobile device
is given by

es(k) = ds(k)ps, (6)

where ps is the transmission power of the mobile device.
• Receiving Output Data (ROD). If the (k + 1)th task is ex-

ecuted on the mobile device while the kth task is executed
on the cloud, the output data of the kth task, βk, should be
received by the mobile device before the commencement
of executing the (k + 1)th task. We denote dr(k) as the
completion time of receiving the output data of the kth
task. Supposing the current time slot is i, we have

dr(k) = min

{
j :

i+j−1∑
t=i

Rt ≥ βk

}
. (7)

In this case, the energy consumption of the mobile device
is given by

er(k) = dr(k)pr, (8)

where pr is the receiving power of the mobile device.

D. Problem Formulation for Collaborative Task Execution

In this subsection, we formulate the optimal energy collabo-
rative task execution as a constrained shortest path problem.

The collaborative task execution between the mobile device
and the cloud can be modeled by a directed acyclic graph G =
(V,A), with the finite node set V and arc set A, as shown in
Fig. 3. We denote the number of nodes and arcs as |V | and |A|,
respectively. We introduce two dummy nodes, i.e., node S as
the source node for application initiation and node D as the
destination node for application termination, respectively. The
node k represents that the kth task has been completed on
the mobile device, while the node k represents that the kth task
has been completed by the cloud clone, where k = 1, 2, . . . , n.
We can find that |V | = 2n+ 2 and |A| = 4n.

The arc of the adjacent nodes, u and v, is associated with
the nonnegative cost for a corresponding task, i.e., the energy
consumption eu,v and the completion time du,v . The costs,
including the energy consumption e and the time delay d, are
generalized as C in Fig. 3, bracketed by the module involved.
Specifically, first, starting at node S, if task 1 is executed on the
mobile device, the module ME is involved; if it is offloaded
to the cloud, the module SID is involved, followed by CE.
Second, from node k to node k + 1, the module SID will take
place followed by CE, with the positive cost of ek,k+1 and

dk,k+1 for the energy consumption and time delay, respectively.
Third, from node k to node k + 1, the module ROD will take
place followed by ME, with the energy consumption ek,k+1

and time delay dk,k+1, respectively. Finally, the cost between
n and D is zero, while the cost between n and D is incurred by
module ROD.

Under this framework, we can transform the task scheduling
problem to find the shortest path in terms of expected energy
consumption between S and D in the graph, subject to the
constraint that the expected completion time of that path should
be less than or equal to the time deadline. A path p is feasible
if the expected completion time satisfies the delay constraint.
A feasible path p∗ with the minimum expected energy con-
sumption is the optimal solution among all the feasible paths.
Mathematically, it can be formulated as a constrained shortest
path problem,

min
p∈P

E [e(p)] = E

⎧⎨
⎩

∑
(u,v)∈p

eu,v

⎫⎬
⎭

s.t. E [d(p)] = E

⎧⎨
⎩

∑
(u,v)∈p

du,v

⎫⎬
⎭ ≤ Td, (9)

where Td is the completion deadline of the entire application,
and P is the set of all possible paths. Note that the expectation
is taken over the channel state. Since we have two choices for
each task, offloading to the cloud or not, there are 2n possible
options for the solution. This constrained optimization problem
is shown to be NP-complete [21].

In addition, we can also consider a variant of (9), which is an
optimization problem with a probabilistic constraint, given by

min
p∈P

E [e(p)] = E

⎧⎨
⎩

∑
(u,v)∈p

eu,v

⎫⎬
⎭

s.t. Pr [d(p) ≥ Td] ≤ Pd, (10)

where Pd is a violation probability specified by users. We aim
to find a path p that has a small probability of violating the time
deadline, which provides flexibility to adapt to the risk-level
that the user can accept.

IV. CHARACTERIZATION OF OPTIMAL SOLUTION TO TASK

SCHEDULING POLICY UNDER TIME DELAY CONSTRAINT

In this section, we characterize the optimal solution of (9),
and develop energy-efficient scheduling policy for collaborative
task execution under time delay constraint.

A. Scheduling Policy Under Block-Fading Channel

We first consider a simple case under the block-fading chan-
nel [22], with a constant data rate R during the execution of
all the tasks of the application. This simple case can give some
guidelines for the design of the scheduling policy.

Under the block-fading channel, the problem of minimum
energy consumption within time delay can be transformed into
a deterministic constrained shortest path problem. Particularly,

ZHANG et al.: COLLABORATIVE TASK EXECUTION IN MOBILE CLOUD COMPUTING UNDER A STOCHASTIC WIRELESS CHANNEL 85

Fig. 4. Illustration of one-climb policy. (a) Execution with two migrations
from the mobile device to the cloud. (b) Execution with one migration from the
mobile device to the cloud.

all the costs of data transmission, i.e., the costs of crossing arcs
in Fig. 3, are deterministic, including the completion time and
the energy consumption of each task, ds(k) = αk/R, dr(k) =
βk/R, and es(k) = (αk/R)ps, er(k) = (βk/R)pr. In this case,
one can enumerate all the paths and choose the one that has
minimal energy consumption while satisfying the time delay
constraint. However, this brute-force search will lead to the
complexity of O(2n). Hence, an efficient algorithm is needed
to reduce the complexity.

Before presenting the efficient algorithm, we first character-
ize the optimal solution and show that the one-climb policy is
optimal for the block-fading channel in Theorem 1.

Theorem 1: Under the block-fading channel model, the
energy-optimal execution only migrates once from the mobile
device to the cloud if ever. It is referred to as one-climb policy.

Proof: See Appendix A. �
The one-climb policy indicates that there will occur only

once task migration for the optimal policy during the entire
application execution if ever. For example, by the rule of the
one-climb policy, the execution in Fig. 4(a) is not optimal.

Based on the optimality of the one-climb policy, we then
design an efficient algorithm for task scheduling. We can enu-
merate all the paths under the one-climb policy rather than all
the 2n paths. We define P′ as the set of all the paths under
the one-climb policy. There are (((n+ 1)n)/2) + 1 paths in
P′, thus the searching space of the one-climb policy is much
smaller than that of the brute-force search. For each one-climb
path, we need to calculate the energy consumption and delay
by summing the weight of arcs along the path. Based on this,
we design the enumeration algorithm in Algorithm 1, which
enumerates all the paths in P′ and chooses the one with the
minimum energy consumption while the time delay is within
the deadline. The complexity of Algorithm 1 is O(|V |2|A|),
i.e., O(n3).

Algorithm 1 The enumeration algorithm based on one-climb
policy

Input: P′

Output: p∗, e(p∗)
set etemp = ME , where ME is a very large value
for p ∈ P′ do

if d(p) ≤ Td and e(p) < etemp then
ptemp = p
etemp = e(p)

end if
end for

if etemp == ME then
return “There is no solution.”

else
p∗ = ptemp

e(p∗) = etemp

end if

In addition, using the optimal one-climb policy, we can derive
a set of necessary conditions for optimal task offloading.

1) Forward Migration: Suppose that the task scheduling in
Fig. 4(b) is the optimal policy, with task i offloaded to the cloud
and task j returned back to the mobile device. Given that tasks
from 1 to i− 1 are all executed on the mobile device, we are
making the execution decision for the task i under two options.
First, if we offload task i to the cloud for execution, the resulting
energy cost is

Ei =

i−1∑
k=1

ωk

fm
pm +

αi

R
ps +

j−1∑
k=i

ωk

fc
pi +

βj−1

R
pr +

n∑
k=j

ωk

fm
pm.

Second, if we defer the decision of offloading until task i+ 1,
i.e., task i continues to be executed on the mobile device, the
resulting energy cost is

E ′
i=

i∑
k=1

ωk

fm
pm+

αi+1

R
ps+

j−1∑
k=i+1

ωk

fc
pi+

βj−1

R
pr+

n∑
k=j

ωk

fm
pm.

Since the optimal decision is to migrate task i, we have Ei <
E′

i, resulting in the following inequality,

− ωi

fm
pm +

αi

R
ps −

αi+1

R
ps +

ωi

fc
pi < 0. (11)

Replacing αi+1 by βi, we obtain

αi

ωi
− βi

ωi
< θs, (12)

where

θs =
pmf−1

m − pif
−1
c

psR−1
. (13)

This result has an important engineering implication. Note
that in (13), the numerator corresponds to the net computing
power consumption if the task would be executed on the mobile
device, and the denominator can be interpreted as the trans-
mission power if the task would be offloaded to the cloud. We
define θs, the ratio between computing power and transmission
power, as the computing-transmission power ratio. Moreover,
we define the ratio between the input data αi and workload
ωi as the input data-computing load ratio, ηi, and the ratio
between the output data βi and workload ωi as the output
data-computing load ratio, ζi. It follows from (12) that, when
task i should be offloaded, the difference between its input
data-computing load ratio and its output data-computing load
ratio should be less than the computing-transmission power
ratio, i.e., ηi − ζi < θs. This is a necessary condition for task
offloading.

86 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Using the same logic, we can show the following necessary
conditions for task i to be offloaded, including:

αi

ωi + ωi+1
− βi+1

ωi + ωi+1
< θs,

.

αi∑n−1
k=i ωk

− βn−1∑n−1
k=i ωk

< θs.

This set of conditions can be understood as follows. Hypo-
thetically, if we combine tasks from i to j (j = i+ 1, . . . , n)
into one “virtual task”, the difference between its input data-
computing load ratio and its output data-computing load ratio
should be less than the threshold of its computing-transmission
power ratio.

2) Backward Migration: In Fig. 4(b), suppose the decisions
for the tasks from 1 to j − 1 have been made. We are making the
execution decision for the task j, i.e., continuing the execution
on the cloud or returning back to the mobile device. The fol-
lowing set of necessary conditions can be derived by applying
the same logic as the forward migration, including:

αj

ωj
− βj

ωj
< −θr,

αj

ωj + ωj+1
− βj+1

ωj + ωj+1
< −θr,

.

αj∑n
k=j ωk

− βn∑n
k=j ωk

< −θr, (14)

where

θr =
pmf−1

m − pif
−1
c

prR−1
, (15)

which can also be understood as the ratio between net com-
puting power and receiving power. It follows from (14) that,
when task j returns back, the difference between its input data-
computing load ratio and its output data-computing load ratio
should be less than the minus of its computing-receiving power
ratio, ηj − ζj < −θr. This is a necessary condition for a task to
migrate back to the mobile device.

B. Scheduling Policy Under IID Stochastic Channel

Under the IID stochastic channel, the cost of crossing arcs
in Fig. 3 becomes indeterministic due to the communication of
sending and receiving data. To transform the stochastic opti-
mization into a deterministic one, we need to find the expected
cost for the data transmission. The data transmission can be
formulated as a stopping-time problem, i.e., when the data
will be completely transmitted. Using Wald’s equation [23], we
can have

E

{
τ∑

t=1

Rt

}
= E(τ)E(R), (16)

where τ is the stopping time to transmit the data. As such, we
can approximate the expected time of sending the input data
and receiving the output data for each task.

In this case, we can transform the optimization problem
under the stochastic network into the previous deterministic
shortest path problem. Following that, we can apply the enu-
meration algorithm based on the one-climb policy to find out the
path with the minimum energy consumption while satisfying
time delay constraint.

C. Optimality of One-Climb Policy Under Markovian
Stochastic Channel

We can show that the one-climb policy is also applica-
ble under the Markovian stochastic channel, as illustrated in
Theorem 2.

Theorem 2: Under the Markovian stochastic channel model,
the energy-optimal execution only migrates once from the
mobile device to the cloud if ever.

Proof: See Appendix B. �

V. DESIGN OF APPROXIMATE ALGORITHM TO TASK

SCHEDULING POLICY UNDER TIME DELAY CONSTRAINT

In this section, we provide an approximate algorithm to the
task scheduling policy under time delay constraint, which can
have lower complexity than Algorithm 1.

A. Relaxed Optimization Problem

The optimization problem in (9) is equivalent to the follow-
ing optimization problem,

min {E [e(p)] |p ∈ P (S,D),E [d(p)] ≤ Td} , (17)

where P (S,D) is the set of paths from S to D. It was previously
suggested that this constrained shortest path problem can be
approximatively solved by LARAC algorithm [24]. To leverage
the LARAC algorithm, we can define a Lagrangian function

L(λ) = min {E [eλ(p)] |p ∈ P (S,D)} − λTd, (18)

with the aggregated cost defined as

E [eλ(p)] = E [e(p)] + λE [d(p)] , (19)

where λ is the Lagrangian multiplier. Specifically, a cost
penalty per time unit λ > 0 is added to the objective function
when the total completion time exceeds the given time delay
Td. Using the dual theory, we obtain

L(λ) ≤ E [e(p∗)] , (20)

which provides a lower bound of (9).

B. Approximate Algorithm for Task Scheduling

We adapt the LARAC algorithm to find a path with the
minimum expected aggregated cost (energy consumption plus

ZHANG et al.: COLLABORATIVE TASK EXECUTION IN MOBILE CLOUD COMPUTING UNDER A STOCHASTIC WIRELESS CHANNEL 87

time delay) between the source node S and the destination
node D, which is given in Algorithm 2.

Algorithm 2 The adapted LARAC algorithm for the energy-
efficient collaborative task execution

Input: G(V,A)
Output: p∗λ

//find the shortest path in terms of energy consumption
pe = ShortestPath(S,D, e)
//if pe can meet the time delay, then pe is optimal
if d(pe) ≤ Td then

return pe
end if
//find the shortest path in terms of time delay
pd = ShortestPath(S,D, d)
//if pd cannot meet the time delay, then there is no solution
if d(pd) > Td then

return “There is no solution”
end if
while true do

//obtain λ∗ by updating pe and pd
λ = (e(pe)− e(pd))/(d(pd)− d(pe))
//find the shortest path in terms of the aggregated cost
pλ = ShortestPath(S,D, eλ)
if eλ(pλ) = eλ(pe) then

return pd
else

if d(pλ) ≤ Td then
pd = pλ

else
pe = pλ

end if
end if

end while

Based on the Lagrange relaxation, Algorithm 2 finds the eλ-
minimum path. ShortestPath is a key procedure that finds
the shortest path in the graph in Algorithm 2. If the shortest path
in terms of energy can meet the deadline, or the shortest path in
terms of time cannot meet the deadline, we can terminate the
algorithm; otherwise, we iteratively update pe and pd to find
the optimal λ.

For the block-fading channel and IID stochastic channel
model, we can apply backward induction using Bellman equa-
tion to calculate the minimum energy consumption, time delay
and aggregated cost in Fig. 3, respectively. Particularly, we first
start the calculation from n (and n) to the node D, and then
from n− 1 (and n− 1) to the node D, until we reach the
node S and complete the calculation from S to D. During this
process, for each of nodes S, 1, . . . , n− 1 and 1, . . . , n− 1,
we only need to compare the value of two arcs towards its
subsequent nodes. Thus, the complexity to complete the back-
ward induction depends on the number of nodes, i.e., O(|V |).
In addition, it is shown by [25] that the LARAC algorithm
obtains the optimal Lagrangian multiplier after O(|A| log2 |A|)
iterations. Therefore, the overall complexity of Algorithm 2 is

Fig. 5. The schematic illustration of the state transition of the system.

O(|V ||A| log2 |A|), i.e., O(n2 log2 n), which is smaller than
that of Algorithm 1.

For the Markovian stochastic channel model, we will adopt
the framework of Markov decision framework and obtain
the approximate solution by Algorithm 2 in the following
subsection.

C. Approximate Scheduling Policy Under Markovian
Stochastic Channel Model

To apply Algorithm 2 for the Markovian stochastic channel
model, we need to find the shortest path in terms of the expected
execution time, expected energy consumption and expected
aggregated cost. Particularly, we can adopt the framework of
Markov decision process to achieve this goal.

Fig. 5 illustrates the state transition of the collaborative task
execution, given that the initial channel state is observed to be
good. There are n+ 3 stages. Stage k (k = 1, 2, . . . , n) repre-
sents that the kth task has been completed. Stage 0 and stage
n+ 2 represent the initiation and the termination of application
execution, respectively. Stage n+ 1 is an intermediate stage
before stage n+ 2. In each stage, we define xk = (lk, gk) as
the system state, where lk is a location indicator that denotes
the location where the kth task has been executed, and gk is the
channel state of the next time slot we observe when the kth task
has been completed. Particularly, lk keeps track of the location
of the application, defined as

lk =

{
0, mobile device;
1, cloud side.

Note that the application execution starts on the mobile device
and the output results must be resided on the mobile device as
well. As such, we have l0 = 0 and ln+1 = 0 for the initiation
and the termination of the application execution. Node D is
connected to the nodes (0, G) and (0, B) when the final
task has been completed, with costs to be zero for the energy
consumption, time delay and aggregated cost.

We define uk as the decision variable at stage k that denotes
the choice for which the kth task should be executed,

uk =

{
0, mobile execution;
1, cloud execution.

Based on the current state xk, we make the decision uk such
that we move to the system state xk+1. Since the output of

88 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

the last task should be resided on the mobile device, we have
un+1 = 0. The goal is to find out the scheduling policy, which is
the combination of the decision variables. In the following, we
will establish iterative equations to find the minimum expected
time delay, energy consumption and aggregated cost in Fig. 5,
respectively.

First, we denote hk(xk) as the minimum expected execution
time from state xk at stage k to xn+2 at stage n+ 2. Then,
h0(x0) is the minimum expected time delay to complete the en-
tire application. Following that, we can establish the backward
value iteration for the minimum expected time delay. Given
hk+1(xk+1) at stage k + 1 for state xk+1, we can find out
the decision for each state at stage k such that the expected
time delay from state xk to state xn+2 can be minimized. The
backward value iteration can be given as follows,

hk(xk) = min
uk+1

∑
P (xk+1|xk, uk+1)

× [dk+1 (xk, uk+1) + hk+1(xk+1)] ,

hn+1(xn+1) = 0, (21)

where P (xk+1|xk, uk+1) is the transition probability from
state xk to state xk+1, and dk+1(xk, uk+1) is transition time
from state xk to state xk+1 by taking uk. We approximate
the transition probability by using the probability of the steady
state of the Markov channel, i.e., pBG/(pGB + pBG) and
pGB/(pGB + pBG) for G and B, respectively. In addition, the
transition time dk can be obtained as follows. We observe that
the costs of the arc between state xk and state xk+1 with the
same location indicator are deterministic, while the ones with
different location indicator are stochastic due to the input or
output data transmission over wireless channel. For the former,
we calculate the transition time using (1) and (3) directly. For
the latter, we adopt an approximation approach for (5) and (7).
As the number of time slots to transmit the data is large, it is
expensive to enumerate all the combination of possible data
transmission and then calculate the expected transmission time.
Thus, we approximate it by simulating the data transmission
for a large number of times (e.g., 1 000) and then obtain the
expected transmission time.

Second, we denote fk(xk) as the minimum expected energy
cost from state xk at stage k to state xn+2 at stage n+ 2.
Then, f0(x0) is the minimum expected energy consumption
to complete the entire application. Given fk+1(xk+1) at stage
k + 1 for state xk+1, we can find out the decision for each state
at stage k such that the expected energy cost from state xk to
state xn+2 can be minimized. The backward value iteration can
be given as follows,

fk(xk) = min
uk+1

∑
P (xk+1|xk, uk+1)

× [ek+1(xk, uk+1) + fk+1(xk+1)] ,

fn+1(xn+1) = 0. (22)

Third, we denote Jk(xk) as the minimum expected aggre-
gated cost from state xk at stage k to state xn+2 at stage n+ 2.

The backward value iteration can be given as follows,

Jk(xk) = min
uk+1

∑
P (xk+1|xk, uk+1)

× [ek+1(xk, uk+1) + λdk+1(xk, uk+1)

+Jk+1(xk+1)] ,

Jn+1(xn+1) = 0, (23)

where k = n, n− 1, . . . , 0.
We can use the iterative (21)–(23) to implement the proce-

dure ShortestPath to find the minimum expected time delay,
energy consumption and the aggregated cost, respectively, and
finally obtain the energy-efficient task scheduling policy by
iteration in Algorithm 2.

VI. SCHEDULING POLICY UNDER PROBABILISTIC

TIME DELAY CONSTRAINT

In this section, we consider the scheduling policy for col-
laborative task execution under the probabilistic time delay
constraint in (10).

The challenge of solving this optimization problem is how to
handle the probabilistic constraint. One approach suggested by
[26] is to conduct state augmentation. In this case, we would
construct a new Markov decision process with augmented state
space (x, D), where D is the accumulated time delay. The
immediate cost (i.e., time delay) of the new MDP is zero,
except in the last stage, in which for states (x, D) a delay
cost +1 is incurred if D ≥ Td. Thus, the accumulated cost
equals to the probability of meeting the time constraint of the
original MDP. However, this approach is a pseudo-polynomial
algorithm to transform this probabilistic constraint, which has
high computational complexity.

In this paper, we adopt Markov inequality to transform the
probabilistic constrained optimization problem by approxima-
tion. Using Markov inequality,

Pr [d(p) ≥ Td] ≤
E [d(p)]

Td
, (24)

an approximation to (10) is

E [d(p)]

Td
≤ Pd. (25)

Markov inequality provides an upper bound on the probability
that the total time delay exceeds the deadline Td. Such an
approximation can provide a suboptimal policy for collabo-
rative task execution. By this approximation, the probabilistic
constrained optimization problem becomes

min
p∈P

E [e(p)] = E

⎧⎨
⎩

∑
(u,v)∈p

eu,v

⎫⎬
⎭

s.t. E [d(p)] = E

⎧⎨
⎩

∑
(u,v)∈p

du,v

⎫⎬
⎭ ≤ PdTd, (26)

ZHANG et al.: COLLABORATIVE TASK EXECUTION IN MOBILE CLOUD COMPUTING UNDER A STOCHASTIC WIRELESS CHANNEL 89

TABLE I
PARAMETERS OF MACHINE PROFILE

Fig. 6. There are 10 tasks in the application, with time constraint of Td =
0.6 s. The workload is ω = {40, 20, 50, 30, 50, 20, 40, 30, 30, 20} M cycles.
The input data is α = {10, 4, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.1} kb. The
output data is β = {4, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.1, 10} kb. (a) Mini-
mum energy consumption as a function of expected data rate. (b) Relative error
of energy consumption for Algorithm 2.

which has the same format as (9). Hence, the original proba-
bilistic constrained optimization problem can be reduced to (9)
such that we can adopt Algorithm 1 or Algorithm 2 to solve the
optimization problem in polynomial time.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance for our proposed
algorithms in various contexts.

A. Application Profile

The parameters of the mobile device and the cloud are
specified in Table I, which is adapted from real system mea-
surements in [27]. In the following subsections, we will show
by simulation how the task context and the data rate on the
wireless channel affect the energy consumption on the mobile
device and the task scheduling policy of the application.

B. Scheduling Policy for IID Channel Model

We find the minimal energy with time constraint (e.g., 0.6 s),
and plot the expected energy of the collaborative execution by
varying data rate, in Fig. 6. Fig. 6(a) shows that the minimum
expected energy consumption is a piecewise function of the
data rate. There is a sharp decrease if the policy changes.
We observe that the policy is {u} = {0, 0, 1, 1, 1, 1, 1, 1, 1, 0}
for 10 kb/s, {u} = {0, 1, 1, 1, 1, 1, 1, 1, 1, 0} for 20 kb/s,
{u} = {1, 1, 1, 1, 1, 1, 1, 1, 1, 0} for 30 and 40 kb/s, {u} =
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1} for 50–100 kb/s, respectively. This is
because, as the increase of data rate, there are more opportu-
nities to offload the tasks to the cloud for execution under the
same time constraint. We also observe that if the policy does
not change, the minimum expected energy consumption is a
convex function of data rate. In addition, we compare the energy

Fig. 7. Task scheduling policy under the i.i.d. channel model. Hard time
deadline is Td = 0.6 s. (a) E(R) = 10 kb/s; (b) E(R) = 10 kb/s; (c) E(R) =
100 kb/s; (d) E(R) = 100 kb/s.

consumption using Algorithm 2 with the optimal solution, as
illustrated in Fig. 6(b). It shows that Algorithm 2 can achieve
optimal solution for most cases, except that when the data rate
is around 20 kb/s. For the data rate around 20 kb/s, the error is
small, within 5% to the optimal solution. Therefore, Algorithm 2
is efficient to find the solution to the task scheduling.

In Fig. 7, we plot the optimal task scheduling policies for
different task profiles. The horizontal axis represents the tasks
to be executed, the left vertical axis represents the value of the
workload and the input/output data of the tasks, and the right
vertical axis represents the optimal task execution location. In
each sub-figure, for a particular task, the darker bar in the
middle represents the workload of the task, while its left and
right lighter bars represent the input and output data of the task,
respectively. The line represents the optimal execution policy
that indicates at which location the task should be executed. We
randomly generate the workload and input/output data of the
tasks and find the task scheduling policy in each sub-figure. It
shows that the one-climb policy holds for all these application
profiles. As a result, it suggests a rule of thumb for execution
migration, that is, when there is a task offloaded to the cloud,
the difference between its input data-computing load ratio and
its output data-computing load ratio should be less than the
computing-transmission power ratio, θs; when there is a task
returned to the mobile device, the difference between its input
data-computing load ratio and its output data-computing load
ratio should be less than the minus of computing-receiving
power ratio, −θr.

C. Scheduling Policy for Markov Channel

In this subsection, we examine the application execution
under the Markov channel model and find the task scheduling
policy correspondingly.

We plot the scheduling policy for the mobile application
that consists of 10 tasks in Fig. 8. The plots are based on
the situation where the initial channel state is G. Specifically,
in Fig. 8(a), the workload of the application is very small,

90 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

Fig. 8. Task scheduling policy under the Markov channel model with pGG =
0.995, pBB = 0.96, RG = 100 kb/s, and RB = 10 kb/s. Hard time deadline
is Td = 0.6 s.

TABLE II
MINIMUM EXPECTED ENERGY CONSUMPTION UNDER VARIOUS TIME

CONSTRAINTS (ω = {30, 25, 16, 32, 15, 37, 44, 24, 40, 9} M CYCLES,
α = {22, 30, 6, 47, 30, 5, 47, 14, 49, 18} kb,
β = {30, 6, 47, 30, 5, 47, 14, 49, 18, 47} kb)

while the input and output data are large. This restricts the
entire application to be executed on the mobile device, because
transmitting a large amount of data will incur high transmission
energy consumption. In Fig. 8(b), the workload of the first
task is large with small input data, hence task offloading is
performed on task 1; while the workload of task 10 is small with
large output data, hence it is performed on the mobile device.
In Fig. 8(c), the last three tasks are executed on the mobile
device, due to their small ratio between work load and the
output data. In this case, we can avoid transmitting a large
amount of data back to the mobile device. In Fig. 8(d), the data
to be transmitted is not large while the workload is large; the
task scheduling policy is to execute all the tasks on the cloud.
It reflects that the one-climb policy applies for the stochastic
Markov channel model.

We also investigate the effect of time constraint on the
minimum expected energy consumption in Table II. It shows
that as the time constraint becomes less stringent, the shortest
path in terms of expected energy consumption is sufficient for
the task scheduling (λ = 0 for time constraint 0.6 s and 0.65 s).
In addition, more energy consumption can be saved. This
indicates the tradeoff between energy consumption and time
delay of task scheduling in mobile cloud computing.

D. Approximation of the Scheduling Policy Under the
Probabilistic Constraint

In this subsection, we investigate the scheduling policy of
collaborative execution under the probabilistic constraint.

We evaluate the performance of the approximation under the
expected constraint in (25), by comparing with the solution

of the optimization problem under the probabilistic constraint.
Fig. 9 shows that, as the violation probability Pd increases,
the solution under the expected constraint will have the same
value as that under the probabilistic constraint. However, if the
violation probability Pd is small (i.e., Pd = {0.1, 0.15, 0.2} in
Fig. 9(a) and (c)), there are no solutions for the approximation
using the transformed expected constraint. This is because,
PdTd is small such that there are no paths satisfying the time
deadline constraint in the transformed optimization problem.
There is also a gap for the expected energy between the ex-
pected constraint and the probabilistic constraint in Fig. 9(b).
Due to the small expected data rate, the solution of the trans-
formed optimization problem is to schedule all the tasks on
the mobile device, which consumes more energy consumption
than the one under the probabilistic constraint by collaborative
task execution. It remains our future work to improve the
approximation of the scheduling policy under the probabilistic
constraint.

E. Energy Comparison of the Execution Strategies

In this subsection, we compare collaborative task execution
with two other execution strategies under the hard deadline
constraint, i.e., local execution and remote execution [12]:

• Local execution: all the tasks are executed locally on the
mobile device;

• Remote execution: all the tasks are offloaded to the cloud
for execution.

We consider a particular application profile, and plot in
Fig. 10 the minimum expected energy consumption as a func-
tion of the application completion time constraint under the IID
channel model and the Markovian channel model.

We can have several observations for the collaborative ex-
ecution. First, the collaborative execution can save the energy
consumption significantly, compared to the local execution. In
Fig. 10(a) and (c), more than 5 times of energy consumption
can be saved by the collaborative execution, under the IID
model with high expected data rate and the Gilbert–Elliott
model, respectively. However, for the IID model with low
expected data rate in Fig. 10(b), the collaborative task execution
is reduced to the mobile execution. This is because, the low
expected data rate, in this case, would incur long time delay and
high energy consumption for the application execution, which
restricts all the tasks to be executed on the mobile device (i.e.,
local execution). Second, the collaborative execution is more
flexible than the remote execution. In Fig. 10(b), only the local
execution and the collaborative execution are applicable for the
application with the time deadline; the remote execution should
not be used. This is because, it takes a long time for the remote
execution to transmit the input data, which violates the delay
constraint of the application. In Fig. 10(a) and (c), the remote
execution is applicable when the delay deadline is no less than
0.8 s and 0.9 s, respectively. In other words, using the approach
in [12], one can only rely on the local execution when the
delay deadline is less than 0.8 s and 0.9 s in Fig. 10(a) and (c),
respectively. Third, due to its flexibility on offloading decision
for each task, the collaborative task execution consumes less
energy than the remote execution for mobile devices, as shown

ZHANG et al.: COLLABORATIVE TASK EXECUTION IN MOBILE CLOUD COMPUTING UNDER A STOCHASTIC WIRELESS CHANNEL 91

Fig. 9. Energy comparison between the transformed expected constraint and the original probabilistic constraint (ω = {30, 25, 16, 32, 15, 37, 44, 24, 40, 9} M
cycles, α = {22, 30, 6, 47, 30, 5, 47, 14, 49, 18} kb, β = {30, 6, 47, 30, 5, 47, 14, 49, 18, 47} kb). Note that when the violation probability is large enough,
the scheduling policy does not change, and thus, the minimum expected energy consumption remains the same. (a) IID model (E(R) = 100 kb/s). Td = 2 s.
(b) IID model (E(R) = 10 kb/s). Td = 4 s. (c) Gilbert–Elliott model (pGG = 0.995, pBB = 0.96, RG = 100 kb/s and RB = 10 kb/s). Td = 2 s.

Fig. 10. Energy comparison among different execution modes (ω = {30, 25, 16, 32, 15, 37, 44, 24, 40, 9} M cycles, α = {22, 30, 6, 47, 30, 5, 47, 14,
49, 18} kb, β = {30, 6, 47, 30, 5, 47, 14, 49, 18, 47} kb). Note that the energy consumption by local execution and remote execution do not change, since
the power on the mobile device is assumed not to be adaptive during computation and data transmission. (a) IID model (E(R) = 100 kb/s); (b) IID model
(E(R) = 10 kb/s); (c) Gilbert–Elliott model (pGG = 0.995, pBB = 0.96, RG = 100 kb/s, and RB = 10 kb/s).

in Fig. 10(a) and (c). Therefore, the collaborative task execution
is more flexible and energy-efficient than the strategy proposed
in [12] for the more fine-grained topology.

VIII. DISCUSSION OF SCHEDULING POLICY FOR MOBILE

APPLICATIONS IN GENERAL TOPOLOGY

In previous sections, we have presented the scheduling policy
for the linear topology. In this section, we discuss the schedul-
ing policy for mobile applications in general topology.

In [11], we have presented some examples of more generic
task-flow graphs. These examples, including tree and mesh,
have more complex task dependencies than the linear topol-
ogy, leading the scheduling policy to be more complicated.
However, we can still build a directed acyclic graph to model
the task execution of the mobile application, where each node
represents a task and each arc represents data dependency.
Thus, the problem is to find the execution decision for each
task to satisfy the performance requirement (i.e., to minimize
the energy consumption while meeting the delay deadline) on
the graph. Since this problem is NP-complete [28], we will rely
on heuristic algorithms.

We can adapt the partial critical path analysis [28] and
leverage the property of one-climb policy to design the heuristic
algorithm for the general task topology. Particularly, by critical
path analysis, the general topology can be decomposed into a

set of paths, for each of which we can apply one-climb policy to
determine the task execution decision. Therefore, our proposed
one-climb policy can shed light on the design of scheduling
tasks in the general topology.

IX. CONCLUSION

In this paper we investigated the problem of how to conserve
energy for mobile applications by collaborative task execution.
We formulated the collaborative task execution as a constrained
stochastic shortest path problem over an acyclic graph, with
a constraint of a hard time deadline or a probabilistic time
deadline. By characterizing the optimal solution of the con-
strained optimization problem, we derived an optimal one-
climb policy and proposed an enumeration algorithm, followed
by a set of necessary conditions for optimal task scheduling.
Our investigation suggested a rule of thumb, based on the con-
text of application profiles and channel status. In addition, we
proposed an adapted LARAC algorithm to obtain the energy-
efficient scheduling policy for collaborative task execution.
Particularly, for the Markovian stochastic channel, we applied
Markov decision process to obtaining the task scheduling pol-
icy. Moreover, simulation results show that the collaborative
task execution can significantly save the energy consumption
on mobile devices.

92 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015

For future work, we will consider various extensions of this
work. First, the application workflow topology can be extended
into more generic graphs (e.g., tree, mesh, etc). Second, we
will seek to find a better approximation for the probabilistic
constrained optimization problem. In addition, we will inves-
tigate power saving mode and power adaptation on mobile
devices to further reduce energy consumption while bringing
little application performance penalty.

APPENDIX A
PROOF OF THEOREM 1

We prove this by contradiction. Suppose that the execution
in Fig. 4(a) with two times offloading is optimal. Particularly,
under this optimal execution, tasks from i to k − 1 are migrated
to the cloud for execution, with tasks from k to l executed on the
mobile device, followed by tasks from l + 1 to j − 1 migrated
to the cloud. If tasks from k to l are, however, executed on the
cloud shown in Fig. 4(b), then we can show that this execution
can provide a better solution.

Specifically, we observe the following facts for the kth task:

dc(k) <dm(k) < dm(k) + dr(k − 1), (27)
ec(k) <em(k) < em(k) + er(k − 1). (28)

Similar facts can be found for the lth task:

dc(l) <dm(l) < dm(l) + ds(l + 1), (29)
ec(l) <em(l) < em(l) + es(l + 1). (30)

In addition, we also have the facts for the tasks between k + 1
and l − 1: dc(h) < dm(h) and ec(h) < em(h), where h = k +
1, . . . , l − 1. Summing up the time delay and energy consump-
tion for tasks from i− 1 to j, we find that the execution in
Fig. 4(b) has both less time delay and energy consumption on
the mobile device than the execution in Fig. 4(a), thus providing
a better solution. Contradiction occurs. The proof completes.

APPENDIX B
PROOF OF THEOREM 2

We prove this by contradiction. Reconsider Fig. 4(a). Sup-
pose that the policy in Fig. 4(a) is the optimal execution with
more than once migration from the mobile device to the cloud
for the tasks from i− 1 to j. Consider the state xk−1 at stage
k − 1 in the framework of Markov decision process. According
to the principle of optimality [29], the sub-path from the state
xk−1 at stage k − 1 to the state xn+2 at stage n+ 2 in Fig. 4(a)
is also optimal.

However, if the tasks from k to l are offloaded to the cloud for
execution (as illustrated in Fig. 4(b)), then the channel condition
does not have effect on the expected energy and time by cloud
execution for these tasks. Suppose that the channel state after
the execution of task j − 1 is steady with the stationary distri-
bution to be G and B. Then, it can result in less expected energy
consumption and less expected time delay up to the stage k − 1
in Fig. 4(b). Thus, the sub-path from the state xk−1 at stage
k − 1 to the state xn+2 at stage n+ 2 in Fig. 4(a) is not optimal
for the execution. Contradiction occurs. The proof completes.

ACKNOWLEDGMENT

The authors would like to thank Dr. Kyle C. Guan at Bell
Laboratories, Dr. Dan Kilper at University of Arizona, and
Dr. Tay Wee Peng at Nanyang Technological University for
their insightful discussions.

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology, 2012–2017,
Cisco, San Jose, CA, USA, 2013.

[2] M. Satyanarayanan, “Fundamental challenges in mobile computing,” in
Proc. ACM Symp. Principles Distrib. Comput., 1996, pp. 1–7.

[3] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: Can of-
floading computation save energy?” Computer, vol. 43, no. 4, pp. 51–56,
Apr. 2010.

[4] M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol. 53,
no. 4, pp. 50–58, Apr. 2010.

[5] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. Int. Conf. Mobile Syst., Appl. Serv., 2010, pp. 49–62.

[6] B. G. Chun and P. Maniatis, “Augmented smartphone applications through
clone cloud execution,” in Proc. 12th Conf. Hot Topics Oper. Syst.,
2009, p. 8.

[7] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. 6th Eur.
Conf. Comput. Syst., 2011, pp. 301–314.

[8] M. Satyanarayanan, R. C. P. Bahl, and N. Davies, “The case for VM-based
cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8, no. 4,
pp. 14–23, Oct.–Dec. 2009.

[9] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proc. ACM Workshop Mobile Cloud Comput. Serv.,
Social Netw. Beyond, 2010, p. 6.

[10] H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing—A
green computing resource,” in Proc. IEEE Wireless Commun. Netw. Conf.,
2013, pp. 4474–4479.

[11] W. Zhang, Y. Wen, J. Wu, and H. Li, “Toward a unified elastic computing
platform for smartphones with cloud support,” IEEE Netw., vol. 27, no. 5,
pp. 34–40, Sep./Oct. 2013.

[12] W. Zhang et al., “Energy-efficient mobile cloud computing under stochas-
tic wireless channel,” IEEE Trans. Wireless Commun., vol. 12, no. 9,
pp. 4569–4581, Sep. 2013.

[13] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “Saving portable
computer battery power through remote process execution,” Mobile
Comput. Commun. Rev., vol. 2, no. 1, pp. 19–26, Jan. 1998.

[14] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “The remote process-
ing framework for portable computer power saving,” in Proc. ACM Symp.
Appl. Comput., 1999, pp. 365–372.

[15] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud applica-
tions,” in Proc. 10th ACM/IFIP/USENIX Int. Conf. Middleware, 2009,
pp. 83–102.

[16] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Trans. Wireless Commun., vol. 11, no. 6,
pp. 1991–1995, Jun. 2012.

[17] W. Zhang, Y. Wen, and D. Wu, “Energy-efficient scheduling policy
for collaborative execution in mobile cloud computing,” in Proc. IEEE
INFOCOM, 2013, pp. 190–194.

[18] R. Kemp et al., “eyeDentify: Multimedia cyber foraging from a smart-
phone,” in Proc. 11th IEEE Int. Symp. Multimedia, 2009, pp. 392–399.

[19] M. Zafer and E. Modiano, “Minimum energy transmission over a wireless
fading channel with packet deadlines,” in Proc. IEEE Conf. Decision
Control, 2007, pp. 1148–1155.

[20] L. Johnston and V. Krishnamurthy, “Opportunistic file transfer over a fad-
ing channel: A POMDP search theory formulation with optimal threshold
policies,” IEEE Trans. Wireless Commun., vol. 5, no. 2, pp. 394–405,
Feb. 2006.

[21] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,” IEEE J. Sel. Areas Commun., vol. 14, no. 7,
pp. 1228–1234, Sep. 1996.

[22] E. Biglieri, J. Proakis, and S. S. Shitz, “Fading channels: Information-
theoretic and communications aspects,” IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2619–2692, Oct. 1998.

[23] A. Wald, “On cumulative sums of random variables,” Ann. Math. Stat.,
vol. 15, no. 3, pp. 283–296, Sep. 1944.

ZHANG et al.: COLLABORATIVE TASK EXECUTION IN MOBILE CLOUD COMPUTING UNDER A STOCHASTIC WIRELESS CHANNEL 93

[24] A. Juttner, B. Szviatovski, I. Mécs, and Z. Rajkó, “Lagrange relaxation
based method for the QoS routing problem,” in Proc. IEEE INFOCOM,
2001, vol. 2, pp. 859–868.

[25] A. Jüttner, “On resource constrained optimization problems,” in Proc. 4th
Japanese-Hungarian Symp. Discr. Math. Appl., 2005, pp. 3–6.

[26] S. M. Huan Xu, “Probabilistic goal Markov decision processes,” in Proc.
Int. Joint Conf. Artif. Intell., 2011, pp. 2046–2052.

[27] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. 2nd USENIX Conf. Hot Topics Cloud
Comput., 2010, p. 4.

[28] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169, Jan. 2013.

[29] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2.
Belmont, MA, USA: Athena Scientific, 2001.

Weiwen Zhang received the Bachelor’s degree in
software engineering and the Master’s degree in
computer science from South China University of
Technology, Guangzhou, China, in 2008 and 2011,
respectively. He is currently working toward the
Ph.D. degree with the School of Computer Engineer-
ing, Nanyang Technological University, Singapore.
His research interests include cloud computing and
mobile computing.

Yonggang Wen (S’99–M’08–SM’14) received the
Ph.D. degree in electrical engineering and com-
puter science from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2008. He is
currently an Assistant Professor with the School of
Computer Engineering, Nanyang Technological Uni-
versity, Singapore. Previously, he worked at Cisco
leading product development in content delivery net-
work, which had a revenue impact of 3 billion U.S.
dollars globally. He has published over 100 papers in
top journals and prestigious conferences. His latest

work in multi-screen cloud social TV has been featured by global media
(more than 1600 news articles from over 29 countries) and recognized with
the ASEAN ICT Award 2013 (Gold Medal) and the IEEE Globecom 2013 Best
Paper Award. His research interests include cloud computing, green data center,
big data analytics, multimedia network and mobile computing. Dr. Wen serves
on the Editorial Boards of the IEEE TRANSACTIONS ON MULTIMEDIA, IEEE
ACCESS, and Elsevier’s Ad Hoc Networks.

Dapeng Oliver Wu (S’98–M’04–SM’06–F’13) re-
ceived the B.E. degree in electrical engineering from
Huazhong University of Science and Technology,
Wuhan, China, in 1990, the M.E. degree in electrical
engineering from Beijing University of Posts and
Telecommunications, Beijing, China, in 1997, and
the Ph.D. degree in electrical and computer engineer-
ing from Carnegie Mellon University, Pittsburgh, PA,
USA, in 2003.

He is a Professor at the Department of Electrical
and Computer Engineering, University of Florida,

Gainesville, FL, USA. His research interests are in the areas of networking,
communications, signal processing, computer vision, and machine learning.

Prof. Wu has served as the Technical Program Committee (TPC) Chair
for IEEE INFOCOM 2012 and the TPC chair for the IEEE International
Conference on Communications (ICC 2008), Signal Processing for Commu-
nications Symposium, and as a member of the Executive Committee and/or
Technical Program Committee of over 80 conferences. He has served as the
Chair for the Award Committee, the Chair of the Mobile and wireless multi-
media Interest Group (MobIG), and the Technical Committee on Multimedia
Communications, IEEE Communications Society. He was a member of the
Multimedia Signal Processing Technical Committee, IEEE Signal Processing
Society, from January 1, 2009 to December 31, 2012. He currently serves as an
Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY, Journal of Visual Communication and Image Rep-
resentation, and International Journal of Ad Hoc and Ubiquitous Computing.
He is the founder of the IEEE TRANSACTIONS ON NETWORK SCIENCE

AND ENGINEERING. He was the founding Editor-in-Chief of the Journal of
Advances in Multimedia between 2006 and 2008 and an Associate Editor
of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY between 2004 and 2007. He
is also a Guest Editor of the IEEE JOURNAL ON SELECTED AREAS IN COM-
MUNICATIONS, Special Issue on Cross-Layer Optimized Wireless Multimedia
Communications. He was the recipient of the University of Florida Research
Foundation Professorship Award in 2009, AFOSR Young Investigator Program
(YIP) Award in 2009, ONR Young Investigator Program (YIP) Award in 2008,
NSF CAREER Award in 2007, the IEEE Circuits and Systems for Video
Technology (CSVT) Transactions Best Paper Award for Year 2001, and the Best
Paper Awards at IEEE GLOBECOM 2011 and the International Conference on
Quality of Service in Heterogeneous Wired/Wireless Networks (QShine) 2006.

