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In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is

a critical regulator of cell function by virtue of specific physical, biochemical, and

mechanical properties. Collagen is the main ECM component and hence plays an

essential role in the pathogenesis and progression of chronic lung disease. It is

well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary

disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly,

suggesting increased susceptibility of the aged lung or accumulated alterations in lung

structure over time that favour disease. Here, we review the main steps of collagen

biosynthesis, processing, and turnover and summarise what is currently known about

alterations upon lung ageing, including changes in collagen composition, modification,

and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the

ER-resident machinery of collagen biosynthesis, modification and triple helix formation

appears largely unchanged, there are specific changes in levels of type IV and type

VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT),

namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen

crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated

collagen crosslinking upon ageing. The latter contrasts with the ageing-associated

increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result

of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from

monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover

of extracellular collagen such modifications accumulate even more in ageing tissues.

In summary, the collective evidence points mainly toward age-induced alterations in

collagen composition and drastic changes in the molecular nature of collagen crosslinks.

Future work addressing the consequences of these changes may provide important

clues for prevention of lung disease and for lung bioengineering and ultimately pave the

way to novel targeted approaches in lung regenerative medicine.
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INTRODUCTION

The extracellular matrix (ECM) is a highly dynamic non-
cellular component of tissues that provides a complex
structural network which serves as a scaffold for adherent
and migrating cells. It is mainly composed of collagens,
glycoproteins, proteoglycans, glycosaminoglycans, and several
other components. By virtue of sequestered growth factors
and ECM binding receptors at the surface of adherent cells,
the ECM affects a plethora of cellular processes including cell
proliferation, differentiation and migration and thus acts as a
critical regulator of cell function (1, 2). It is well-established
that the ECM plays an important role in the pathogenesis
and progression of chronic lung disease (3, 4). Many chronic
lung diseases, e.g., chronic obstructive pulmonary disease
(COPD) and idiopathic pulmonary fibrosis (IPF) primarily
manifest in the elderly, suggesting increased susceptibility of
the aged lung or accumulated alterations in lung structure
over time that favour disease. How the ECM changes during
ageing, however, has not been comprehensively assessed
or discussed.

Constituting between 30 and 70% of ECM protein in all tissue
types, collagen is the main component of the ECM (5) and
even forms the most abundant human protein class in general.
Mutations and polymorphisms in genes encoding structural
collagen chains as well as collagen biosynthetic proteins are
associated with disease affecting the full age range. Some
cause fatal congenital disorders leading to death very early
in life, others result in premature or accelerated ageing in
adolescents and adults, and yet others only become evident
in the elderly where they lead to a high burden of multi-
morbidity, reduced quality of life, and lower life expectancy
(6). Probably the most widely known collagen-related disorders
result in drastic bone and cartilage abnormalities, as e.g., brittle-
bone (osteogenesis imperfecta) or Caffey disease, characterised by
increased bone fragility or episodes of excessive bone formation,
respectively (1). Other frequent effects of collagenopathies are
skin alterations, visual defects and hearing loss, muscle weakness,
vessel abnormalities and kidney disease (1).

Pulmonary manifestations of such collagen mutations and
polymorphisms have received less attention, probably because
the most severe lung abnormalities in such patients are caused
by defects in chest formation and rib fractures, i.e., are of
origin secondary to bone and cartilage defects (1, 6, 7).
Nevertheless, altered collagen synthesis or turnover by other than
genetic causes are frequent hallmarks of chronic lung disease
and contribute considerably to disease progression, severity,
morbidity, and mortality (3, 4). In lung cancer, for instance,
dysregulated collagen expression and crosslinking appear to
favour tumour progression by providing a permissive, pro-
invasive, and pro-inflammatory environment (8). In pulmonary
fibrosis, irrespective of disease aetiology, excessive collagen
deposition in the alveolar space is the ultimate pathological
feature leading to increasing dyspnoea and progressive lung
function decline (9–14). In contrast, COPD/emphysema is
characterised by increased degradation of ECM proteins by
matrix metalloproteinases (MMPs) and neutrophil elastase,

targeting primarily collagens and an unrelated major ECM
protein, elastin, respectively (15).

Given that collagen is the most abundant protein type in
the body, it is not surprising that collagen has been a subject
of research for about 100 years by now. What is striking,
however, is how little we know, nonetheless. The latest member
of the collagen protein family, type XXVIII collagen encoded
by COL28A1, has only been reported in the year 2006 (16).
Similarly, new proteins acting in collagen biosynthesis and
modification have only been discovered and characterised in
the last two decades (17–21). Also, even though collagen is
known to undergo excessive post-translational modification
(PTM), both intra- and extracellularly, these PTMs have not
been comprehensively mapped and the biological function of the
majority of the PTMs remains unclear (22). Equally, it is poorly
understood how collagen biosynthesis and turnover change
during normal ageing and how such changes may affect the
function of adherent cells, lung repair, susceptibility to disease,
disease progression and comorbidities.

This review aims to draw attention to the complexity
of collagen synthesis, processing, and degradation and the
importance of these processes in lung ageing and chronic lung
disease. To set the stage, we first provide an overview of collagen
types and key steps of collagen biosynthesis, processing, and
maturation. We then summarise what is known about collagen
alterations in the ageing lung and what can be tentatively
inferred from studies in other organs. Ultimately, we believe
that a better understanding of these mechanisms may provide
important clues for prevention of lung disease and for lung
bioengineering and pave the way to novel targeted approaches
in lung regenerative medicine.

COLLAGEN TYPES AND STRUCTURE

The collagen suprafamily comprises to date 28 known highly
diverse collagen types in vertebrates, characterised by the
presence of triple-helical collagenous domains. Collagens are
divided into several subtypes depending on their domain
structure and their macromolecular assembly (Figure 1): (A)
Fibril-forming collagens (I, II, III, V, XI, XXIV, XXVII), (B)
fibril-associated collagens with interrupted triple helices (FACITs,
IX, XII, XIV, XVI, XIX, XX, XXI, XXII), (C) network-forming
collagens (IV, VIII, X), (D) transmembrane collagens (XIII, XVII,
XXIII, XXV), (E) endostatin-producing collagens or multiplexins
(XV, XVIII), (F) anchoring fibrils (VII), and (G) beaded-filament-
forming collagen (VI). Types XXVI and XXVIII do not fit well
in any category (16, 23–25). Depending on the collagen type,
collagens can assemble as homotrimers or heterotrimers. For
instance, type III collagen is a homotrimer of three identical α1
chains (encoded by COL3A1), type I collagen typically assembles
from two α1 chains (COL1A1) and one α2 chain (COL1A2)
and type VI collagen from even three distinct chains (COL6A1,
COL6A2, and COL6A3 or COL6A5 or COL6A6) (22, 26–28).
Interestingly, altered chain stoichiometry has been described for
several pathologies including fibrosis and may affect biochemical
and biophysical properties of collagen (29–34).
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FIGURE 1 | Classification of collagens based on supramolecular assembly. Schematic overview of the major forms of supramolecular assembly of collagen. For some

non-collagenous (NC) domains, specific names are established in the literature and therefore specified in the figure: In the collagen IV network (C), the so-called 7S

and NC1 domains represent critical nodes. In anchoring fibrils (F), the C-terminal domain which is cleaved off upon fibril formation is termed NC2. Figure was created

with Biorender.com.

Collagen Domains and Macromolecular
Assembly
The unifying feature of all collagens is the triple-helical

collagenous domain, which is composed of three so-called α-
chains consisting of amino acid repeats of (Gly-X-Y)n. The
smallest amino acid glycine (Gly) can face the interior part of
the triple helix while still allowing for a close association of the
three chains. X and Y are often proline (Pro) or hydroxylated
proline, 3-hydroxyproline (3-Hyp) or 4-hydroxyproline (4-Hyp),
respectively (35, 36). While 4-Hyp in position Y of the Gly-
X-Y repeat is frequently found in all collagen types and well-
established as a major contributor to collagen thermodynamic
stability (37–41), 3-Hyp has so far only been unambiguously
detected in very few defined X positions of Gly-X-Y in collagen
chains of type I, II, IV, and V, and 3-Hyp function is much less
understood (42–46).

Frequent non-collagenous (NC) domains, e.g., in FACIT,

beaded-filament forming and anchoring fibril collagens,
are fibronectin type III, von Willebrand, thrombospondin

(TSP) and Kunitz domains. The physiological function of

these domains is incompletely understood. Fibronectin type
III and von Willebrand domains seem to facilitate protein-

protein interactions between collagens and other structural
ECM molecules or growth factors in the extracellular space

(47, 48). TSP domains mediate heparin and metal ion binding
and may provide protection against blood clotting e.g., in
subendothelial basement membranes (49, 50). The C-terminal
Kunitz domains in type VI and VII collagens are cleaved off
in the extracellular space (51–53). For type VI collagen, this
cleavage product, endotrophin, stimulates tumour growth and
angiogenesis, mediating many of the tumour-promoting effects
of type VI collagen (54–56). Endotrophin is thus classified as a

Frontiers in Medicine | www.frontiersin.org 3 May 2021 | Volume 8 | Article 593874

https://Biorender.com/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Onursal et al. Collagen Alterations In Lung Ageing

matricryptin or matrikine, a class of biologically active peptides
derived from proteolytic processing of extracellular matrix
proteins (57).

Even though all collagens are multi-domain proteins, the
extent to which a collagen consists of collagenous and
NC domains can differ drastically and the overall collagen
domain architecture determines the macromolecular assembly
(Figure 1). Type I collagen, like all fibril-forming collagens,
contains a central uninterrupted collagenous domain as a
major part of the polypeptide, flanked by relatively short NC
domains, the N- and C-terminal telo- and propeptides (25).
In contrast, FACITs can contain <10% collagenous domains
and associate to the surface of collagen fibrils but do not
form such fibrils by themselves (23, 27). Membrane collagens

comprise an NC cytoplasmic domain, a transmembrane domain,
and extracellular repeats of triple-helical collagenous domains
(27). Membrane collagen types XIII, XXIII, and XXV are
also collectively referred to as membrane-associated collagens
with interrupted triple helices (MACITs) (58, 59). Notably,
the C-terminal ectodomains of all membrane collagens can be
proteolytically shed off the cell surface (23, 27, 60), and are
classified as matrikines or matricryptins (27, 57, 61). Another
collagen family that serves as a source for matricryptins are
themultiplexins or endostatin-producing collagens. This family
comprises collagen types XV and XVIII which generate restin
and endostatin, respectively, upon proteolytic cleavage, both
known for their potent antiangiogenic properties (24, 25, 27,
57, 58, 61, 62). The prototypical network-forming collagen type
IV, a major basement membrane constituent, is encoded by in
total 6 genes (COL4A1-COL4A6) the products of which form
heterotrimers consisting of the chain combinations (α1)2α2(IV),
α3α4α5(IV), or (α5)2α6 (IV) (23, 24, 27). The so-called 7S and
NC1 domains are critical nodes in the collagen IV network
and stabilised by covalent bonds, namely by LOXL2-mediated
crosslinks between lysines in the 7S domain and the unique
sulfilimine crosslink (-S=N-) in the NC1 domain (63–65). Also
collagens VIII and X can assemble to form networks in tissues,
but the molecular determinants have not yet been studied in
similar detail (27). Type VII collagen is the major component of
anchoring fibrils that are essential for the integrity of the dermo-
epidermal junction in skin (24, 25, 27). It consists of two adjacent
collagenous triple-helical domains which are flanked by a rather
long (140 kDa) NC domain harbouring vonWillebrand domains
and fibronectin type III repeats at the N-terminus (NC1) and
a much shorter (30 kDa) NC domain at the C-terminus (NC2)
(27, 66). The initial formation of these anchoring fibrils from
homotrimeric type VII collagen molecules involves antiparallel
alignment of two collagen VII molecules at the level of their C-
termini (NC2 domains), followed by enzymatic cleavage of the
NC2 domain and stabilisation of the dimer by disulfide bonds
(66). Finally, beaded-filament-forming collagens are strictly
only represented by type VI collagen. Suprastructural assembly
occurs as follows: Two heterotrimeric type VI collagen molecules
dimerize in an antiparallel fashion via interaction of their
central triple-helical domains. The protruding N-and C-terminal
globular domains on both sides register in parallel with another
dimer, forming a tetramer which is stabilised by disulphide
bonds Finally, tetramers assemble end-to-end to generate the

beaded-filaments (Figure 1) (23, 67). The collagen types XXVI
and XXVIII are sometimes mentioned within the context of
this class, even if they do not fit well in any category (16, 23–
25). Type XXVIII collagen shares some sequence homology
with type VI collagen (16). Type XXVI collagen, however, is
uncharacteristically small for a collagen, comprises only two very
short collagenous domains, and shares few similarities with any
of the other described collagens (24).

COLLAGEN BIOSYNTHESIS

Collagen biosynthesis is a highly complex process starting with
transcription of collagen genes followed by translation and
translocation of the nascent polypeptide chain to the rough
ER (rER), co-translational modification and folding, trafficking
across the Golgi network, secretion, and finally, extracellular
processing and maturation (36, 68) (cf. Figure 2). This process
is best described for type I collagen which will be used as an
example for synthesis of a heterotrimeric fibril-forming collagen
in the following.

Translation and Co-translational
Modification of the Nascent Polypeptides
Following transcription of COL1A1 and COL1A2 genes, the
mRNA is translated into the polypeptide at the rER where the
nascent polypeptide chain is extended into the lumen of the rER.
Proper folding in the rER requires several enzymes andmolecular
chaperones essential for post-translational modifications (PTMs)
and the formation of triple-helical procollagen molecules
(36). First, numerous PTMs are introduced into the nascent
unfolded polypeptide chain in a co-translational fashion.
These include lysyl and prolyl hydroxylations and hydroxylysyl
glycosylations, modifications that are mediated by several
collagen-specific enzymes which exist in defined multiprotein
complexes with other chaperones and protein folding catalysts
[for an excellent review, see Ishikawa and Bächinger (36)]. Many
of these PTMs are essential for proper stability, assembly and
secretion of procollagen, as well as for the final supramolecular
structure of these molecules (24, 25, 27, 36). Numerous enzymes
catalysing PTMs have been identified. In vertebrates, prolyl-4-
hydroxylation is mediated by one of three prolyl-4-hydroxylases
(encoded by P4HA1, P4HA2, and P4HA3) which form complexes
with protein disulphide isomerase (PDI). In the lung, at least
one of these prolyl-4-hydroxylases, P4HA3, is upregulated in IPF
and has been put forward as a potential drug target (69). Most
members of the collagen prolyl-3-hydroxylase (P3H1-P3H4)
family equally form multimeric complexes with other collagen-
modifying proteins and chaperones. Of these, P3H1, P3H2, and
P3H3 have been shown to exert prolyl-3-hydroxylase activity,
while P3H4 (also termed SC65) forms a trimeric complex
with P3H3 and lysyl hydroxylase 1 (LH1), but has no prolyl-
3-hydroxylase activity of its own (19, 20). Lysyl hydroxylases
comprise three enzymes termed LH1-LH3 or procollagen-
lysine,2-oxoglutarate 5-dioxygenases 1 to 3 (PLOD1-PLOD3,
e.g., Uniprot database) (36). LH1, as already mentioned above,
exists in a complex with P3H3 and P3H4, and preferentially
hydroxylates lysines in the triple-helical collagenous regions
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FIGURE 2 | Intracellular collagen biosynthesis and extracellular maturation of collagen I. (1) Cotranslational prolyl-4- and lysyl-hydroxylation of the nascent collagen

polypeptide chain in the rough endoplasmic reticulum (rER) is followed by (2) glycosylation and prolyl-3-hydroxylation and (3) folding of the C- and N-terminal

propeptides. (4) For collagen I, two properly folded α1 chain C-propeptides assemble with one α2 chain C-propeptide, forming the triple helix nucleus. (5) Triple helix

formation occurs in a zipper-like fashion and is dependent on peptidyl-prolyl isomerases and collagen chaperones. (6) Collagen triple helices are transported via the

trans-Golgi network and finally secreted into the extracellular space. This was believed to occur via COPII vesicles, a concept that has been challenged recently. (7) In

the extracellular space, propeptide cleavage involving at least three proteases (black scissors) triggers (8) auto-assembly of collagen fibrils. (9) Finally, fibrils are

stabilised by crosslinking. (10) The mature collagen fibres are subject to insults (red stars) and degradation by extracellular proteases (blue scissors, see Figure 4).

(70). The resulting 5-hydroxylysine residues may be subject to
O-glycosylation by glycosyl transferases (36, 70, 71). In contrast,
LH2, which associates with FKBP10 (FKBP65) is responsible
for hydroxylation of lysines in the non-collagenous telopeptide
regions of fibrillar collagens (70, 72). Notably, telopeptide
lysines and hydroxylysine are subject to extracellular lysyl
oxidase (LOX)-mediated crosslinking and the hydroxylation
status of the involved lysines strongly affects nature and
stability of the crosslink (for selected examples for crosslinks,
see Figure 3) (36, 71–73). LH3 is known to hydroxylate
lysines in type IV and V collagens but also exerts glycosyl
transferase activity (36, 70, 71). Finally, in addition to LH3,
two collagen glycosyl transferases, GLT25D1 and GLT25D2
mediate O-glycosylation of hydroxylysines via the 5-hydroxyl
group. Here, hydroxylysines can be either O-glycosylated
with a monosaccharide (β-d-galactopyranose, Gal) or a
disaccharide (α-d-glucopyranosyl-(1->2)-β-d-galactopyranose,
GlcGal), resulting in galactosylhydroxylysine (GHyl) or
glucosylgalactosyl-hydroxylysine (GGHyl), respectively
(36, 70, 71).

Triple Helix Formation
Triple helix formation is preceded by folding of the N- and C-
terminal propeptides and chain selection via the trimerization

domains (36, 68, 74, 75), a process supported by a plethora
of general ER-folding folding catalysts including Grp78 (BiP),
Grp94, PDI, calreticulin, calnexin, and CypB (36). Following
chain selection, triple helix formation is initiated and proceeds
in a zipper-like fashion. Given the proportionally high number
of proline residues in collagen, it is not surprising that one
of the rate-limiting steps in triple helix formation is the cis-
trans isomerization of proline residues catalysed by rER-resident
peptidyl-prolyl isomerases (PPIases) (36, 68). Only the trans-
proline conformation allows a linear prolongation of the triple
helix (76). The PPIases FKBP10 (FKBP65), CypB as well as
FKBP14 (FKBP22) appear to play critical roles in that context
(36, 68, 77–79). In addition, heat shock protein 47 (HSP47
or SERPINH1) functions as an important collagen-specific
chaperone in collagen modification, triple helix formation, and
export from the ER to the Golgi (36, 68, 80–82).

Trafficking From the rER via the
Trans-Golgi Network to the Extracellular
Space
Procollagen secretion is dependent on coat protein complex
II (COPII) vesicle-mediated transport from the rER to the
Golgi. Typically, COPII vesicles are not bigger than 60–80 nm
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FIGURE 3 | Lysyl oxidase-mediated crosslinking. (A) Schematic representation of telopeptide (TP) and triple-helical (TH) crosslink sites of two adjacent tropocollagen

molecules in a collagen fibril. (B) Lysyl oxidase (LOX) enzymes initially catalyse the oxidative deamination of the ε-amino group of a lysine or hydroxylysine, yielding a

highly reactive aldehyde group. This entails subsequent reactions with primarily other (hydroxy)lysines and rearrangements, ultimately resulting in different (C) divalent

and (D) trivalent collagen crosslinks. R = continued polypeptide chain. Structures were generated using ACD/Chemsketch freeware.

in diameter (83), while a completely folded and fairly rigid
procollagen molecule can be up to 500 nm in length (84–
88). Therefore, a long-held concept involved the transport of
procollagen molecules via specialised, enlarged, COPII vesicles
(85, 89–93). This concept, however, has been challenged recently:
Analysis of endogenous and engineered GFP-tagged procollagen
by live-cell imaging did not provide any evidence for dynamic
large carrier vesicles between the ER and the Golgi but instead
rather supports a model of direct interconnections between
organelles or the presence of less well-characterised intermediate
carriers (88, 94).

Extracellular Processing and Maturation of
Collagen
Extracellular processing andmaturation of collagen depends very
much on the collagen type and the nature of supramolecular
assembly (cf. Figure 1) but is best described for type I collagen
and other fibrillar collagens. Here, secretion is followed by
the cleavage of the N- and C-terminal propeptides by specific
procollagen proteinases, including bonemorphogenetic protein 1
(BMP1), members of the ADAMTS protease family, and themore
recently discovered meprins (23, 25, 27, 95). Notably, enzymatic
cleavage of propeptides occurs for many non-fibrillar collagens,
too, including the above-mentioned membrane collagens and
multiplexins, also involves MMPs and cathepsins, and is
the source of matrikines or matricryptins, collagen-derived
fragments with diverse biological activities (57, 61). For fibrillar

collagens, propeptide cleavage is followed by spontaneous,
entropy-driven, quarter-staggered assembly of the tropocollagen
molecules into fibrils (96, 97). Finally, intra- and intermolecular
crosslinks, catalysed by enzymes of the lysyl oxidase (LOX)
and transglutaminase (TGM) family, stabilise fibrillar collagens
in the extracellular space (98–101). In particular the enzymes
LOX and LOX-like 2 (LOXL2) have been shown to crosslink
fibrillar collagens both intra- and inter-molecularly (101) and
LOXL2 has been put forward as a potential therapeutic drug
target in IPF (102). Further collagen-associated proteins like
the antioxidant proteins extracellular superoxide dismutase or
glutathione peroxidase 3 (GPX3) may protect these long-lived
molecules from oxidative damage (103–106).

COLLAGEN TURNOVER

In normal tissue homeostasis, the ECM is subject to a constant
and dynamic, albeit typically slow, turnover, in which collagen
is degraded and newly synthesised (107). The rate of collagen
turnover differs drastically between tissue types. For instance,
human cartilage collagen has a half-life of about 117 years,
invertebral disc collagen 95 years, and skin collagen 15 years
(108, 109). Even if, to our knowledge, the half-life of human
lung collagen has not been determined, numerous studies have
addressed lung collagen turnover in human and experimental
animal lung tissue. Most studies point toward a remarkable
level of constant de novo collagen synthesis and the presence

Frontiers in Medicine | www.frontiersin.org 6 May 2021 | Volume 8 | Article 593874

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Onursal et al. Collagen Alterations In Lung Ageing

of two collagen pools with different degradation rates; a pool
of probably newly synthesised collagen which is subject to
considerable degradation, and a pool of heavily crosslinked
stable collagen which is more resistant to degradation (110–
117). Considering the tightly wound triple-helical structure
as well as the complex supramolecular structures described
above, it is not surprising that only members of two protease
families are capable of collagen degradation, namely MMPs and
cathepsins. The so far described collagen degradation pathways
can be categorised in extracellular and intracellular pathways.
These processes are regarded as different from propeptide
cleavage which is part of the normal collagen maturation
pathway and reflects rates of de novo collagen synthesis rather
than collagen turnover. Nevertheless, a strict distinction may
represent an oversimplification. Notably, both processes can
liberate biologically active peptide fragments, i.e., matricryptins
or matrikines (57, 61).

Extracellular Collagen Degradation
Extracellular collagen degradation is mainly attributed tomatrix

metalloproteinases (MMPs) and cathepsin K. MMPs are
extracellular Proteolytic Zinc-dependent endopeptidases which
collectively degrade all major ECM molecules. Collagenolytic
activity has been observed for MMP1, MMP2, MMP7, MMP8,
MMP9, MMP13, MMP14, and MMP19 (118, 119). MMP-
mediated degradation of interstitial collagens, in particular of
types I-III is best-described, but several MMPs (e.g., MMP2,
MMP7, MMP9) also degrade basement membrane type IV
collagen (118, 120–122). For a comprehensive overview ofMMPs
and their collagen substrates, the interested reader is referred to
Visse and Nagase (123) and Jobin et al. (124). The C-terminal
hemopexin domain of MMPs is crucial for collagen degradation
as it not only recognises and binds the substrate but also unwinds
the collagen structure in order to access the cleavage site (125,
126). In contrast, the cysteine protease cathepsin K (CatK)
is probably the most effective protease for the degradation of
extracellular fibrillar collagen (127, 128) because it can also target
triple-helical collagen directly, without the need for unwinding of
the helix (127).

Uptake of Collagen and Intracellular
Collagen Degradation
Uptake of collagen into the cell can occur by phagocytosis of an
intact collagen fibril (129) or by macropinocytosis or receptor-
mediated endocytosis of already cleaved collagen particles. In
order to pass the cell membrane, collagen fibrils are recognised
by integrins which triggers the process of phagocytosis (130).
The so far observed integrins being involved are α1β1- and
α2β1-integrin (131), as well as α10β1- and α11β1-integrins (132,
133). Initial fragmentation of fibrillar collagen is mediated by
membrane-bound MMP14 (also termed MT-MMP1) (134).

Smaller collagen fragments, e.g., derived by extracellular
MMP- or CatK-mediated degradation, can be taken up by
two main pathways, macropinocytosis and receptor-mediated
endosomal uptake. In macropinocytosis, solubilized collagen
particles are internalised within actin-mediated endocytosis

TABLE 1 | Cathepsins and their collagen substrates.

Cathepsins

Gene name Protein name Collagen substrate(s) References

CTSB Cathepsin B Collagen type IV (145)

CTSD Cathepsin D Collagen type I (146)

CTSK Cathepsin K Collagen type I and II (143, 147, 148)

CTSL Cathepsin L1 Collagen type I (148)

For MMPs, the reader is referred to excellent reviews by Visse and Nagase (123) and

Jobin et al. (124), and references therein. Gene and protein nomenclature is according

to UniProt.

resulting in collagen-containing vacuoles (135, 136). Receptor-
mediated endosomal uptake of collagen fragments is dependent
on the urokinase plasminogen activator receptor-associated
protein (uPARAP/Endo180 or C-type mannose receptor
2, MRC2). This endocytic mannose receptor mediates the
internalisation of MMP-cleaved collagen fragments into
clathrin-coated vesicles into fibroblasts (137–139). Receptors
mediating endosomal collagen uptake in macrophages are
macrophage mannose receptor 1 (MRC1) and lactadherin
(MFGE8) (140, 141).

For intracellular collagen degradation, both pathways
converge at the level of fusion with lysosomes. As to collagen-
degrading proteases, lysosomes contain a range of cathepsins,
including cathepsins B, D, K, and L, which cleave collagen into
low-molecular-weight peptides (142–144). An overview of their
known collagen substrates is given in Table 1. Notably, the same
pathway can be used for newly synthesised collagen prior to
secretion, for instance, when collagen is misfolded or otherwise
“defective” (149, 150). In this so-called lysosome-dependent
macroautophagy, lysosomes may fuse with ER- or Golgi-derived
vesicles (151, 152).

BASELINE CHANGES IN COLLAGEN
SYNTHESIS AND MATURATION DURING
MOUSE LUNG AGEING

In order to examine baseline changes, i.e., changes in the absence
of environmental stimuli, in collagen biosynthesis, maturation
and degradation (Figures 2, 4) upon ageing, we took advantage
of a recently published single-cell RNA-Seq and multi-omics
analysis data set on the ageing mouse lung (Figure 5, Table 2)
(160). Following extraction of data for all relevant proteins, we
observed no significant changes for proteins of the ER-resident
machinery of collagen biosynthesis, modification, and triple helix
formation (e.g., P4H and PLOD enzymes, SERPINH1, FKBP10,
PPIB, Figure 5A). In contrast, we found expression of several
collagen subtypes deregulated upon normal ageing: The type VI
collagen chains COL6A5 and COL6A6, as well as COL14A1,
were significantly downregulated, while levels of COL4A3 and
COL16A1 were significantly increased. Furthermore, levels of the
collagen crosslinking enzyme lysyl oxidase (LOX) were decreased
(Figures 5A,B). Table 2 provides a summary of these findings
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FIGURE 4 | Pathways of collagen degradation. Both extracellular degradation by MMPs and extracellular cathepsins on the one hand and intracellular degradations

by (1) collagen phagocytosis, (2) macropinocytosis, or (3) receptor-mediated endocytosis occurs.

including a comparison with what is currently known about
corresponding changes in human tissues upon ageing.

Downregulation of Type VI Collagen Chains
COL6A5, COL6A6
Type VI collagen differs from most other collagens by its unique
supramolecular assembly, the formation of characteristic beaded
microfilaments in the ECM, a property which it only shares with
type XXVI (COL26A1) and type XXVIII collagen (COL28A1)
(23) (Figure 1). Type VI collagen is a component of the basement
membrane in lung, muscle and skin (165), but can also localise to
the pericellular matrix, e.g., in tendon (166, 167). A number of
studies, including our own, indicate an important role of type
VI collagen for adhesion, migration, proliferation, death, and
dysfunction of adherent cells (77, 166–174). Typically, type VI
collagen consists of the α1(VI), α2(VI), and α3(VI) chains, which
assemble in a 1:1:1 ratio and are encoded by Col6a1, Col6a2, and
Col6a3, respectively (166). These three chains are found in all
connective tissues, they are by far the most abundant type VI
collagen chains, including in the lung, and their levels are not
altered during lung ageing in the mouse (160).

Expression of the comparatively recently discovered type
VI collagen chains α4(VI), α5(VI), and α6(VI), in contrast, is
more restricted, but at least two of these chains are consistently
expressed in foetal, new-born, and adult lung (28, 175). An
important difference between the murine and human genes is
that the human COL6A4 gene is disrupted and not functional.
In mice, expression of Col6a4 is mostly observed in new-born

tissue—including lung—but lost in all adult tissues except for
uterus and ovaries (28, 175, 176). The complete loss of COL6A4
from young to old mouse lungs may therefore correspond
to remnant Col6a4 from developmental expression, which is
increasingly degraded during normal collagen turnover in a
mouse’s lifetime, becoming undetectable in the old lung (160).
In contrast, COL6A5 and COL6A6 are both expressed in adult
human lung, even at higher levels than in foetal lung, arguing for
a role in adult lung function (28).

Based on sequence similarities, co-purification and
colocalization analysis, both COL6A5 and COL6A6 are predicted
to assemble with COL6A1 and COL6A2 as an alternative chain to
COL6A3 (28, 175, 177). However, strong biochemical evidence
in support of this hypothesis is still lacking. Even though some
of the α5(VI) (COL6A5) and α6(VI) (COL6A6) chains may be
engaged in type VI collagen triple helix formation, in the lung the
α3(VI) chain is more abundant by several orders of magnitude,
and expression of Col6a3 is unchanged during ageing. Thus,
an α5/α6(VI) -> α3(VI) chain switch from young to old lung
tissue is unlikely to represent a major event affecting the general
function of type VI collagen. Interestingly, type VI collagen, in
particular the α3(VI) chain (COL6A3), has been attributed a
role in stemness and promotion of tumour growth. Therefore,
local replacement of α5/α6(VI) by α3(VI) chains during ageing
may modulate stem cell niches, maybe even contribute to stem
cell exhaustion, a major hallmark of ageing (178, 179). But also
presence of non-triple-helical (NTH) COL6A5 and COL6A6
polypeptides is conceivable, as evidence for alternative NTH
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FIGURE 5 | Baseline changes of proteins involved in collagen biosynthesis, trafficking, processing, and degradation. (A) Heatmap of normalised mean intensity values

of 52 regulated extracellular matrix proteins (whole lung proteome, mass-spec) grouped by unsupervised hierarchical clustering and Z-scored (Pearson’s correlation).

(B) Boxplots of 6 significantly regulated proteins with age. (C) The dot plot shows mRNA expression specificity of Col14a1 in scRNA-seq data of whole lung

homogenate. (D) Dotplot indicating mRNA expression levels between aged and young mice within the lung interstitial fibroblasts cluster (* = Student’s t-test

significant, FDR<10%).

collagen gene products is emerging in the literature, e.g., for
COL6A1 (22, 180) and COL4A1 (181, 182).

Downregulation of Type XIV Collagen
(COL14A1)
Type XIV collagen belongs to the FACITs (Figure 1) and plays an
important role in fibrillogenesis of type I collagen, in particular
during development (183–187). Similar to downregulation
of COL14A1 in the ageing mouse lung, downregulation of
COL14A1 has also been described for human skin ageing
(153). Several studies support a role of COL14A1 in connecting
the basement membrane to the subepithelial interstitial matrix
(185, 188, 189). Like COL6A4 mentioned above, COL14A1 is

developmentally regulated in some tissues, e.g., in tendon or the
heart (189–192).

Interestingly, several reports in the past have independently
argued for an important role of COL14A1 in the maintenance
of normal epithelial cell turnover and differentiation in adult
tissues. For instance, amissensemutation in COL14A1 at a highly
conserved amino acid residue (Pro1502Leu) leads to punctate
palmoplantar keratoderma, a skin disease characterised by
aberrant squamous cell differentiation leading to hyperkeratosis
in the cornified layer (156, 157). In renal cell carcinoma (RCC),
which arises from epithelial cells, frequent hypermethylation of
COL14A1 has been observed which resulted in transcriptional
silencing; knockdown of COL14A1 increased the growth rate of
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TABLE 2 | Overview on collagens and collagen biosynthetic proteins observed to be regulated with age in the mouse lung.

Collagen FCa (old/young)

mouse lung

major expressing cell type(s)b Altered in human ageing

tissue?

Relevance to human disease

COL4A3 +2.9 AT1 No evidence for COL4A3

COL4A2 ↓ with age in adipose

tissue

COL4A5 ↑ with age in skin

COL4A6 ↑ with age in skin (153)

Goodpasture syndrome (154)

Alport syndrome (155)

COL6A4 −15 Not enough data Pseudogene Unknown

COL6A5 −3.9 (Myo)fibroblasts, pericytes,

smooth muscle cells

No evidence Unknown

COL6A6 −3.4 (Myo)fibroblasts, smooth muscle

cells

No evidence Unknown

COL14A1 −2.7 Fibroblasts, pericytes, smooth

muscle cells

↓ with age in skin (153) Missense mutation causes punctate

palmoplantar keratoderma (156, 157)

COL16A1 +19 Fibroblasts, basal cells, ciliated

cells

↑ with age in skin (153) Unknown

LOX −4.6 Fibroblasts, mesothelial cells ↓ with age in skin (153) Loss of functions mutation in LOX

predispose to thoracic aortic aneurysms,

dissections, and ruptures (158, 159)

aFC, Fold Change, extracted from (160).
bAccording to recent scRNA-Seq data (160–164).

Evidence for similar change in human tissues and relevance of these genes and proteins for human disease.

RCC cell lines (193). COL14A1 is also notably downregulated
in oesophageal squamous cell carcinoma (194). Collectively,
these observations point toward an anti-proliferative or tumour
suppressor function of COL14A1.

With this documented role on epithelial cell survival and
differentiation, it is at first glance surprising that recent single-
cell RNA-Seq data consistently show expression of COL14A1 by
interstitial fibroblasts, not epithelial cells (160–164) (Figure 5C).
A study on fibroblast heterogeneity even revealed that expression
of COL14A1 marks a specific matrix-producing fibroblast
subtype which increases in cell number in murine lung fibrosis
(195). As lung fibrosis is characterised by loss of normal alveolar
type I and type II cells and atypical epithelial differentiation
(196), it may be speculated that overexpression and extracellular
deposition of fibroblast-generated COL14A1 contributes to these
epithelial events and therefore to loss of normal alveolar
structure. In addition, loss of Col14a1 in the ageing mouse lung
correlates with changes in cell type composition in mouse airway
epithelial cells (160). Overall, it seems that deregulation or loss
of paracrine COL14A1 has profound consequences on epithelial
survival and differentiation and may therefore contribute to the
observed changes during ageing. These observations warrant
future studies on the exact distribution and molecular function
of COL14A1 in lung ageing and disease.

Upregulation of Type IV Collagen (COL4A3)
Type IV collagen is a major structural component of the
basement membrane and represents the prototypical network-
forming collagen. Six genes (Col4a1-Col4a6) encode for six
distinct type IV collagen chains which can assemble into
three heterotrimeric molecular isoforms, namely α1(IV)2α2(IV),
α3(IV)α4(IV)α5(IV), and α5(IV)2α6(IV) (197). At least the first

two heterotrimeric forms have been reported in the lung, the
major one being α12α2(IV) (22, 198). Interestingly, Angelidis et
al. (160) found that, even if only COL4A3 passed the threshold for
significance, protein levels of all six type IV collagen chains were
increased in the ageing lung. These changes went in parallel with
alterations of other basement membrane-specific proteins, like
decrease of FRAS1, FREM1, FREM2, and COL14A1 discussed
above. Intriguingly, the authors also found that transcript levels
for all type IV collagen genes anti-correlated with protein levels,
i.e., were downregulated with ageing. While downregulation
of type IV collagen chain transcripts occurs consistently upon
ageing of human tissue and cells (153, 199, 200), the post-
transcriptionalmechanisms that control levels of type IV collagen
protein may be tissue-specific: While, similar to the results in
ageing mouse lung, Karttunen et al. reported type IV collagen
protein to be increased in human kidney upon ageing (201), in
skin, type IV collagen protein was found to decrease upon ageing,
in parallel to transcript levels (200). Interestingly, a decrease of
serum type IV collagen has been described upon ageing (202)
which may in part reflect increased type IV collagen retention
and deposition in tissue. Overall, type IV collagen turnover,
however, as measured by the formation product P4NP7S and the
degradation product C4M in serum, seems to be stable during
ageing (203).

Upregulation of Type XVI Collagen
(COL16A1)
Just like type XIV collagen, also type XVI collagen belongs to
the FACIT family of collagens and forms homotrimeric triple
helices (23, 204). It is a minor collagen component which shows
a tissue-dependent versatility for incorporation into different
collagen suprastructures (205, 206). Its distribution in lung ECM
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is unknown, but judging from recent scRNA-Seq data, where
COL16A1 is found expressed by all fibroblast subtypes as well as
a broad range of epithelial cells, it is likely to be a constituent
of both the basement membrane and the interstitial matrix
(160–164). Even though COL16A1 has been observed to be
increased upon ageing also in human skin (153), its potential
role in the ageing process has not received much attention.
Tajima et al. found that increased COL16A1 expression in
dermal fibroblasts correlated with cell growth arrest of these cells
(207). In contrast, induction of COL16A1 expression promotes
proliferation and invasion of cancer cells (205, 208–210). Similar
to our speculations on COL14A1, there may be analogous
paracrine effects by fibroblast-generated COL16A1, albeit in
reverse directions: Loss of fibroblast-generated COL14A1 on
the one hand, as well as induction of COL16A1 deposition by
fibroblasts on the other, may lead to increased cell proliferation
and aberrant differentiation of adjacent epithelial cells and thus
contribute to tumorigenesis and tumour invasion. Notably, this is
reminiscent of a proposed link between ageing and cancer where
senescent fibroblasts secrete factors, including extracellular
matrix components that promote epithelial tumorigenesis (211,
212). Clearly, future studies are needed to decipher the role of
COL14A1 and COL16A1 in this context.

Downregulation of Lysyl Oxidase
Lysyl oxidase (LOX) is a copper-dependent protein-lysine-
6-oxidase, activity of which is critical for stabilisation of
extracellular fibrillar collagen (71, 213). During fibril formation,
LOX catalyses the oxidative deamination of specific lysine
and hydroxylysine residues in the N- and C-telopeptides of
fibrillar collagens, resulting in the corresponding aldehyde forms
(71) (Figure 3B). These reactive intermediates trigger a series
of subsequent condensation reactions between triple-helical
subunits of collagen fibres, ultimately leading to divalent or
trivalent crosslinks.

Several studies have shown that downregulation of LOX in the
context of ageing is not restricted to the lung. For instance, LOX
expression is reduced with age in human, rat and monkey skin
(153, 214, 215), in urogenital tissues of female mice (216) and
in rat aorta (217). Notably, loss of function mutations in LOX
predispose to aortic aneurysms and age is themost important risk
factor for aortic aneurysms (158, 159), supporting the concept
that loss of LOX upon ageing may have direct effects on ECM
integrity and tissue stiffness. Downregulation of LOX upon
ageing appears to correlate with fewer reducible difunctional
LOX-derived crosslinks in skin, aorta and lung (218, 219), even
though, to our knowledge, no study has assessed this correlation
directly. This contrasts with non-enzymatic collagen crosslinking
which increases with age and will be discussed in more detail
below (220). Overall, also taking into account recent findings that
the same collagen lysines are targeted by LOX-mediated and non-
enzymatic collagen crosslinking events (221), there seems to be
a shift from LOX-mediated to advanced-glycation end product
(AGE) crosslinks upon ageing.

In cancer research, LOX has received considerable attention,
both owing to tumour growth and invasion-promoting
properties on the one hand and to tumour suppressor functions

on the other hand (222, 223). LOX is synthesised as a pro-enzyme
and activation requires removal of the pro-peptide, notably by
the same enzymes that cleave off the C-terminal pro-peptide of
type I collagen (BMP1/Tolloid-like proteinases) (71). The mature
protein is overexpressed in various cancer types including lung
adenocarcinoma, typically correlates with poor prognosis, and
has been described to create a stiffer microenvironment which
supports tumour growth and metastasis (222, 224–230). In
contrast, the tumour-suppressing activities of LOX are attributed
to the released pro-peptide (222, 223, 231, 232).

The Impact of Ageing on Collagen
Degradation
Few studies have directly assessed changes in collagen synthesis
and degradation upon ageing. Several early studies, measuring
the collagen synthesis rate in tissues of young and aged
experimental animals, including lungs, as well as ex vivo culture
of human skin biopsies, consistently found evidence for a
decreased synthesis rate with ageing tissue (233–235). Mays et al.,
in addition, studied how much of the newly synthesised collagen
is degraded and found that, in aged rats, a larger percentage was
directly subjected to degradation than in young rats (233). Thus,
in older age not only less collagen would be synthesised, but
also newly synthesised collagen would be more prone to direct
degradation. This concept, however, has been challenged by a
recent study on old vs. young mouse lungs where the authors
demonstrate that aged mice have higher overall levels of total
collagen and lower levels of a collagen endocytic receptor termed
mannose receptor, C-type 2 (MRC2), the major receptor for
fibroblast-mediated intracellular degradation of collagen (236).
Notably, in the proteomics data set presented here, we found
lower levels of MRC2 in three out of four aged animals, albeit
without reaching statistical significance (Figure 5A), which may
reflect the limited statistical power of the proteomics data set.
Furthermore, levels of most major lung collagens (types I, III,
IV) remained unchanged or were even increased in old vs. young
mouse lungs (Figure 5) (160). Overall, this indicates that mature
collagen is very stable in the adult lung.

Partially supporting this concept, we observed no consistent
changes for collagen-degrading proteases in the data set on
mouse lung ageing presented here (Figure 5A) (160). Neither
levels of the detected MMPs and TIMPs (MMP2, MMP8, MMP9,
MMP19, TIMP3) nor levels of the detected cathepsins (CTSB,
CTSD, CTSL) were significantly altered (160). Of course, this is
only circumstantial evidence as (a) this study did not provide a
comprehensive quantification of all lung collagenases and their
inhibitors, (b) levels per se cannot be equated with enzymatic
activity, and (c) accessibility of cleavage sites in the collagen
substrate itself can be masked or altered upon ageing. As to
enzymatic MMP activity, Calabresi et al. have shown that natural
ageing of rat lungs is accompanied by decreases in MMP1 and
MMP2 activity in parallel with moderately increased levels of
the MMP inhibitors TIMP1 and TIMP2 levels (237), suggesting
even a loss of collagenase activity upon ageing. Furthermore, and
maybe even more importantly, there is evidence suggesting that
the degradability of collagen is affected by ageing-related collagen
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modification and crosslinking (e.g., non-enzymatic crosslinking
by advanced glycation end-products, AGEs, discussed below)
and addition or removal of glycosaminoglycans (238–243). Thus,
protease activity by itself may not be the decisive factor after
all, but in fact the accessibility of the corresponding collagen
cleavage sites.

It is to date unclear, whether these findings reflect the human
situation. Collagen degradation upon ageing in the human
lung has not been directly assessed. A number of studies have
measured circulating levels of MMPs and TIMPs and deduced
changes in ECM turnover upon ageing. However, the reported
findings are not consistent (244–248) and even if such changes
may be of importance for collagen degradation within the
vascular wall, it is unclear how peripheral levels of MMP and
TIMPs correlate with the integrity of the ECM in other tissues.
Obviously, tissue-resident levels and activities of proteases in
correlation with ECM integrity of the studied human tissue
are more relevant to examine in that context, but such studies
are much scarcer. An immunohistochemical study of human
lungs found an age-dependent increase of TIMP2+ cells, but
not MMP2+ cells, in the lung (249), providing some evidence
for decreased MMP-mediated collagen degradation in the aged
lung. Notably, in a recent pioneering study of human skin
ageing, the authors correlated matrisome changes with the
assessment of ECM integrity by single harmonic generation
and two-photon autofluorescence imaging (214). Among other
changes, they found decreased MMP2 and increased TIMP3
levels in aged skin. The mechanisms underlying skin ageing,
however, involve environmental insults, e.g., exposure to UV
light, microorganisms, and mechanical stress that do not apply
to the lung.

Undoubtedly, more research is warranted to elucidate
mechanisms of collagen and ECM degradation upon ageing
of the lung. Nevertheless, taken together, the current evidence
supports an age-dependent decline of lung collagen degradation,
suggesting that, also in the lung, collagen is a long-lived molecule
and thus susceptible to the accumulation of damage with time.

NON-ENZYMATIC COLLAGEN
CROSSLINKING—ADVANCED GLYCATION
ENDPRODUCTS

In addition to LOX- and TGM-mediated, i.e., enzymatic
crosslinking mentioned above, also non-enzymatic crosslinking
of collagen occurs. The probably most important one in the
context of human disease and ageing is the reaction of collagen
with sugars or sugar metabolites which results in the formation
of so-called advanced glycation endproducts (AGEs). These
products are principally not restricted to collagen. In the best-
described classical Maillard reaction, any free amino group,
e.g., the ?-amino group of a lysine or the protein N-terminus,
reacts with the carbonyl group of a reducing sugar to form a
Schiff base. This unstable Schiff base is spontaneously rearranged
into a more stable keto amine intermediate, the so-called
Amadori product (Figure 6A). This early glycation product
is in equilibrium with glucose and still reversible. However,

a small part of these Amadori products undergo subsequent,
predominantly oxidative, events resulting in the irreversible
formation of different protein adducts and protein crosslinks,
collectively termed AGEs. As the latter reactions occur over
months and years, such adducts and crosslinks accumulate in
long-lived proteins like extracellular collagens, including in the
lung, and strongly correlate with age (220, 250–253). Figure 6A
shows the classical Maillard reaction and some of the best-
characterised and most often analysed AGEs are depicted in
Figure 6B [Nε-(1-carboxyethyl)lysine, CEL; hydroimidazolone,
MG-H1] and Figure 6C (lysine-arginine cross-links pentosidine
and glucosepane; methylglyoxal lysine dimer, MOLD).

Notably, while the above-described reactions of proteins
with reducing sugars are the best-described, AGEs can also
be formed by the reaction of lysines and arginines with other
carbonyl compounds, in particular highly reactive dicarbonyl
compounds (254, 255). Accumulation of such compounds and
its consequences is also referred to as “dicarbonyl stress”
in the literature. Methylglyoxal (Figure 6B) is an abundant
representative of these dicarbonyl compounds. Methylglyoxal
is generated during the formation of AGEs in the context of
the above-described glycation of proteins by reducing sugars,
but also, in fact more importantly, endogenously as a result
of spontaneous degradation of triosephosphates, degradation
of glycated proteins, oxidation of aminoacetone in threonine
catabolism, and peroxidation of lipids (256–258). In the
glycation reaction (Figure 6B), methylglyoxal is about 20.000
times more reactive than glucose. It is thus not surprising
that an enzymatic detoxification system has evolved to control
intracellular methylglyoxal levels: The glyoxalase system, which
consists of the enzymes glyoxalase 1 and 2 (Glo1 and Glo2) and a
catalytic amount of reduced glutathione, catalyses the formation
of lactate from methylglyoxal (256–259). Interestingly, evidence
is emerging that methylglyoxal plays an important role in ageing
and age-related disease: In the nematode Caenorhabditis elegans,
a model organism frequently used in fundamental research on
ageing and lifespan-extending mechanisms, glyoxalase activity
is markedly reduced upon ageing and overexpression of the
C. elegans orthologue of Glo1 increased lifespan (260, 261).
Glyoxalase expression and/or activity has been reported to
decrease upon ageing in human arterial tissue (262), in red
blood cells (263), in human brain (256, 264), as well as in
mouse lung (160). Methylglyoxal-protein adducts are increased
in ageing human lens and skin (265, 266). Also, studies in
rats have shown that overexpression of Glo1 protects from age-
related renal dysfunction (267). Importantly, even if generated
intracellularly, methylglyoxal can easily target the extracellular
matrix because it is freely membrane-permeable (268) and has a
relatively long range of diffusion—its tissue levels are therefore
critically dependent on local intracellular glyoxalase activity
(257). In summary, it is highly plausible that methylglyoxal and
the glyoxalase system also contribute to molecular alterations
of the ECM and to lung dysfunction upon ageing, even though
direct evidence for this is lacking to this day.

Identification and quantification of AGEs are difficult
tasks. First of all, AGEs are derived from many different
precursor molecules and represent a highly heterogeneous
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FIGURE 6 | Advanced glycation endproducts (AGE)-mediated collagen modification and crosslinking. (A) In the classical Maillard reaction, a reducing sugar (here:

glucose) reacts with an amino group in a protein, e.g., the protein’s amino terminus or amino groups of the side chains arginine or lysine. The resulting Schiff base

rearranges to a ketoamine, the so-called Amadori product. Subsequent reactions of this initial product result in the irreversible formation of different protein adducts

and crosslinks, collectively termed advanced glycation endproducts (AGEs). (B) Reactions of the dicarbonyl methylglyoxal with protein lysines or arginines results in

the formation of protein adducts as e.g., Nε-(1-carboxyethyl)lysine (CEL) or the hydroimidazolone MG-H1. (C) Structures of some of the most common AGE-mediated

crosslinks. Structures were generated using ACD/Chemsketch freeware.

group of compounds (253, 269). New variants of AGEs are
still being discovered (270) and it is likely that not all
AGE-protein adducts and crosslinks are known in molecular
detail. For the analysis of clinical samples, early detection
methods took advantage of the fluorescent properties of many
AGEs: Collagen from connective tissue was extracted and
solubilized by collagenase digestion and fluorescence measured
[≈370 nm excitation/440 nm emission (271)]. More recently,
autofluorescence of non-pigmented skin has been shown to
correlate with collagen-linked fluorescence, concentrations of
the fluorescent AGE pentosidine (Figure 6C), concentrations of
the non-fluorescent AGEs Nε-(1-carboxymethyl)lysine (CML)
and Nε-(1-carboxyethyl)lysine (CEL, Figure 6B), as well as with
age, diabetes duration, and diabetic complications (272–278).
Even though clearly a convenient non-invasive technique, any
technique based on fluorescence will be limited in specificity
and sensitivity, as not all AGEs are fluorescent including major
representatives like CML and CEL and interference by other
fluorescent molecules can occur, e.g., by NAD(P)H. Numerous
attempts have been made to establish immunochemical detection

of AGEs in tissue, albeit yielding inconsistent results due to lack
of specificity, sample processing artefacts, and contamination
by glycated blocking proteins (279–282). Therefore, quantitative
results obtained by enzyme-linked immunosorbent assays
(ELISAs), for instance, must be interpreted with caution.

The state-of-the-art detection method for AGEs in tissue and
clinical samples is high performance or ultra-high performance
liquid chromatography combined with mass spectrometry (279).
New trending approaches, collectively referred to as “Maillard
proteomics” are expected to revolutionise our understanding of
glycation site specificity of AGE adducts, a prerequisite to gain
an understanding of their function (269).

Even though the association between increases in AGE-
mediated crosslinking, increased collagen stiffness, and decreased
solubility with ageing is well-established (251), to the best of
our knowledge surprisingly few studies have assessed AGEs and
collagen AGE adducts in the lung. This may reflect the technical
difficulties of specific AGE quantification pointed out above.
Nevertheless, measurements of AGE-related fluorescence in the
context of two animal studies support the concept that also in
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lung collagen AGE-load increases with age and anti-correlates
with enzymatic solubility (220, 283). Interestingly, a study using
the bleomycin-induced mouse model of lung fibrosis suggests
that inhibition of AGE formation may protect from lung fibrosis
(284). In reverse, accumulation of AGE load in the lung upon
ageing may therefore represent one of the reasons why idiopathic
lung fibrosis predominantly occurs in the elderly. Resonating
with this concept, several reports indicate that diabetes mellitus,
where increased blood glucose levels lead to increased tissue
levels of AGEs, increases the risk for pulmonary fibrosis
(285–288).

The Consequences of “AGEd” Collagen
But what can be the consequences of non-enzymatically
glycated—or “AGEd”—collagen? There is evidence that AGEs
increase collagen fibril stiffness and attenuate collagen turnover
by, on the one hand, inhibiting degradation by MMPs and
cathepsin K (239, 243, 289), and, on the other hand, inhibiting
phagocytosis pathways (290). Furthermore, experiments with in
vitro generated AGE-crosslinked collagen, by e.g., incubating
collagen with ribose or methylglyoxal and measuring mechanical
properties, indicate that in particular molecular sliding of
collagen fibrils and fibres is affected by this type of crosslinking
(291, 292). Hence, most likely “AGEd” fibrillar collagen
contributes to the generally observed AGE-induced reduction
of viscoelasticity of connective tissues accompanied by increased
mechanical fragility (254, 291, 293–295).

In addition to changes in collagen turnover and biomechanics,
AGE-mediated modification and crosslinking of collagen has
the potential to mask important collagen-cell or collagen-
protein-interaction sites with direct effects on adherent cell
behaviour and function. Indeed, several studies with diverse
cell types support this concept. For instance, non-enzymatically
glycated collagen exhibits reduced affinity to heparin and keratan
sulphate proteoglycans, resulting in diminished adhesion
of B cells and reduced migration of endothelial cells (296).
Similarly, methylglyoxal-modified type IV collagen displays
reduced affinity to integrins, leading to attenuated adhesion
of renal glomerular cells, and reduced attachment, viability,
and angiogenic activity of endothelial cells (297, 298). Also
neurons cultured on glycated type I collagen, show altered
morphology and function in comparison to culture on normal
type I collagen including reduced neuron interconnection and
increased release of pro-inflammatory stimuli like nitrite and
TNF-α (299). Finally, it has been reported that AGE-modified
collagen fails to interact with discoidin domain receptor 2 and
thus loses the capacity to upregulate expression of LOX in
osteoblasts (300). Notably, even if direct evidence is lacking,
this provides a potential mechanism underlying the above-
described loss of LOX upon ageing in the lung and highlights
a potential direct relationship between accumulation of AGE-
mediated modifications/crosslinks and downregulation of
LOX-mediated crosslinks.

Interestingly, molecular modelling studies using a collagen
type I microfibril have put forward a number of candidate
inter- and intramolecular Lys-Arg pairs that fulfil the
requirements in terms of configuration and distance (301)

and change in enthalpy (302) to allow for the formation
of glucosepane crosslinks. In both studies, the authors
identified more potentially AGE-crosslinked arginines and
lysines within binding sites for integrins, proteoglycans,
MMPs and other proteins. Collectively, these findings
emphasise that “AGEd” collagen has a major impact
on adherent cell function in many different tissues and
clearly contributes to disease, warranting similar studies in
the lung.

Effects Mediated Through the Receptor for
Advanced Glycation Endproducts
AGEs are ligands for the receptor for advanced glycation
endproducts (RAGE), a membrane-bound receptor of the
immunoglobulin family (303, 304). Originally discovered in 1992
as an AGE-binding receptor (305), several additional ligands
have been identified including S100/calgranulins, amyloid fibrils,
amphoterins, and Mac-1. RAGE can thus be viewed as a
relatively promiscuous pro-inflammatory pattern recognition
receptor (303, 304). RAGE is abundantly expressed in the lung,
at baseline predominantly in alveolar type I cells toward the
basal membrane, but it can be activated in many other cell
types upon exposure to RAGE ligands (304). Numerous studies
have established associations of RAGE and its soluble decoy
receptor sRAGE with lung injury and disease (303, 304, 306,
307).

RAGE-mediated downstream signalling depends on the
identity and oligomerization state of the ligand and the tissue
context. Ligand-engaged RAGE can trigger oxidative stress and
multiple signalling cascades including p21 ras, erk1/2 (p44/p42)
MAP kinases, p38 and SAPK/JNK MAP kinases, rho GTPases,
phosphoinositol-3 kinase, and the JAK/STAT pathways. This
leads predominantly to sustained activation of NF-κB- and
STAT-dependent gene transcription (304, 308–310). As, typically,
studies have been performed using soluble and globular glycated
proteins such as serum albumin or ovalbumin (305, 311–313),
it is not entirely clear whether “AGEd” collagen is capable
of inducing these pathways. Studies using glycated collagen
have established a RAGE-dependent link between “AGEd”
collagen and apoptosis of mesenchymal cells. For instance, Nǫ(1-
carboxymethyl) lysine (CML)-collagen (derived from reaction of
collagen with glyoxal instead of methylglyoxal, Figure 6B), but
not control collagen, induces fibroblast and osteoblast apoptosis
via the RAGE/p38/JNK axis, but largely independent of NF-
κB signalling (314, 315). Interestingly, some evidence indicates
that RAGE promotes adhesion to collagen without the need
for AGE-mediated modification, even though the glycation
status of the collagen used was not reported in these studies
(316, 317).

CONCLUSIONS

There can be no doubt that collagen plays an important
role in lung physiology and pathology. Even though the
collagen family of proteins has been the subject of studies for
many decades it is striking how little we still know about
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collagen composition changes and molecular alterations in
lung ageing and disease. Here, we provided a comprehensive
review on mechanisms of collagen biosynthesis, processing,
modifications and crosslinking and how these change upon
ageing. Collectively, a picture emerges where ageing (1)
leaves the normal ER-resident collagen biosynthesis machinery
largely unaffected, but (2) results in distinct changes in
collagen composition and (3) changes in the molecular nature
of collagen crosslinks. Clearly, these observations warrant
future work to address the mechanistic consequences of
these changes in the context of lung ageing and disease.
Ultimately, such studies may be critical to the field of lung
regenerative medicine.
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