
 

Materials 2010, 3, 1863-1887; doi:10.3390/ma3031863 

 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Review 

Collagen-Based Biomaterials for Tissue Engineering 
Applications 

Rémi Parenteau-Bareil 1,2, Robert Gauvin 1,2 and François Berthod 1,2,* 

1 Laboratoire d’Organogénèse Expérimentale (LOEX), Centre de recherche FRSQ du CHA 

universitaire de Québec, Hôpital du Saint-Sacrement, Québec, QC, G1S 4L8 Canada;  

E-Mails: remi.parenteau.1@ulaval.ca (R.P.B.); robert.gauvin.1@ulaval.ca (R.G.) 
2 Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, G1V 0A6 Canada 

* Author to whom correspondence should be addressed; E-Mail: francois.berthod@chg.ulaval.ca; 

Tel.: +1-418-682-7565; Fax: +1-418-682-8000. 

Received: 2 February 2010; in revised form: 9 March 2010 / Accepted: 11 March 2010 /  

Published: 16 March 2010 

 

Abstract: Collagen is the most widely distributed class of proteins in the human body. The 

use of collagen-based biomaterials in the field of tissue engineering applications has been 

intensively growing over the past decades. Multiple cross-linking methods were 

investigated and different combinations with other biopolymers were explored in order to 

improve tissue function. Collagen possesses a major advantage in being biodegradable, 

biocompatible, easily available and highly versatile. However, since collagen is a protein, 

it remains difficult to sterilize without alterations to its structure. This review presents a 

comprehensive overview of the various applications of collagen-based biomaterials 

developed for tissue engineering, aimed at providing a functional material for use in 

regenerative medicine from the laboratory bench to the patient bedside. 
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1. Introduction  

During the past decade, numerous innovations occurred in the field of collagen-based biomaterials. 

From injectable collagen matrices to bone regeneration scaffolds, production and cross-linking 

methods have evolved and improved. Collagen is now widely used in both research environments and 

medical applications. A brief introduction of the collagen molecule will be presented, followed by 

some technical explanation covering collagen scaffold production methods. Ultimately, the recent 

advances that have been developed in collagen-based tissue-engineering biomaterials will be 

discussed.  

2. The Collagen Molecule 

2.1. Distribution, biosynthesis and molecular structure 

The presence of collagen in all connective tissue makes it one the most studied biomolecules of the 

extracellular matrix (ECM). This fibrous protein species is the major component of skin and bone and 

represents approximately 25% of the total dry weight of mammals [1]. To this day, 29 distinct collagen 

types have been characterized and all display a typical triple helix structure. Collagen types I, II, III, V 

and XI are known to form collagen fibers. Collagen molecules are comprised of three α chains that 

assemble together due to their molecular structure. Every α chain is composed of more than a thousand 

amino acids based on the sequence -Gly-X-Y-. The presence of glycine is essential at every third 

amino acid position in order to allow for a tight packaging of the three α chains in the tropocollagen 

molecule and the X and Y positions are mostly filled by proline and 4-hydroxyproline [2,3]. 

There are approximately twenty-five different α chain conformations, each produced by their 

unique gene. The combination of these chains, in sets of three, assembles to form the twenty-nine 

different types of collagen currently known. The most common are briefly described in Table 1. 

Although many types of collagen have been described, only a few types are used to produce collagen-

based biomaterials. Type I collagen is currently the gold standard in the field of tissue-engineering. 

The fibroblast is responsible for the majority of the collagen production in connective tissue. 

Collagen pro-α chain is synthesized from a unique mRNA within the rough endoplasmic reticulum and 

is then transferred to the Golgi apparatus of the cell. During this transfer, some prolines and lysines 

residues are hydroxylated by the lysyl oxydase enzyme. Specific lysines are glycosylated and then pro-

α chains self-assemble into procollagen prior to their encapsulation in excretory vesicles. Following 

their passage through the plasma membrane, the propeptides are cleaved outside the cell to allow for 

the auto-polymerisation by telopeptides. This step marks the initiation of tropocollagen self-assembly 

into 10 to 300 nm sized fibril and the agglomeration of fibril into 0.5 to 3 μm collagen fibers, see 

Figure 1 [1]. Fibril-forming collagens are the most commonly used in the production of collagen-based 

biomaterials. 
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Table 1. Collagen types, forms and distribution. Modified from [1]. 

 Type Molecular formula Polymerized form Tissue distribution 

Fibril-
Forming 
(fibrillar) 

I  [α1(I)]2α2(I) fibril 
bone, skin, tendons, ligaments, 
cornea (represent 90% of total 
collagen of the human body) 

II  [α1(II)]3 fibril 
cartilage, intervertebrate disc, 
notochord, vitreous humor in 

the eye 
III  [α1(III)]3 fibril skin, blood vessels  

V 
 [α1(V)]2α2(V) and 
α1(V)α2(V)α3(V) 

fibril 
(assemble with 

type I) 
idem as type I 

XI α1(XI)α2(XI)α3(XI) 
fibril 

(assemble with 
type II) 

idem as type II 

Fibril-
associated 

IX α1(IX)α2(IX)α3(IX) 
lateral association 
with type II fibril 

cartilage 

XII  [α1(XII)]3 
lateral association 
with type I fibril 

tendons, ligaments 

Network-
forming 

IV  [α1(IV)]2α2(IV) 
Sheet-like 
network 

basal lamina 

VII  [α1(VII)]3 anchoring fibrils 
beneath stratified squamous 

epithelia 

Figure 1. (a) Schematization of a collagen α chain triple helix segment. (b) Assembled 

tropocollagen molecules. (c) Collagen fibril ranging from 10 to 300 nm in diameter. (d) 

Aggregated collagen fibrils forming a collagen fiber with a diameter ranging from  

0.5 to 3 μm. 
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2.2. Immunogenicity and biocompatibility 

The use of biological material for medical applications requires making a distinction between 

immunogenicity and antigenicity. Immunogenicity is about triggering an immune response while 

antigenicity refers to the interaction between the antibodies and the antigenic determinants or  

epitopes [4]. An immune response against collagen mainly targets epitopes in the telopeptide region at 

each end of the tropocollagen molecule [5–7]. However, the conformation of the helical part and the 

amino acid sequence on the surface of the polymerized collagen fibril, also influence the immunologic 

profile of the collagen molecule [8–12]. Thus, the difference of immunogenicity between polymerized 

collagen and their smaller counterpart lies on the accessibility of the antigenic determinants that 

decrease during the polymerisation process [13,14]. 

Type I collagen is a suitable material for implantation since only a small amount of people possess 

humoral immunity against it and a simple serologic test can verify if a patient is susceptible to an 

allergic reaction in response to this collagen-based biomaterial [15,16].  

It is important to mention that these facts about collagen immunogenicity are also applicable to 

collagen molecules comprised of an acellular ECM and that most adverse immune responses that have 

been encountered with an acellular scaffold are not necessarily originating from the collagen molecule 

itself. Incomplete decellularization resulting in residual oligosaccharide α-Gal or DNA is most often 

the cause of acellular ECM rejection or acute immune responses [17]. 

2.3. Collagen origin and variability 

Collagen can be extracted from various sources considering that it is one of the most abundant 

proteins on earth. It can be extracted from almost every living animal, even including alligators [18] 

and kangaroos [19]. Nonetheless, common sources of collagen for tissue engineering applications 

include bovine skin and tendons, porcine skin and rat tail among others. Marine life forms are also a 

considerable source of collagen, which can be extracted from sponges [20,21], fish [22] and  

jellyfish [23]. These collagens are widely used in the industry, but less for research and clinical usage. 

All these collagen sources are worth investigating considering that collagen properties differ from one 

animal to another [24]. However, the company Fibrogen® distributes recombinant human collagen 

since 2004 that is potentially less immunogenic than animal sources but more importantly is identical 

in composition for different production lots and appears to be the future of collagen scaffolds [25]. 

Collagen can also be used in biomedical applications as a decellularized ECM serving as a scaffolding 

material for tissue regeneration. Although extractible from many different sources, the diversity of 

acellular collagen scaffolds are quite restraint due to immunological, physical scaffold size and 

availability aspects. Thus, acellular ECM are typically produced from human or porcine dermis or 

from swine intestine or bladder submucosa (SIS or BSM) [26]. 

2.4. Biodegradability and collagenases 

Biodegradability is a valuable aspect for most collagen-based biomaterials. Collagen 

biocompatibility and possible degradation by human collagenases are responsible for the widespread 

use of this material in many biomedical applications. On the other hand, the rate of the degradation 
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process often needs to be regulated using diverse methods such as crosslinking techniques [13,14] or a 

structural modification agent like Epigallocatechin-3-gallate (EGCG) [27]. Therefore, biodegradation 

of collagen-based biomaterials for applications such as tissue engineering could potentially lead to the 

restoration of tissue structure and functionality [28]. In addition, the degradation product of collagen 

type I to III have also been shown to induce a chemotactic attraction of human fibroblasts [29].  

Collagenases such as matrix metalloproteinase (MMP) are responsible for most collagen 

degradation in vivo. It is also important to know that all collagenases have a different rate of collagen 

hydrolysis. Mammalian collagenases such as MMP-1, MMP-2, MMP-8, MMP-13 and MMP-14 have 

the capacity to hydrolyze collagen type I to III [30–35], while some other like MMP-3 and MMP-9 

bind to type I collagen but do not degrade the native tropocollagen molecule [36–38]. The 

collagenolytic activity of all these MMP rely on three principles: the ability to bind collagen 

molecules, the ability to unwind the three α chains and the ability to cleave each strand of the triple 

helix [39]. These parameters are also of concern when it comes to bacterial collagenases or non-

specific proteolytic enzymes such as C. histolyticum collagenase or trypsin. 

2.5. Collagen and cellular interactions 

Collagen is a key structural element of vertebrate evolution. The path that led to complex life form, 

like human being, relies on three types of interactions. In 1985, Ruoslahti et al. stated that relation 

between cells and ECM are based on self-aggregation of matrix molecules, on interaction of these 

aggregated molecules with one another and finally on their affinity toward cell surface to allow cells 

binding to the ECM as well as proliferation [40]. Cell-matrix interactions imply mostly interaction of 

cells with collagen, directly or indirectly. Direct cell-collagen interactions imply cell receptors that 

recognize specific peptide sequence within collagen molecules. These receptors are divided into four 

groups. The receptors of the first group, like glycoprotein VI, recognize peptide sequence containing 

GPO motif (Gly-Pro-Hyp) [41]. The second group is composed of collagen binding receptor members 

of integrin family and discoidin domain receptor 1 and 2 (DDR1 and DDR2). All these receptors bind 

to different specific motifs often including a GFO (Gly-Phe-Hyp) sequence [42–44]. The third group 

of collagen binding receptor are integrin-types that recognize cryptic motifs within the collagen 

molecule [45]. Finally the other cell receptors that directly bind collagen have affinity for the non-

collagenous domain of the molecule. The two last groups of collagen binding receptors normally imply 

other cell-matrix interactions via indirect cell-collagen interactions to achieve stable adhesion of cell to 

the ECM. One of the key molecules of indirect cell-collagen interactions is fibronectin, on which the 

integrin recognized sequence RGD (Arg-Gly-Asp) was first identified [46,47]. A lot of proteins 

containing RGD or similar motifs recognized by integrin also bind to collagen, thus allowing indirect 

cell-collagen interactions. Proteins like decorin and laminin can bind either collagen and integrin 

promoting cell adhesion and proliferation [48]. Those facts about collagen receptors and collagen 

binding molecule are of important concern for the choice of collagen or ECM source to produce 

collagen-based biomaterials. This is why the treatments used to extract collagen, to decellularized 

ECM or to sterilized biomaterials are of outmost importance. Furthermore, the molecular architecture 

of collagen and other associated proteins in biomaterials are crucial for seeded cell adhesion, migration 

and in some case differentiation. 
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3. Collagen-Based Biomaterials 

3.1. Types of collagen-based biomaterials 

Collagen-based biomaterials can originate from two fundamental techniques. The first one is a 

decellularized collagen matrix preserving the original tissue shape and ECM structure, while the other 

relies on extraction, purification and polymerization of collagen and its diverse components to form a 

functional scaffold. Both techniques can be submitted to various cross-linking methods and protocols 

which are applicable to a wide variety of tissue sources and species of origin. 

Many techniques can lead to the production of an acellular collagen matrix or ECM. Gilbert, Sellaro 

and Badylak have elegantly reviewed the three method used for tissue decellularization: physical, 

chemical and enzymatic [49]. Physical methods include snap freezing that disrupt cells by forming ice 

crystals, high pressure that burst cells and agitation, that induce cell lysis and used most often in 

combination with chemical methods to facilitate penetration of active molecules in the tissue. 

Chemical methods of decellularization include a variety of reagents that can be use to remove the 

cellular content of ECM. These substances range from acid to alkaline treatments, as well as chelating 

agents such as EDTA, ionic or non-ionic detergents and solutions of extreme osmolarity. Enzymatic 

treatments such as trypsin, which specifically cleaves proteins and nucleases that remove DNA and 

RNA are also commonly used to produce acellular scaffold. However, none of these methods can 

produce an ECM completely free of cellular debris and a combination of techniques is often required 

to obtain a material free of any cell remnant. 

The other type of collagen-based biomaterial is made by processing a collagen solution with other 

biomolecules like glycosaminoglycans (GAG) [50–52], elastin [53–55] or chitosan [56–58]. In order to 

produce collagen-based biomaterials, different approaches were developed to extract collagen from 

biological tissues. Modern extraction methods are based on three basic principles of solubilisation: in 

acid solutions [59,60], in neutral salt solutions [61,62] and in proteolytic solutions [63–65]. Proteolytic 

extraction however, alters collagen molecular structure by cleaving the terminal telopeptide regions 

and results in a proportional decrease in tropocollagen self-assembled fibrils [66]. To avoid this effect 

endogenous proteases can be inhibited during the acid solubilization [67]. Nonetheless, the acid 

extraction using a slight pepsin solubilization, is the most effective technique in terms of yield, albeit 

some telopeptides are cleaved or partially denaturated [67,68]. 

3.2. Crosslinking methods and reinforcement with biopolymers combination 

Crosslinking techniques are especially important for collagen-based biomaterials when compared to 

acellular collagen matrices that have already been polymerized in vivo. As previously stated, the two 

types of collagen-based biomaterials can be crosslinked in order to enhance their mechanical and 

enzymatic resistance properties for implantation purposes. The principle of a cross-linking reaction 

relies on the modification of amine and carboxyl groups within the collagen molecules, to allow the 

formation of covalent bonds. Several methods have been developed to cross-link collagen scaffolds. 

These polymerization techniques are distributed among three types: physical, chemical and  

enzymatic crosslinking.  



Materials 2010, 3               

 

1869

Physical crosslinking rely on irradiation by ultra-violet wavelengths (UV) or thermal sources to 

induce the collagen scaffold polymerization. UV irradiation and dehydrothermal (DHT) treatment 

produce similar results when used to crosslink collagen scaffolds. Both techniques induce an increase 

in tensile strength and some fragmentation in the collagen molecular structure [69]. However, UV 

irradiation is more time-effective when compared to DHT treatment as it takes only 15 minutes instead 

of 3 to 5 days for the DHT treatment. UV crosslinked collagen scaffolds also result in a more suitable 

biomaterial for load-bearing applications due to its enhanced enzymatic resistance [13]. Besides, UV 

irradiation has been recently optimized to reduced collagen fragmentation by using glucose in the 

crosslinking process [70]. However, UV irradiation is only effective for thin and/or transparent 

scaffolds, allowing UV to go through the structure.  

The chemical techniques used to crosslink collagen-based biomaterial are more diversified. The use 

of aldehydes such as formaldehyde and glutaraldehyde was extensively used in the past decade. 

Glutaraldehyde is the most employed and studied chemical method used to crosslink collagen-based 

biomaterials [14,58,71,72]. Another class of chemicals used to enhance mechanical and enzymatic 

resistance of a collagen scaffold is the carbodiimide family [73–76]. These chemicals can also be used 

to crosslink collagen to some marginal substances like gold nanostructure [77] or utilized in 

combination with epoxy [78,79]. The isocyanate chemical family, especially hexamethylene 

diisocyanate, is also used to crosslink collagen scaffolds [80,81]. The commercially available product 

Zimmer® Collagen Repair Patch currently uses a proprietary isocyanate crosslinking technique. 

Genipin, a chemical cross-linker derived from a vegetal source, shows an interesting potential to 

replace glutaraldehyde because of its low toxicity [82,83]. However, all these chemical stabilisation 

techniques leave potentially toxic residues in the collagen-based biomaterial [84,85]. 

An alternative to covalent bond crosslinking is to promote the formation of ionic bonds between 

collagen molecules. This can be achieved by polycationic molecules such as chitosan, which create 

ionic bonds between its numerous amine groups and the carboxyl groups of collagen. These bonds are 

strong enough to stabilize the biomaterial structure and form a strong mechanical strength [57,86]. The 

major advantage of this technique is to prepare the biomaterial in a one step process, where chitosan is 

mixed with collagen before freeze-drying, avoiding the need of further washing steps since chitosan is 

not toxic [87]. 

Finally, enzymatic crosslinking agents like transglutaminase can be used to enhance tensile strength 

and enzymatic resistance of collagen-based biomaterial [55,88,89]. The major advantage with the 

approach of using a biologic polymerization technique is that no chemical residues or by-products 

remain in the scaffold structure, and therefore eliminate the risk of inducing cytotoxic effects. 

A plethora of biomolecules can also be added to collagen solution to produce collagen-based 

biomaterials. These biomolecules, typically GAG, elastin and chitosan are added to the compound to 

potentially enhance the mechanical strength and to modulate cellular functions such as migration, 

proliferation and differentiation [90–96]. 

3.3. Sterilisation methods 

The structure of collagen scaffolds, either crosslinked or decellularized, is relatively fragile and is 

temperature sensitive. Therefore, they are not autoclavable and require an alternate specific 
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sterilization process prior to their use. Even if some sterilization of collagen-based biomaterials is done 

by low dose gamma irradiation (γ-ray), this method alters molecular structure and decreases 

mechanical and enzymatic resistance of the collagen scaffold [19,97–99]. The addition of glucose 

during irradiation has been investigated to increase sterilized scaffold tensile strength by forming 

glucose crosslinking, but does not avoid collagen structure degradation  [100]. Ethylene oxide (ETO) 

sterilization or -ray irradiation are less damageable than γ-ray but their applicability depends on the 

type of collagen-based biomaterials produced [86,101,102]. Electron beam irradiation, like γ-ray, 

induces a scaffold degradation that result in the lost of mechanical and enzymatic resistance [86,103]. 

Immersion in a low concentration of peracetic acid is the most commonly used method to sterilize 

acellular collagen ECM [104] and it has been demonstrated that formic acid can also be a potential 

sterilization agent for collagen [105]. Ethanol immersion with the combination of fungicide and 

antibiotic use are techniques used in the laboratory to sterilize collagen scaffolds which have been 

physically crosslinked [106,107]. Anyhow, no perfect sterilization technique have been recognized for 

use in collagen scaffolds without any molecular alteration to its structure. Investigating the sterilization 

effects on collagen material properties remains the best way to assess the performance of sterilized 

collagen-based biomaterials [108]. 

4. Recent Advances in Collagen-Based Biomaterials 

4.1. Experimental applications 

The use of collagen-based biomaterials, from either acellular matrix or extracted collagen, in 

fundamental studies have a vast range of applications both in vivo and in vitro. Research groups use 

collagen scaffolds to study cell behavior such as migration and proliferation, as well as differentiation 

and phenotype expression. Moreover, fundamental findings about how cells behave in complex 

environments rely on the capacity of cells to grow in vitro in a 3D tissue-like scaffold. Collagen 

hydrogels are also convenient scaffolds when the access to cell membrane is needed, for example in 

electrophysiological protocols [109–111]. Other collagen-based scaffolds are used as nervous system 

models to visualise motor neuron myelinisation by Schwann cells [112]. Cancer studies are also an 

important research topic where 3D collagen scaffolds are useful. In this way, the invasive character of 

cancer cells [113,114] and interaction between cancer cells and other cell types in a 3D environment 

can be analysed [115]. This kind of scaffold can also be used as a 3D environment to test anticancer 

drugs [116]. In the domain of immunology, in vitro 3D experiments can also be done to evaluate T cell 

migration mechanisms [117,118]. Furthermore, collagen-based biomaterials could serve as anchorage 

material to cultivate organs ex vivo [119] or as 3D models for diseases like osteoarthritis [120].  

4.2. Osteochondral defects 

Bone and cartilage reconstruction are important topics of modern medicine either for functional or 

esthetic surgery. Collagen-based biomaterial implantation is necessary when osteochondral defectS 

reach an important volume or when autograft have to be avoided for practical or pathological reasons. 

Scaffolds for bone tissue engineering rely on hardening of a collagen biomaterial by mineralization 

with calcium phosphate [121,122] and/or on crosslinking with other substances like hydroxyapatite 
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[123–125] or bushite [126,127]. Collagen-based biomaterials used for cartilage regeneration tend to be 

more flexible and are ideally built with type II collagen in contrast to most of the other collagen-based 

biomaterials, which are produced using type I collagen. Nonetheless, some studies demonstrate that 

small amounts of autologous chondrocytes can grow in dynamic culture on type I or II collagen 

structures without any notable difference [128,129]. Sheet-like collagen scaffolds seeded with or 

without autologous cells can also be used to fill ostechondral defects [130–133]. Further developments 

aimed at differentiating mesenchymal stem cells directly in collagen-based biomaterial, to permanently 

solve osteochondral defects on a long-term basis, are currently under investigation [134]. Optimization 

of pore size and distribution is also a concern considering the effect of these parameters on cell 

adhesion, proliferation and migration [135]. Decellularization of complex structures like meniscus has 

also shown promising results in order to produce an optimal replacement scaffold for specific 

osteochondral defects [136,137].  

4.3. Vascular diseases  

Two main problems arise in the domain of vascular diseases: cardiovascular malfunction and 

venous or arterial pathologies such as atherosclerosis. In the case of heart diseases, tissue engineering 

solutions rely principally on acellular matrix colonization and implantation due to the complex 

structural architecture of the heart like heart valves [138,139]. However, the usefulness of xenogenic 

acellular heart valves remain an issue due to their important immunogenic potential and tendency to 

become calcified [140]. This immunologic issue led to the development of commercially available 

human acellular scaffolds for cardiac and vascular reconstructive surgeries, i.e. Cryolife® that offers 

tissue replacement ranging from heart valves to vascular conduits [141–143]. Recent findings about 

complete heart decellularization by perfusion [144] and production of functional re-endothelialized 

veins and valves from human vein matrix [145] will certainly lead to the development of very 

important advances in cardiovascular regenerative medicine using collagen-based biomaterials. 

A very innovative personalized medicine approach, to reconstruct living tissue-enginneered blood 

vessels using the patient’s own cells, has been developed at the LOEX by the group of Auger et al. 

[146]. The idea is to let human fibroblasts produce their own collagen-made extracellular matrix 

through long-term culture. This self-assembled fibroblast sheet can then be rolled around a tubular 

support to produce a living vessel with very impressive mechanical strength and biological properties 

after in vitro maturation [146–148]. This tissue-engineered blood vessel has been successfully grafted 

on patients [149,150]. 

4.4. Skin and cornea 

Skin and cornea share a similar tissue structure: dermis and stroma both being connective tissues; 

epidermis and cornea being stratified epithelia. Collagen-based wound dressings have been applied for 

decades for burn coverage applications and ulcer treatment [28,151,152]. Highly sophisticated and 

innovative tissue-engineered skin models have been developed with melanocytes [153], a capillary-

like network [154], dendritic cells [155], sensory innervation [94,156], adipose tissue [157], and tissue 

reproducing psoriatic or sclerotic phenotypes [158,159]. A living allogenic reconstructed skin 

(Apligraf®), made of a collagen gel-populated fibroblasts overlayed by an epidermis, is 
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commercialized for ulcer treatment as a temporary dressing [160,161]. Skin, dermal substitutes and 

dressing such as Integra® (acellular collagen-GAG scaffold), Alloderm™ (human dermis), 

Amniograph™ (amniotic membrane) and Oasis™ (porcine SIS) are currently available for medical 

applications. Mesenchymal stem cell delivery to the wound bed in collagen-based biomaterial is a 

growing topic in wound healing [157,162–164]. The combination of collagenous biomaterials and 

stem cells could also be a valuable strategy to treat corneal defects. In the last decade, collagen 

scaffolds have been intensively studied for the delivery of limbal epithelial stem cells to damaged 

cornea [165–170]. Advances in collagen-based corneal scaffolds also include the utilization of 

recombinant human collagen [169,171–173], the secretion of collagen by the fibroblasts themselves 

(self-assembled fibroblasts sheets) [174] and surface modification to reduce extensive 

endothelialization [175]. 

4.5. Urogenital system 

The use of collagen-based biomaterials in the domain of urogenital diseases and dysfunctions rely 

principally on acellular ECM from either SIS or BSM. These scaffolds have been extensively used to 

replace the enterocystoplasty and gastrocystoplasty techniques that were previously used with frequent 

complications [176,177]. Hence, more recent surgical procedures aiming to solve genitourinary 

disorders use acellular collagen scaffolds in bladder augmentation [178–181] and urethral stricture 

[182–184]. Although acellular matrix is currently evolving and slowly becoming the new gold 

standard for these surgeries, collagen-composite scaffolds populated with the patient’s own urothelial 

and muscle cells or self-assembled fibroblast sheets are also a promising strategy for bladder 

augmentation [185–187] and are showing optimistic clinical results [186]. Vesico-urethral reflux and 

incontinence are other defects of the urogenital system which can also be solved using injection of 

collagen biomaterials [188–190]. 

4.6. Neural migration  

Peripheral nerve regeneration is a very important topic in regenerative medicine. Collagen-based 

biomaterials have been extensively studied as a promising nerve guide [191–193]. Multiple 

compositions of collagen-based nerve conduits have recently been tested with positive results 

compared to clinically used autografts. Even if acellular scaffolds have shown good results [194], most 

collagen nerve guides are engineered from crosslinked collagen solution molded into tubular shape 

like commercially available NeuraGen® from Integra™. Pore orientation [195,196], addition of 

neurotrophic factors [197,198] and cell delivery [199–201] are currently being investigated in an 

attempt to enhanced nerve guides for clinical applications. Collagen-based biomaterials can also be 

used to develop innovative three-dimensional tissue-engineered nervous system models to promote 3D 

axonal migration and myelination of sensory or motor neurons by Schwann cells through a connective 

tissue [107,112,202]. 
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4.7. Dermal filler, wound dressing and delivery systems  

FDA approved dermal filler commonly used in facial rejuvenation or reconstructive surgery is using 

collagen from three distinct sources: Bovine Zyderm®, porcine Evolence™, human CosmoDerm® and 

Cymetra® [203,204]. Although other collagen-based biomaterials are available for this purpose [205], 

these products can be useful for medical office-based interventions. The overgrowing popularity for 

these collagen-based dermal fillers is also due to the long-term side effect observed with non-

degradable fillers like Bio-Alcamid™, which are susceptible to form granulomas [206,207].  

Wound dressings that are also delivery systems represent an interesting application for collagen-

based applications. Recent studies have shown the feasibility and more importantly the benefits of 

implants delivering antibiotics [208–211]. The delivery properties of collagen-based biomaterials also 

display great potential for ulcer treatment [197] and abdominal wall defect reconstruction [212–214]. 

Collagen scaffolds have also shown to accurately deliver cells, proteins, drugs and nucleic acids on a 

predictable and long-term basis [129,215–217]. Finally, a recent clinical trial using adenovirus in 

collagen gel has cleared the path for future clinical studies on gene therapy delivered by collagen 

matrix [218]. The biodegradability of collagen and its low immunogenicity make it a substrate of 

choice for internal and topical pharmacogenomical applications.  

5. Conclusion 

Collagen-based biomaterials are of the utmost importance for tissue engineering and regenerative 

medicine. Because of its superior biocompatibility and low immunogenicity, collagen is still the 

protein of choice for biomaterials preparation. It can be extracted from various tissue sources and 

assembled in combination with other molecules. There is also a use in the laboratory as a 

decellularized ECM in fundamental studies or as tissue replacement material in medical applications. 

Most present research is aimed at the optimization of collagen-based biomaterials for medical 

applications by enhancing mechanical strength, biodegradability or delivery characteristics.  
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