
Collaborative textual improvisation in a laptop ensemble

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Freeman, Jason, and Akito Van Troyer. “Collaborative Textual
Improvisation in a Laptop Ensemble.” Computer Music Journal 35
(2011): 8-21. Web. 19 Oct. 2011. © 2011 Massachusetts Institute of
Technology

As Published http://dx.doi.org/10.1162/COMJ_a_00053

Publisher MIT Press

Version Final published version

Citable link http://hdl.handle.net/1721.1/66503

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/66503


Collaborative Textual
Improvisation in a Laptop
Ensemble

Jason Freeman* and Akito Van Troyer†

∗School of Music
Georgia Institute of Technology
840 McMillan Street
Atlanta, Georgia 30332-0456 USA
jason.freeman@gatech.edu
†MIT Media Lab
Opera of the Future
75 Ames Street, E14-374D
Cambridge, Massachusetts 02142 USA
akito@media.mit.edu

For us, text-based performance interfaces, such
as those used in live coding systems (Collins
et al. 2003), are a fascinating fusion of composition
and improvisation. Textual performance interfaces
can offer a precise and concise means to define,
manipulate, and transform motives, gestures, and
processes in real time and at multiple hierarchical
layers. They can also render musical thinking
visible to the audience by projecting the text as it is
written.

We are particularly interested in textual per-
formance interfaces in laptop ensemble contexts.
We believe that the dynamics of ensemble perfor-
mance can lead laptop musicians in new creative
directions, pushing them towards more real-time
creativity and combining the diverse skills, ideas,
and schemas of the ensemble’s members to cre-
ate unexpected, novel music in performance. But
when laptop performance interfaces move beyond
simple one-to-one mappings, they present unique
ensemble challenges, particularly in terms of the
synchronization and sharing of musical material.
Specialized improvisation environments for specific
performances (e.g., Trueman 2008) or ensembles
(e.g., Rebelo and Renaud 2006) can help groups
to negotiate these challenges and structure their
collaboration: The tools can create powerful new
channels of networked communication among en-
semble members to supplement aural and visual
interaction. Textual performance environments
are uniquely positioned in this regard: They po-
tentially offer greater efficiency and flexibility in
performance, and because text is already a dominant
networked communication medium, they can draw
from an abundance of interaction models in areas

Computer Music Journal, 35:2, pp. 8–21, Summer 2011
c© 2011 Massachusetts Institute of Technology.

such as instant messaging, collaborative document
editing, and the real-time Web.

Although many text-based performance envi-
ronments do support collaboration, most current
systems are challenging to use with ensembles of
more than a few musicians. As a result, we created
a new textual performance environment for laptop
ensemble named LOLC. (LOLC was initially an
acronym for Laptop Orchestra Live Coding, though
we now consider the applicability of the term “live
coding” to be debatable.) From its inception, we
designed LOLC to focus on ensemble-based collab-
oration. Though inspired by live coding systems,
LOLC is not itself a programming language: It is
neither Turing-complete nor does it allow its users
to define new computational processes. Instead, its
design, in which musicians create rhythmic patterns
based on sound files and share and transform those
patterns over a local network, facilitates an interac-
tion paradigm inspired by other forms of ensemble
improvisation, particularly in jazz and avant-garde
music.

In this article, we discuss the related work upon
which LOLC builds; we outline the main goals of the
LOLC environment; we describe the environment’s
design, its technical implementation, and the
motivations behind some of our key decisions; and
we evaluate its success through discussion of a
recent performance.

Related Work

The design and implementation of LOLC was influ-
enced by existing models for collaborative text-based
laptop performance, by approaches to collaborative
improvisation in other types of ensembles, and by
collaborative composition systems.

8 Computer Music Journal



Existing Models for Collaborative Text-Based
Performance

In principle, laptop-based musical ensembles can
use any software environment to perform together;
they need not be connected over a data network,
and they can coordinate their musical activities
solely via aural and visual cues. But although such a
strategy works well with an instrumental ensemble,
it can be more problematic in a laptop ensemble.
Without a shared clock or live beat tracking, time
synchronization is difficult. Further, the borrowing
and transformation of musical motives across
members of the group—an interaction paradigm
that is common to many forms of improvisation—
can be difficult in a laptop ensemble, where each
member would need to manually recreate the
musical content or underlying algorithm in his or
her own environment.

To more effectively share information about
timing and musical content, several live-coding en-
vironments implement collaboration features over
a local-area network. Rohrhuber’s JITLib (Collins
et al. 2003) and Sorensen’s Impromptu (Brown and
Sorensen 2009) both take a similar approach: They
enable clients to share and manipulate dynamic
objects or variables over a network. Recent versions
of Impromptu utilize tuple space to implement
this type of synchronized sharing more robustly
(Sorensen 2010), whereas JITLib uses proxy struc-
tures as placeholders for dynamically created and
shared material (Rohrhuber, de Campo, and Wieser
2005). In small group settings, this approach can
lead to deep and meaningful collaborations, as with
Sorenson and Brown’s aa-cell (Sorensen and Brown
2007). In larger ensembles, the shared control over
objects can cause a shift from an ensemble of in-
dividual voices into a general “data climate” of
software reacting to the state of the object space, as
in the experiments Julian Rohrhuber has conducted
with his classes (Collins et al. 2003). Although this
can be an effective performance paradigm for large
ensembles, it stands apart from most traditional
ensemble models; at its extreme, each member loses
control over his or her own sound output and, by
extension, his or her identity as an individual voice
within the group.

Instead of sharing dynamic objects or variables,
some live coders have shared actual code fragments
among members of the ensemble. A design docu-
ment for the CoAudicle (Wang et al. 2005) supports
such exchanges with a client-server or a peer-to-peer
model, but the specifications remain vague and the
system was never implemented. Andrew Sorenson
plans to implement a collaborative text editor in
Impromptu (Sorensen and Brown 2007), similar to
SubEthaEdit (CodingMonkeys 2010) or Google Docs
(Google 2010). JITLib (Collins et al. 2003) imple-
ments text chat functionality and enables musicians
to interpret code directly on each other’s machines
(Rohrhuber 2010); the laptop ensemble Powerbooks
Unplugged uses this environment to share code as
an “open letter to the others, who may (or may not)
read it, copy it, and modify it further” (Rohrhuber
et al. 2007). A similar approach was followed in a lap-
top orchestra performance titled TBA (Smallwood
et al. 2008). We also find these approaches appealing,
but share others’ concerns about the daunting code
synchronization challenges involved (Wang et al.
2005).

Finally, it is important to note that many en-
sembles do not use standardized tools among all
performers. Instead, they simply define a shared pro-
tocol for communication. Slub (Collins et al. 2003)
follows this paradigm, with the shared protocol
solely facilitating time synchronization. And The
Hub (Brown and Bischoff 2002) followed a similar
approach; each composition they performed defined
a new protocol for the ensemble, but each musician
used their own software.

The Hub’s work Borrowing and Stealing of-
fers another intriguing model that served as a direct
inspiration for LOLC. Instead of sharing code or vari-
ables, members share music. In the piece, a shared
data store maintains symbolic representations of
musical fragments created by each player. Musicians
then retrieve the fragments created by other players,
manipulate them, play them, and store the new
versions in the database. We found this approach
a compelling model for LOLC because it supports
aural interaction by providing a technical foundation
through which musicians can more easily recreate
and transform the material of other ensemble
members.

Freeman and Van Troyer 9



Collaborative Improvisation in Other Ensembles

In designing LOLC, we not only built upon the ideas
of live coding languages; we also considered the
interactions among improvising musicians in other
types of ensembles.

Many composers have created structured environ-
ments for ensemble improvisation in their works. In
Cobra (Zorn 1995), “tactical” gestures ask players to
imitate or trade motives. In meanwhile, back at the
ranch . . . (Walshe 2005), hand-drawn instructions
ask players to copy the music of another performer
using a variety of strategies: literal reproduction,
transformation into a new color, or merging their
own music with the color of another performer.
And in Virtual Concerto (Lewis 2004), sections
of the orchestra improvise together, following a
matrix of instructions: Some boxes in the matrix
instruct them to imitate the music improvised by
another group, either simultaneously with them
or immediately after they finish. Similar ideas
pervade ensemble-based improvisation pedagogy;
a “dominoes” exercise, for example, asks players
to sit in a circle and play in sequence, closely im-
itating the gesture of the person preceding them
(Allen 2002).

Many ethnomusicologists have characterized
group interaction among improvising jazz musi-
cians as a conversation. Monson, for example, notes
in one instance how “the exchange of the [musical]
idea not only established an abstract succession of
sounds and rhythms but linked [the musicians] as
musical personalities . . . at a particular moment
in time” (Monson 1996, p. 80). Berliner describes
how musicians respond to each other, particularly
when trading short improvised phrases, noting how
“musicians pursue a middle ground that satisfies
their desire for both continuity and change by bor-
rowing material from one another and transforming
it” (Berliner 1994, p. 370).

Collaborative Composition

Because LOLC combines elements of composition
and improvisation in its interface, we also wanted
to consider the ways in which music has been col-

laboratively composed, out of real time, by groups.
Members of Les Six collaboratively composed the
music for the ballet Les Mariés by each writing one
or two of the nine pieces that constitute the ballet’s
score (Gottlieb 2005). That collaborative process has
been intensified as it has migrated to the Internet
through projects such as the Wiki Collaborative
Composition Project (Frankel 2008). Collaborative
remix sites, such as ccMixter (Yew 2009), encourage
users to create songs that incorporate tracks and
samples from those of other community members.

Goals

Our primary goal with LOLC was to create a
text-based performance environment that scaled,
both technically and musically, to large ensemble
performance. In doing so, we wanted to facilitate
collaborative modes common to traditional group
improvisation and composition, particularly a
conversational style of interaction in which musical
material is continually shared and transformed.

A secondary goal was accessibility. Live-coding
languages require a daunting level of technical
virtuosity and practice to effectively program on
the fly (Nilson 2007), and few computer musicians
possess the requisite talent and experience to do so.
By moving away from a complete language towards
a focused textual interface, we wanted LOLC to
be readily accessible to novice programmers and
even non-programmers. We hoped this approach
would bring some of the experiences that make live
coding so exciting to a broader group of practition-
ers, including skilled musicians without previous
experience in computer music, and that it would
improve our ability to field a large ensemble of
proficient LOLC musicians. In these respects, LOLC
is inspired by ixi lang (Magnusson 2010) in both its
goals and its design.

Further, we wanted LOLC to be accessible not
only to performers, but also to audiences. We wanted
audiences to understand what the musicians in the
ensemble were doing and how they were interacting
with each other.

Finally, we had some explicit non-goals in
the development of LOLC. We did not want to

10 Computer Music Journal



Figure 1. The chat
interface in the LOLC
client software.

create a full-featured language along the lines of
ChucK (Wang and Cook 2003) or SuperCollider
(McCartney 2002). In order to effectively facilitate
ensemble interaction and to make the environment
accessible to novice users, we knew that the
scope and flexibility of the environment would be
limited. LOLC does not, for example, support sound
synthesis or signal processing.

We also did not want to dictate a particular
structural model for performances with LOLC.
Decisions such as the roles ensemble members play,
the musical structure of the performance, and the
use of a conductor are left to the musicians to decide.

Design Principles

In this section, we discuss some of the key design
decisions we made in creating an environment to
support our goals.

Conversational Interaction

With LOLC, we wanted to model the conversational
interactions that many ethnomusicologists have
identified in jazz improvisation. We wanted this
conversation to unfold both aurally and over a
computer network; the latter eliminates the need
for musicians to recreate the material they borrow
from others.

The dominant paradigm for real-time conversa-
tional interaction over computer networks is text-
based chat or instant messaging (Nardi, Whittaker,
and Bradner 2000). LOLC follows this paradigm.
Its main chat window (see Figure 1) is similar to
most standard chat clients, but it separates different

message types into distinct columns. Code is shared
through the chat interface as it is executed, and
clients can also send messages to each other to
coordinate and plan their performance.

Because it is cumbersome to send and view
long textual fragments through a text-messaging
interface, we designed LOLC to consist entirely of
short, single-line statements.

Code Is Music

Although we wanted LOLC musicians to see each
other’s code—and we supported this via the chat-
based interaction—we also wanted the interaction
model to focus on sharing musical, not computa-
tional, content. LOLC’s digital interaction primarily
supports existing aural interaction, making it easier
for musicians to re-use and transform the material
they hear others playing.

Shared code statements in LOLC take the form
of pattern definitions: symbolic representations of
rhythmic, dynamic, and sound-source information.
This approach follows closely from systems such as
The Hub’s for Borrowing and Stealing.

Patterns Are Immutable

We were concerned that a dynamic binding system
would sacrifice too much individual agency, moving
the collaboration model too far away from traditional
group improvisation techniques. Instead, patterns
in LOLC are always immutable once defined. A
change or transformation is stored as a new pattern.
Although this increases the size of the pattern name
space, our visualization interface (see Figure 2) helps

Freeman and Van Troyer 11



users more easily sort through that space to find the
material they wish to borrow.

Time Synchronization

As with most collaborative performance tools, we
wanted LOLC to help musicians play in sync with
each other. The LOLC server maintains a counter
that tracks beat, measure, and hypermeasure. (A
hypermeasure is a metrically marked measure
that begins a group of measures. By default, LOLC
makes every fourth measure a hypermeasure.)
Meter and tempo are configured from the server’s
graphical user interface. Players synchronize by
using scheduling operations that reference the
counter. LOLC implements time synchronization
among machines internally, using its own NTP-
style protocol to calculate and compensate for
time offsets between machines, following from
the Carnegie Mellon Laptop Orchestra’s strategy
(Dannenberg et al. 2007). This frees synchronization
from dependence on network latency or access to an
external time server.

Ease of Use

Because we wanted LOLC to be accessible to novice
users, the environment is simple and has an easy
learning curve. All expressions are a single line in
length, and there are only two expression types:
pattern definitions and scheduling operations. We
use musical terminology instead of numerical
data when possible. Dynamics and durations, for
instance, are represented in musical terms (see
Table 1 in the next section). Similarly, users do not
code the logic of algorithms directly, but instead
draw from a library of pre-defined operations (see
Table 2 in the next section).

In addition to making the environment simple,
we wanted to make the user interface simple.
Musicians code in LOLC using a tightly coupled
integrated development environment (IDE), similar
to ChucK’s mini-Audicle (Salazar, Wang, and Cook
2006). The IDE (see Figure 2) includes code editors,

chat windows, a console, configuration dialogs, and
tutorials.

Finally, it was important to us that LOLC be easy
to deploy in large ensemble settings, as network
and application configuration can otherwise waste
valuable rehearsal time. LOLC networking setup
is trivial. Time synchronization happens automati-
cally, and pre-defined patterns are stored in a server
configuration file and automatically broadcast to
clients as they connect.

Design of LOLC

LOLC focuses on the collaborative creation and
manipulation of rhythmic patterns based on pre-
recorded, percussive sound files. This section
explains the details of LOLC and its implementation.

Sound Files

Pre-recorded sound files serve as the base musical
element in LOLC. Although any sound file can
theoretically be used, short and percussive sounds
tend to work best.

Sound files are loaded into LOLC from a default
folder by creating a single-element pattern:

mySound : “sound.aif”

Pattern Creation

Rhythmic repetitions of sounds are created through
a bracket syntax. For example, the following pattern
definition plays the sound mySound as two quarter
notes at fortissimo, an eighth-note rest, and three
eighth notes at pianissimo:

myPattern : mySound[q.ff, q.ff, e.n,
e.pp, e.pp, e.pp]

Table 1 includes a complete list of available du-
rations and dynamics. If dynamics are omitted,
mezzo-forte is assigned to the note. Although
these dynamics are limited to nine gradations,
and have no envelope control, the use of

12 Computer Music Journal



Figure 2. Screenshot of the
complete LOLC client
interface.

Western-style dynamic markings makes the en-
vironment more accessible to non-computer mu-
sicians. We also expect musicians to use these
dynamics to mark occasional events rather than to
manually set the dynamics for every event, and that
dynamic envelopes, which would be tedious to de-
fine in performance, are intrinsic to the sound files
themselves.

Patterns can also be nested. In this example,
myPattern is played twice:

myNested : myPattern[w,h]

Each time the pattern is played, its note du-
rations are stretched or compressed to match
the target duration. In this example, the pat-
terns remain unchanged for the whole note

iteration and are halved for the half-note
iteration.

All patterns are automatically shared with the
other clients on the network when they are de-
fined. Once a pattern is defined, it is final and
immutable.

Like Vocables (McLean and Wiggins 2009), LOLC
defines musical patterns as an ordered collec-
tion of items, but LOLC requires musicians to
explicitly define rhythmic values, and it empha-
sizes rhythmic patterns that repeat single sounds.
Ixi lang (Magnusson 2010) similarly emphasizes
repetitions of single sounds and explicitly de-
fined rhythms, but its grid-based approach to
rhythm is both simpler and more constrained than
LOLC’s.

Freeman and Van Troyer 13



Table 1. Duration and Dynamic Values Available
within LOLC

LOLC Expression Musical Meaning

w whole note
h half note
q quarter note
e eighth note
s sixteenth note
t thirty-second note
x sixty-fourth note
u hundred-twenty-eighth note
n niente (silent)
ppp pianississimo
pp pianissimo
p piano
mp mezzo-piano
mf mezzo-forte
f forte
ff fortissimo
fff fortississimo

Pattern Transformation

LOLC supports creating new patterns that transform
or combine existing patterns. Table 2 lists the ten
operations currently supported. These operations
were chosen because of their importance in studies
on improvisational interaction (Hodson 2007) and
musical pattern manipulations (Spiegel 1981). Each
operation’s result maintains a degree of aural simi-
larity to its source pattern(s), though if operations
are chained or used in particular ways (e.g., dropping
all but one item in a pattern), the connection to the
original source(s) may be lost. Similarly, most any
allowable pattern can be derived using a chain of
operations and pattern nesting. The syntax for all
transformations follows this example:

myPattern1 : sound1[w,h,h]
myPattern2 : sound2[q,q,q,q]
myConcat : concat(myPattern1,
myPattern2)

myTrunc : trunc(myPattern2, 2)

The operation concat places two patterns in suc-
cession, so myConcat combines patterns based
on two different audio-file sources. The operation

trunc removes the final n items from a pattern, so
myTrunc removes the final two quarter notes from
myPattern2.

Scheduling

Patterns are not played immediately upon creation.
Instead, musicians must use an LOLC scheduling
expression to determine when and how they play.
Typically, patterns are scheduled for playback at the
next beat, measure, or hypermeasure:

play myPattern @ nextBeat
play myPattern @ nextMeasure
play myPattern @ nextHyperMeasure

LOLC’s meter and tempo are configured in the
server application. By default, the values are 4/4 and
120 beats per minute, respectively.

LOLC supports additional scheduling methods:
preview will preview the pattern over headphones
and loop will play it repeatedly:

loop myPattern @ nextMeasure ∼16
This example loops the pattern sixteen times. (If
the pattern length is not an integer multiple of
the measure length, then some loop iterations
will begin mid-measure.) Additional mechanisms
support shorthand notations, scheduling at specific
points of time in the future, and prematurely killing
playback. Scheduling commands are shared with
other clients via the text chat interface, but they are
played solely on the local client machine.

Client Interface

In LOLC’s client interface (see Figure 2), musicians
type LOLC code in one or more code editor windows
and press a hotkey combination to execute those
statements (similar to SuperCollider). A console
window shows error messages in parsing and
execution. The Info window takes the form of a
text chat interface, showing chat and code messages
from other users. Other windows show status and
configuration information.

14 Computer Music Journal



Table 2. Pattern Transformation Operations Currently Supported in LOLC

LOLC Operation Result

alternate(x,y) Interweave the items in patterns x and y: [x1, y1, x2, y2, x3, y3, . . . ].
cat(x,y,. . . ) Add the items in pattern y to the end of pattern x.
drop(x,n) Remove the first n items from pattern x.
mirror(x) Equivalent to cat(x, reverse(x)).
reverse(x) Reverse the order of the items in pattern x.
rotate(x,n) Remove n items from the beginning of pattern x and add them to

the end of x (for positive n); remove n items from the end of pattern x
and insert them at the beginning of x (for negative n).

scramble(x,y) Equivalent to shuffle(cat(x,y)).
shuffle(x) Randomly rearrange the items in pattern x.
trunc(x, n) Remove the last n items from pattern x.
warp(x) Randomly alter the durations and amplitudes of the items in x.

The pattern library window provides a visual
interface for exploring ensemble activity, with the
goal of facilitating closer collaboration and more
pattern sharing among musicians. Patterns are
displayed in the window as they are created, along
with a visualization of their content: rhythmic
data is indicated by horizontal bars and sound
sources are color coded. Variables are highlighted
when they are played. Musicians can also sort and
filter the list to isolate patterns that are created by
certain musicians, scheduled for certain points in
the performance, or based on particular audio file
sources.

Server Interface

The LOLC server software is intended to run
unattended during performance, so its interface is
simple: a console window, configuration dialog,
and logging mechanisms. The server also includes
a full-screen visualization for projection to the
audience. The current visualization (see Figure 3)
simply shows the measure counter and all code and
chat messages in a stylized, large-print format.

Technical Implementation

We implemented LOLC in pure Java, with the user
interface in Processing and Swing. We originally

implemented audio playback in SuperCollider
(McCartney 2002) but switched to a pure Java im-
plementation using Nick Didkovsky and Phil Burk’s
Java Music Specification Language (Didkovsky and
Burk 2001) coupled with Burk’s JSyn application
programming interface (API) (Burk 1998). Although
these environments lack some of the features, flex-
ibility, and efficiency of SuperCollider, they easily
handle the simple scheduling and audio file playback
tasks of LOLC. We also found it easier to implement
cross-platform support for a double-clickable ap-
plication using this pure-Java implementation, and
found that the application more easily relaunched
in the event of a freeze or crash. Most importantly,
the API’s support for music notation also provided
a foundation for future extensions to LOLC (see
subsequent discussion).

For the LOLC interpreter, lexical analysis—the
segmenting of LOLC code into tokens—is handled
by JFLex (Klein 1999). Syntax analysis, in which the
tokens are formed into an abstract syntax tree, is
handled by CUP (Hudson, Flannery, and Ananian
2010). As compared to our initial implementation
that did not use these industry-standard tools, our
interpreter is now far more robust, more flexible to
syntax changes and additions, and more informative
in its error reporting.

LOLC employs a client–server network model
(as opposed to a peer-to-peer model) to facilitate

Freeman and Van Troyer 15



Figure 3. Photo from the
Princeton Laptop
Orchestra performance of
LOLC showing the
visualization projected for
the audience.

internal time synchronization, visualization ren-
dering, central data logging, global configuration
settings, and initial pattern definitions. The clients
and server communicate via TCP/IP, not UDP:
Because scheduling messages are always executed
on the local machine, network messages are never
extremely time critical. It is critical, however, that
each message ultimately arrives at its destination.
Because the server and client software are both writ-
ten in Java, they share many code classes and send
serialized Java objects across the network instead of
using an independent network protocol.

Evaluation and Discussion

Between February and April 2010, eight mem-
bers of the Princeton Laptop Orchestra learned
LOLC, rehearsed intensively, and presented a 10-
minute public performance using the environment.
The performers were all undergraduate university

students with majors in either computer science or
in music.

Within this context, we used a variety of tech-
niques to assess the degree to which LOLC succeeded
at meeting its goals of facilitating (and encouraging)
collaborative improvisation within an ensemble and
being accessible to performers to learn and audiences
to understand. We logged code and chat messages
to disk and analyzed these logs quantitatively and
qualitatively. We asked members of the ensemble
questions about their experiences with LOLC. We
spoke with musicians and audience members about
their experiences. And we considered the musical
output of the performance as well as our own expe-
riences working with the musicians in rehearsals.
These evaluation techniques served as a mechanism
to obtain rapid feedback and to guide continuing
development of LOLC; a more formal user study is
forthcoming (see subsequent discussion).

The LOLC software proved robust in rehearsal
and performance. Additionally, LOLC was easy to

16 Computer Music Journal



learn; ensemble members were able to comfortably
perform with LOLC at the end of a two-hour
introductory session. Although the members of the
ensemble did have some previous programming
experience, their programming background—about
two years on average—was far less extensive than
that of most live coders.

We did find that the musicians tended to play
back patterns far more often than they created new
ones; in our analysis of a dress rehearsal for their
performance, we noted that the musicians executed
355 playback operations but just 38 creations or
transformations of patterns. Although this disparity
could well have been a musical or organizational
decision, it may also reflect the relative ease of
writing scheduling versus creation expressions
in LOLC. Scheduling operations, unlike pattern
definitions, can be typed once and executed many
times. One musician noted to us that coding new
patterns was always “slow” but that it would
continue to get better with practice. Perhaps,
then, the ratio of pattern definitions to scheduling
operations corresponds to the musician’s level of
facility with LOLC. There was, in fact, significant
variation within the ensemble in this regard: One
musician scheduled 27 operations per pattern
created, whereas at the other extreme, one musician
scheduled only 3.9 operations per pattern created.

Audiences, for the most part, did not understand
the code fragments as they were projected on the
screen; the natural musical terminology used for
durations and dynamics was of little help to them.
There is, perhaps, an inherent design paradox here.
Performing musicians tend to prefer a concise syntax
that requires minimal typing, whereas audiences
tend to have difficulty understanding text that is
not sufficiently verbose. Faced with such situations,
audiences “may become stuck on small details” of
the code (McLean et al. 2010). A new visualization
engine for LOLC, currently under development,
seeks to address this challenge by displaying the
typed code along with a graphical representation of
its content and meaning.

The text chat messages among performers, how-
ever, provided unique insights into the collaborative
process, and the audience members with whom we
spoke really enjoyed seeing how the musicians were

thinking about the music and interacting with each
other. (Musicians wore colored baseball hats that
matched the color of their onscreen text so that
audiences could identify them.) At many points in
the performance, audience members even laughed
in response to the chat messages.

Our primary interest, of course, was in how the
musicians collaborated to create each performance.
One metric of collaboration is the degree to which
patterns were shared among musicians. Although
the quantity of shared patterns does not necessarily
correlate to the quality of collaboration, it does
suggest how much LOLC encouraged and facilitated
such collaboration.

In our analysis of the group’s dress rehearsal, we
found that eight patterns were played by musicians
other than their creators, and five patterns were
transformed by musicians other than their creators.
(A total of 38 patterns were created or transformed
during the course of the performance.) Figure 4
shows the sharing of patterns graphically, and
reveals an interesting detail: Most of the shared
patterns were borrowed by just three of the players.
This suggests that certain musicians were more
interested in borrowing (or at least more adept at it).
One musician, in fact, used only patterns borrowed
from others, creating no new patterns from scratch,
and two other musicians borrowed no material
from others, using only the patterns they created
themselves.

We were pleased that musicians did share mate-
rial but wish they had done so more often. In our
own observations and in comments from the musi-
cians, the pattern visualization window emerged as
a significant impediment to increased collaboration.
Navigating its display and search features in perfor-
mance was difficult, and it was hard to understand
the sonic content of patterns from the color coding.
(Musicians in this performance also chose not to
use headphones for the preview functionality, so
it was challenging to predict how a pattern would
sound.) We believe that improvements to the visu-
alization of patterns would encourage more sharing
and transformation of patterns among ensemble
members.

In rehearsal, the ensemble experimented with
a variety of approaches to organizing their

Freeman and Van Troyer 17



Figure 4. Analysis of
pattern sharing among
ensemble members. Figure
4a shows when musicians
schedule patterns, without
modification, that have

been created by other
ensemble members; circles
indicate the definition of
the original pattern and
squares indicate the
scheduling of the borrowed

pattern. Figure 4b shows
when musicians transform
patterns created by other
ensemble members; circles
again indicate the original
pattern and triangles

indicate the creation of the
transformed pattern. In
both figures, solid lines
connect the shared
patterns from the borrower
back to the creator.

performance. They eventually chose a “conducted”
model, in which one player sent cues via chat mes-
sage to the other musicians to set up solos, musical
textures, and structural arrival points. Other musi-
cians responded as necessary with further thoughts,
but most of the messages came from the conductor.
The messages were not preset; rather, they were im-
provised by the conductor during the performance.
In this excerpt from the text chat log, the conductor
sends out a series of messages to coordinate an
upcoming solo by a musician named Atrish:

Alright, now let’s switch over to p’s at 185
Alright, let’s start an atrish solo at measure 220

And everyone else say “atrish!”
out loud when it happens
Atrish, solo on the s sounds
If you are reading this
God, I hope you are.
Everyone back in at 235
With s’s
Atrish and Mary, switch to B’s
Everyone from clayton over, p’s
Me, Hannah, Gabe, P’s.

Our own subjective assessment of the musical
performance was largely positive. Overall, we found
the music compelling and cohesive; it did not merely
sync in time, but also seemed to mesh together to
create composite textures and large-scale structural
motion. We noticed two qualities, however, that
suggest the musical and collaborative limitations of
LOLC. First, the music was overwhelmingly loop-
based. Musicians tended to create patterns and loop
them for long periods of time; the net result was
multi-layered, slowly evolving minimalist textures.
Although there is nothing wrong with this musical
aesthetic, we suspect that the nature of LOLC
pushed the ensemble towards creating this type
of music: The environment makes it easy to loop
rhythmic patterns, and the performance situation
encourages musicians to do so to avoid risking
periods of uncomfortable silence. We suspect that
with more rehearsal time and more performance
experience, the ensemble might have branched
out to try other approaches. And we suspect that
additional features in LOLC—particularly a library
of operations to algorithmically generate new
patterns along with additional methods to transform
existing ones—would also have encouraged this.

Along with the slowly evolving musical texture,
we also noted a slow pace of collaboration that
seems inherent to LOLC. In a jazz combo, musicians
can respond to each other quickly: for example, by
trading fours. In LOLC, such an interaction would
require more planning and would likely unfold
more slowly, because it requires advance creation of
patterns and scheduling of events (and potentially
coordination via text chat). We do not necessarily see
this as a problem so much as an observation about
the nature of collaborative text-based performance

18 Computer Music Journal



as a medium situated between composition and
improvisation. Live-coding scholars have noted the
challenge of responding quickly in performance
and have suggested some relevant practice and
preparation techniques (Nilson 2007) and language
and interface design considerations (Blackwell and
Collins 2005; Magnusson 2007).

Future Work

LOLC has largely succeeded in creating an accessible
environment for laptop ensembles to collaboratively
improvise, and performances with the environment
have been successful, but much work remains
to be done. In addition to making revisions to
the environment to address the feedback we have
received to date, we wish to pursue several large-
scale projects with LOLC.

First, we want to better understand how
musicians—especially those with little or no back-
ground in computer programming and computer
music—learn the environment and collaborate with
it. To that end, we will be conducting a formal study
with Sonic Generator, the professional ensemble-
in-residence at Georgia Tech, as they rehearse and
prepare a performance with the environment.

Second, we would like to explore the use of
LOLC as an educational tool. Our experience with
the Princeton Laptop Orchestra suggested to us
its potential in this regard. Loosely following the
Performamatics model (Ruthmann et al. 2010), we
would like to formalize curricula for high-school and
college-aged students that use LOLC to teach about
improvisation and computer music to students who
may have little background in either of these areas,
and to determine what pedagogical advantages (and
disadvantages) LOLC may have in comparison to
live-coding or other languages.

Finally, we plan to extend LOLC to the realm of
real-time notation, in which musicians sight-read
conventional or graphical notation live, in perfor-
mance, as it is rendered on a digital display (Freeman
2008). In this scenario, LOLC musicians can manip-
ulate musical score fragments in addition to audio
files, and those fragments are displayed in real time
to sight-reading musicians (on traditional instru-

ments) with whom each laptop musician is paired.
To us, this extension gives LOLC greater power
as a tool to facilitate large-ensemble collaborations
between the acoustic and digital domains, and it also
makes LOLC a useful platform for experimenting
with real-time notation in general; there is currently
a lack of such tools (Freeman and Colella 2010). A
performance with this extended system is already
planned with Sonic Generator, for an ensemble
consisting of violin, cello, flute, clarinet, marimba,
and five laptop musicians.

Acknowledgments

LOLC is supported by a grant from the National Sci-
ence Foundation as part of a larger research project
on musical improvisation in performance and edu-
cation (NSF CreativeIT 0855758). In addition to the
authors, Andrew Colella, Sang Won Lee, and Shan-
non Yao have all made substantial contributions
to designing and developing LOLC. We also extend
our thanks to Dan Trueman, Jeff Snyder, and the
Princeton Laptop Orchestra. The LOLC software, a
performance guide for using LOLC with your own
ensemble, and videos of performances with LOLC
are available at www.jasonfreeman.net/lolc.

References

Allen, S. 2002. “Teaching Large Ensemble Music Impro-
visation.” Radical Pedagogy 4(1). Available on-line
at radicalpedagogy.icaap.org/content/issue4 1/01 Allen
.html. Accessed December 2010.

Berliner, P. 1994. Thinking in Jazz: The Infinite Art of
Improvisation. Chicago: University of Chicago Press.

Blackwell, A., and N. Collins. 2005. “The Programming
Language as a Musical Instrument.” In Proceedings of
Psychology of Programming Interest Group. Brighton,
UK: University of Sussex, pp. 120–130.

Brown, A., and A. Sorensen. 2009. “Interacting with
Generative Music through Live Coding.” Contemporary
Music Review 28(1):17–29.

Brown, C., and J. Bischoff. 2002. “Indigenous to the
Net: Early Network Music Bands in the San Francisco
Bay Area.” Available on-line at crossfade.walkerart
.org/brownbischoff. Accessed August 2010.

Freeman and Van Troyer 19

file:www.jasonfreeman.net/lolc.


Burk, P. 1998. “JSyn—A Real-time Synthesis API for Java.”
In Proceedings of the International Computer Music
Conference, pp. 252–255.

CodingMonkeys. 2010. “SubEthaEdit.” Available on-
line at www.codingmonkeys.de/subethaedit. Accessed
August 2010.

Collins, N., et al. 2003. “Live Coding in Laptop Perfor-
mance.” Organised Sound 8(3):321–330.

Dannenberg, R., et al. 2007. “The Carnegie Mellon
Laptop Orchestra.” In Proceedings of the International
Computer Music Conference, pp. 340–343.

Didkovsky, N., and P. Burk. 2001. Java Music Specification
Language, an Introduction and Overview. In Proceedings
of the International Computer Music Conference,
pp. 123–126.

Frankel, J. 2008. “The Wiki Collaborative Compo-
sition Project.” Available on-line at wikicompose
.pbworks.com/w/page/14280678/FrontPage.
Accessed December 2010.

Freeman, J. 2008. “Extreme Sight-Reading, Mediated
Expression, and Audience Participation: Real-time
Music Notation in Live Performance.” Computer
Music Journal 32(3):25–41.

Freeman, J., and A. Colella. 2010. “Tools for Real-Time
Notation.” Contemporary Music Review 29(1):101–113.

Google. 2010. “Google Docs.” Available on-line at
docs.google.com. Accessed August 2010.

Gottlieb, L. 2005. “Images, Technology, and Music: The
Ballets Suédois and Les mariés de la Tour Eiffel.” The
Musical Quarterly 88(4):523–555.

Hodson, R. 2007. Interaction, Improvisation, and Inter-
play in Jazz. New York: Routledge.

Hudson, S., F. Flannery, and C. Ananian. 2010. “CUP.”
Available on-line at www2.cs.tum.edu/projects/cup.
Accessed August 2010.

Klein, G. 1999. “Jflex User’s Manual.” Available on-line
at www.jflex.de. Accessed August 2010.

Lewis, G. 2004. “Virtual Concerto.” Unpublished musical
score.

Magnusson, T. 2007. “The ixiQuarks: Merging Code and
GUI in One Creative Space.” In Proceedings of the
International Computer Music Conference, vol. 2,
pp. 332–339.

Magnusson, T. 2010. “ixi lang: A SuperCollider Par-
asite for Live Coding.” In Proceedings of the
2010 SuperCollider Symposium. Available on-line
at www.ixi-software.net/thor/ixilang.pdf. Accessed
December 2010.

McCartney, J. 2002. “Rethinking the Computer Music
Language: SuperCollider.” Computer Music Journal
26(4):61–68.

McLean, A., et al. 2010. “Visualisation of Live
Code.” In Proceedings of Electronic Visualisa-
tion and the Arts 2010. Available on-line at
http://www.bcs.org/content/conWebDoc/36045.
Accessed December 2010.

McLean, A., and G. Wiggins. 2009. “Words, Move-
ment and Timbre.” In Proceedings of the 9th
International Conference of New Interfaces
for Musical Expression. Available on-line at
doc.gold.ac.uk/∼ma503am/writing/nime09.pdf.
Accessed December 2010.

Monson, I. 1996. Saying Something: Jazz Improvisation
and Interaction. Chicago: University of Chicago Press.

Nardi, B., S. Whittaker, and E. Bradner. 2000. “Interaction
and Outeraction: Instant Messaging in Action.” In
Proceedings of the 2000 ACM Conference on Com-
puter Supported Cooperative Work. New York: ACM,
pp. 79–88.

Nilson, C. 2007. “Live Coding Practice.” In Proceedings
of the 7th International Conference on New Interfaces
for Musical Expression, pp. 112–117.

Rebelo, P., and A. Renaud. 2006. “The Frequencyliator—
Distributing Structures for Networked Laptop Im-
provisation.” Proceedings of the 2006 International
Conference on New Interfaces for Musical Expression.
Paris: IRCAM–Centre Pompidou, pp. 53–56.

Rohrhuber, J. 2010. “Networked Program-
ming.” Available on-line at supercollider.svn
.sourceforge.net/viewvc/supercollider/trunk/common/
build/Help/Libraries/JITLib/tutorials/jitlib networking
.html?revision=10439. Accessed December 2010.

Rohrhuber, J., A. de Campo, and R. Wieser. 2005. “Algo-
rithms Today: Notes on Language Design for Just In
Time Programming.” In Proceedings of the Interna-
tional Computer Music Conference. Available on-line
at quod.lib.umich.edu/i/icmc. Accessed December
2010.

Rohrhuber, J., et al. 2007. “Purloined Letters and Dis-
tributed Persons.” Music in the Global Village.
Available on-line at globalvillagemusic.net/2007/
wp-content/uploads/pbup paper.pdf. Accessed
December 2010.

Ruthmann, A., et al. 2010. “Teaching Computational
Thinking through Musical Live Coding in Scratch.” In
Proceedings of the 41st ACM Technical Symposium
on Computer Science Education. New York: ACM,
pp. 351–355.

Salazar, S., G. Wang, and P. Cook. 2006. “miniAudicle and
ChucK Shell: New Interfaces for ChucK Development
and Performance.” In Proceedings of the International
Computer Music Conference, pp. 63–66.

20 Computer Music Journal

file:www.codingmonkeys.de/subethaedit.
file:www2.cs.tum.edu/projects/cup.
file:www.jflex.de.
file:www.ixi-software.net/thor/ixilang.pdf.
http://www.bcs.org/content/conWebDoc/36045.


Smallwood, S., et al. 2008. “Composing for Laptop
Orchestra.” Computer Music Journal 32(1):9–25.

Sorensen, A. 2010. “A Distributed Memory for Net-
worked Livecoding Performance.” In Proceedings of
the International Computer Music Conference, pp.
530–533.

Sorensen, A., and A. Brown. 2007. “aa-cell in practice:
An approach to musical live coding.” In Proceedings
of the International Computer Music Conference, pp.
292–299.

Spiegel, L. 1981. “Manipulations of Musical Patterns.” In
Proceedings of the Symposium on Small Computers
and the Arts. Los Angeles: IEEE Computer Society,
pp. 19–22.

Trueman, D. 2008. “The Telephone Game:
Oil/Water/Ether.” Available on-line at
www.turbulence.org/Works/plork. Accessed
December 2010.

Walshe, J. 2005. meanwhile, back at the ranch. Dublin:
Milker Corporation.

Wang, G., and P. Cook. 2003. “ChucK: a concurrent, on-
the-fly audio programming language.” In Proceedings
of the International Computer Music Conference,
pp. 219–226.

Wang, G., et al. 2005. “CoAudicle: A Collaborative
Audio Programming Space.” In Proceedings of the
International Computer Music Conference, pp. 331–
334.

Yew, J. 2009. “Social performances: Understanding the
motivations for online participatory behavior.” In
Proceedings of the ACM 2009 International Confer-
ence on Supporting Group Work. New York: ACM,
pp. 397–398.

Zorn, J. 1995. John Zorn’s Cobra: Live at the Knitting
Factory. New York: Knitting Factory Works KFW 124,
compact disc.

Freeman and Van Troyer 21

file:www.turbulence.org/Works/plork.

