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We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal

nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear

Schrödinger type equation. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlin-

earity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions.

The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can

otherwise be of completely arbitrary shape and degree of nonlocality. We use variational techniques to find the

soliton solutions and illustrate the stabilizing effect of nonlocality.

DOI: 10.1103/PhysRevE.66.046619 PACS number~s!: 42.65.Tg, 42.65.Jx, 42.65.Sf

I. INTRODUCTION

Collapse is a fundamental physical phenomenon well

known in the theory of waves in nonlinear media. It refers to

the situation when strong contraction or self-focusing of a

wave leads to a catastrophic increase or blowup of its ampli-

tude after a finite time or propagation distance ~see @1–3# for

reviews!. Wave collapse has been observed in plasma waves

@4# ~the famous Langmuir wave collapse!, electromagnetic

waves or laser beams @5# ~also called self-focusing!, Bose-

Einstein condensates ~BEC’s! or matter waves @6#, and even

capillary-gravity waves on deep water @7#. The effect of col-

lapse appears also in astrophysics, where the gravitational

attraction plays the same role as the self-focusing of electro-
magnetic waves, tending to compress stars of sufficient
mass, eventually leading to their collapse into a black hole
@8#.

Typically the contraction must be able to act freely in two
or more dimensions to be strong enough to generate a col-
lapse. Moreover, the so-called norm, which is the power for
electromagnetic and plasma waves, the atom density for
BEC’s, and the mass for stars, must be above a certain criti-
cal value for a collapse to occur. Most commonly the col-
lapse has been discussed in the context of the nonlinear
Schrödinger ~NLS! equation, which is a universal model for
dispersive ~or diffractive! weakly nonlinear physical systems
@9#. The NLS equation models, e.g., all systems mentioned
above, in which a wave collapse has been predicted and veri-
fied experimentally.

The collapse singularity is an artifact of the model and
signals the limit of its validity. Close to the singularity, when
the amplitude is extremely high and the temporal and spatial
scales are extremely short, different physical processes will
come into play @1–3#. A common effect is nonlinear dissipa-
tion, such as two-photon absorption of electromagnetic
waves and inelastic two- and three-body recombination for
matter waves, which efficiently absorbs the collapsing part of
the wave. Thus collapse acts as an effective nonlinear loss

mechanism, as is well known in, e.g., Langmuir turbulence

@11# and BEC’s @12#. Effects such as discreteness @13#, non-
paraxiality @14#, and saturation of the nonlinearity ~see @3#
for references to all the different types of saturation, such as
exponential, threshold, logarithmic, etc.! will also com-
pletely eliminate the possibility of a collapse singularity ap-
pearing. In contrast, effects such as weak linear loss @3#,
temperature fluctuations @15#, and spatial incoherence @16#,
cannot eliminate the collapse, only change the critical value
of the norm. In any case the collapse effect represents a
strong mechanism for energy localization, which it is impor-
tant to study to understand the properties of a given physical
system.

The inherent nonlocal character of the nonlinearity has
attracted considerable interest as a means of eliminating col-
lapse and stabilizing multidimensional solitary waves. Non-
locality appears naturally in optical systems with a thermal
@17# or diffusive @18# type of nonlinearity. Nonlocality is also
known to influence the propagation of electromagnetic
waves in plasmas @19–22# and plays an important role in the
theory of BEC’s, where it accounts for the finite-range many-
body interaction @12,23–25#.

In this work we consider NLS equations with a general
nonlocal form of the nonlinearity. Turitsyn proved the ab-
sence of collapse for three particular shapes of the nonlocal
nonlinear response @26#. The analysis of the collapse condi-
tions for general response functions is difficult and has been
carried out only numerically @24#. However, in many sys-
tems, such as BEC’s, one has no knowledge of the particular
response function. Furthermore, the degree of nonlocality is
the relative width of the response function and the wave
packet and thus it changes dynamically when the wave
packet spreads or contracts. Therefore it is important to
maintain the generality of the nonlocal response function in
the model. Here we prove rigorously that nonlocality elimi-
nates collapse in all physical dimensions for arbitrary shapes
of the nonlocal response, as long as the response function is
symmetric and has a positive definite Fourier spectrum.
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II. GENERAL MODEL

We consider the evolution of a wave field u5u(rW)

5u(rW ,t) described by the general nonlocal NLS equation

i
]u

]t
1¹2u2V~rW !u1N~I !u50, ~1!

where V5V(rW) is an external ~linear! confining potential, I
5I(rW)5I(rW ,t)5uuu2, t is the evolution coordinate and rW
5(r1 ,r2 ,r3) spans a D-dimensional ‘‘transverse’’ coordinate

space. By virtue of being a confining potential, V(rW) has a
finite global minimum, which can be set to zero without loss
of generality due to the gauge invariance of Eq. ~1!. Thus

V(rW).0. The nonlinear term N5N(I) is represented in the
general nonlocal form

N~I !5E R~rW82rW !I~rW8!drW8, ~2!

where the integral *drW is over all transverse dimensions. We

consider only response functions R(rW) that are real ~i.e., no
nonlinear loss or gain! and symmetric ~e.g., excluding the
asymmetric Raman response—see @28# and references
therein!. We further assume the response function to be lo-
calized or L1 integrable like all physically reasonable re-
sponse functions. In this case Eq. ~1! may always be rescaled
so that

E R~rW !drW51 ~3!

without any lack of generality. In media with, e.g., a thermal
or diffusive type of nonlinearity the response profile is an

exponential function, R(rW)5(1/2s)exp(urWu/s) @17,18#, where
s determines the degree of nonlocality.

Because the response function is real Eq. ~1! conserves
the power ~in optics! or number of atoms ~for BEC’s! P,

P5E IdrW ~4!

for localized waves. Because the response function is also
symmetric Eq. ~1! conserves the Hamiltonian H,

H5E F u¹uu2
1VI2

1

2
NIGdrW . ~5!

In optics u is the envelope of the electric field with inten-
sity I and V represents a guiding structure ~waveguide!. Here
Eq. ~2! represents a general phenomenological model for
self-focusing Kerr-like media, in which the change in the
refractive index induced by an optical beam involves a trans-
port process. This includes heat conduction in materials with
a thermal nonlinearity @17# or diffusion of molecules or at-
oms in atomic vapors @18#. A nonlocal response in the form
~2! appears naturally due to many-body interaction processes

in the description of BEC’s @12,24,25,27#, if the assumption
of a zero-range interaction potential is relaxed @27#. For
BEC’s with a negative scattering length Eq. ~1! is the nonlo-
cal Gross-Pitaevskii ~GP! equation for the collective wave
function u(t is time!, with I representing the density of at-
oms and V representing the magnetic trap.

III. SIMPLE KNOWN LIMITS

In the limit when the response function is a delta function,

R(rW)5d(urWu), the nonlinear response is local @see Fig. 1~a!#
and simply given by

N~I !5I , ~6!

as in local optical Kerr media described by the standard NLS
equation and in BEC’s described by the standard GP equa-
tion. In this local limit multidimensional optical beams with
a power higher than a certain critical value will experience
unbounded self-focusing and collapse after a finite propaga-
tion distance @1–3#. It is also well known that BEC’s will
collapse when the total number of atoms is larger than a
critical number @12#.

With increasing width of the response function R(rW) the

wave intensity in the vicinity of the point rW also contributes
to the nonlinear response at that point. In case of weak non-

locality, when R(rW) is much narrower than the width of the

beam @see Fig. 1~b!#, one can expand I(rW8) around rW85rW and
obtain the simplified model

FIG. 1. Degrees of nonlocality, as given by the relative width of

the response function R and the intensity profile I in the x plane.

Shown is the local ~a!, the weakly nonlocal ~b!, the general ~c!, and

the strongly nonlocal ~d! response.
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N~I !5I1g¹2I , g5

1

2
E r2R~r !drW , ~7!

where the small positive definite parameter g measures the
relative width of the nonlocal response. The diffusion type
model ~7! of the nonlocal nonlinearity is a model in its own
right in plasma physics, where g can take any sign @19,20#. It
was also applied to BEC’s @25#, nonlinear optics @29#, and
energy transfer in biomolecules @30#. In weakly nonlocal me-
dia with N(I)5I1g¹2I it is straightforward to show that
collapse cannot occur. This was first done for plasmas @20#,
and later for BEC’s @25#.

In the limit of a strongly nonlocal response much broader
than the characteristic width of the wave function @see Fig.
1~d!#, one can instead expand the response function and ob-
tain ~to lowest order!

N~I !'P~R01R2r2!, ~8!

where R05R(0W ) and R25
1
2 ¹2R(0W ). The evolution of opti-

cal beams in such a strongly nonlocal medium was consid-
ered in @31#. Since this relation is linear, the highly nonlinear
effect of collapse cannot occur.

So in the two extreme limits of a weakly and highly non-
local nonlinear response the collapse is prevented. For arbi-
trary degree of nonlocality it is difficult to prove anything
rigorously. Just saying that the dynamics is described by ei-
ther the weakly nonlocal model ~7! or the linear oscillator
model ~8!, which both have no collapse, is not enough. First
of all the degree of nonlocality is the relative width of the
response function and the wave packet and thus it changes
dynamically when the wave packet spreads or contracts.
Thus, the system may dynamically switch state, e.g., from
being in the local limit ~6! to the highly nonlocal limit ~8!.
Furthermore, as is well known from studies of general NLS
equations, the typical singularity is a so-called blowup fea-
turing the amplitude locally going to infinity on a broad
background localized structure @1#. Such a two-scale field
distribution, which was also recently observed in BEC’s
@24#, is clearly described by neither of the two simple limit-
ing systems.

IV. PROOF OF ABSENCE OF COLLAPSE

AND SOLITON STABILITY

The stabilizing effect of nonlocality of an arbitrary degree
was proven by Turitsyn for three specific examples, includ-

ing Coulomb interaction @R(rW)51/urWu# @26#. Turitsyn
bounded the Hamiltonian from below for fixed power, which
proves that a collapse cannot occur and that the soliton so-
lutions are stable in the Liapunov sense. Here we consider
the general case of arbitrarily shaped, nonsingular response
functions and prove rigorously that the Hamiltonian is
bounded from below in all dimensions.

Introducing the D-dimensional Fourier transform ~de-
noted with a tilde!

Ĩ~kW !5E I~rW !exp~ ikW•rW !drW ~9!

and its inverse

I~rW !5

1

~2p !DE Ĩ~kW !exp~2ikW•rW !dkW , ~10!

it is straightforward to show that for N(I) given by Eq. ~2!
the following relations hold:

uI~kW !u5UE I~rW !e ikW•rWdrWU<E IdrW5P , ~11!

E NIdrW5

1

~2p !DE R̃~kW !u Ĩ~kW !u2dkW . ~12!

With these relations we can bound the Hamiltonian by con-
served quantities, which is necessary for employing standard
Liapunov stability theory @32# ~first applied by Rosen @33#
for the standard NLS equation!. For response functions with
a finite degree of nonlocality R0,` and a positive definite

spectrum R̃(kW )>0, we obtain the following bound of the
Hamiltonian:

R0,` , R̃~kW !>0: H>uu¹uuu2
2
2

R0

2
P2, ~13!

where uuuuup
p[* uuupdrW.0 and we have used that V(rW).0.

In the local limit when R(rW)5d(rW) and thus R05` , the
well-known properties of the standard NLS equation apply
@1,2,9#.

The inequality ~13! is the main result of this article. It
shows that, for all symmetric response functions with a posi-
tive definite Fourier spectrum and a finite value at the center,
the Hamiltonian is bounded from below by the conserved
quantity 2

1
2 R0P2, or conversely, that the gradient norm

uu¹uuu2
2 is bounded from above by the conserved quantity

H1
1
2 R0P2. According to standard Liapunov theory this rep-

resents a rigorous proof that a collapse with the wave-
amplitude locally going to infinity cannot occur in BEC’s,
plasma, or optical Kerr media with a nonlocal nonlinear re-
sponse, for any physically reasonable response function with
a positive definite spectrum.

V. ILLUSTRATION THROUGH THE VARIATIONAL

APPROACH

The stabilizing effect of the nonlocality can be further
illustrated by the properties of the stationary solutions of Eq.
~1!. As a simple example we consider nonlocal optical bulk
Kerr media with a Gaussian response

R~rW82rW !5S 1

ps2D
D/2

expS 2

urW82rWu2

s2 D . ~14!

The ground-state stationary solutions are then radially sym-

metric bell shaped, nodeless solutions of the form u(rW ,z)
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5f(r)exp(ilz), where the profile f(r) is found from the
Euler-Lagrange equations for the Lagrangian

L5E Flf2
1u¹fu2

2

1

2
N~f2!f2GdrW . ~15!

To capture the main physical effects we use the approximate
variational technique with a Gaussian trial profile f(r)
5aexp@2(r/b)2#, in view of the fact that the Gaussian pro-
file is an exact solution in the strongly nonlocal limit with
N(I) given by the parabolic potential ~8!. Inserting this an-
satz into the Lagrangian ~15!, with N given by the general
expression ~2!, the Euler-Lagrange equations give the ampli-
tude a2

5(l1D/b2)(212s2/b2)D/2 and width b2
5@4

2D1A(42D)2
116ls2#/(2l). In Fig. 2 we show the

power Ps5(p/2)D/2a2bD and Hamiltonian of the stationary
solutions in two dimensions ~2D!. The dashed lines give the
results of the weakly nonlocal approximation with N given
by Eq. ~7!, from which a2

54l and b2
52/l12s2 is found,

resulting in the power

Ps54p~11s2l !, ~16!

where 4p is the (l-independent! power of the Gaussian ap-
proximation to the soliton solution of the standard 2D NLS
equation, recovered in the local limit s50.

In the 2D NLS equation the collapse is critical and the
stationary solutions are ‘‘marginally stable’’ with dPs /dl
50 @1,2,9#. Typically, perturbations act against the self-
focusing, with several effects, such as nonparaxiality and
saturability, completely eliminating collapse @3#. This is also
the case with nonlocality, as evidenced from Fig. 2 and the
simplified expression ~16!, which shows that any finite width
of the response function ~nonzero value of s) implies that
dPs /dl becomes positive definite. According to the ~neces-
sary! Vakhitov-Kolokolov ~VK! criterion @34# the soliton so-
lutions therefore ~possibly! become linearly stable.

For small l the soliton width b decreases as 1/l . Thus
the assumption of weak nonlocality, i.e., that the soliton is

much wider than the response function, applies only to suf-
ficiently small values of l satisfying ls2

!1, which is also
clearly seen from Fig. 2. The accuracy of the assumption of
weak nonlocality is further discussed in Ref. @35# in terms of
modulational instability.

The 3D case shown in Fig. 3 is more interesting, because
the nonlinearity is much stronger than in 2D. The collapse in
the local 3D NLS equation is so-called supercritical
@1,2,9,10#. Again the soliton width b decreases as 1/l , so a
threshold width should exist, below which the nonlocality is
not strong enough to stabilize the soliton. This is exactly
what is observed in Fig. 3: For l,l th the solitons are still
linearly unstable with dPs /dl,0, but above threshold the
nonlocality is strong enough to bend the curve and make
dPs /dl.0, i.e., the solitons become linearly stable accord-
ing to the VK criterion. From the definition dPs(l th)/dl
50 the variational results give l th

51/(2s2), corresponding
to a threshold in the soliton power ~dashed curve in Fig. 3!
and width

Ps
th

5~5p !3/25s/4, b th
52s , ~17!

which are both proportional to the degree of nonlocality s .
Thus, sufficiently broad and high-power solitons are stable.
In the Hamiltonian versus power diagram in Fig. 3 the lower
~upper! branches correspond to stable ~unstable! solutions
while the threshold is represented by the cusp @36#. This
stable solution branch was recently found numerically in the
context of BEC’s with a nonlocal negative scattering poten-
tial @25#. It corresponds to high-density, self-bound states of
the condensate.

VI. CONCLUSION

In conclusion we studied the properties of localized wave
packets in nonlocal NLS equations. We have presented a
simple, but rigorous proof that nonlocality of an arbitrary
shape eliminates collapse in all physical dimensions. The
only requirement is that the nonlocal response function
should have a positive definite Fourier spectrum, as do most
physically reasonable response functions.

We also demonstrated that multidimensional soliton solu-

FIG. 2. 2D variational results with Gaussian response and trial

function. Left: Soliton power ~solid! versus eigenvalue l for differ-

ent degrees of nonlocality, s50, 0.2, 0.4, and 0.6. Dashed lines

show the weakly nonlocal approximation. Right: Corresponding

Hamiltonian versus power diagrams.

FIG. 3. 3D variational results with Gaussian response and trial

function. Left: Soliton power ~solid! versus eigenvalue l for differ-

ent degrees of nonlocality, s50, 0.2, 0.4, and 0.6. Dashed lines

show the threshold power ~17!. Right: Corresponding Hamiltonian

versus power diagrams.

BANG, KROLIKOWSKI, WYLLER, AND RASMUSSEN PHYSICAL REVIEW E 66, 046619 ~2002!

046619-4



tions of the NLS equation may be stabilized by the nonlocal-
ity. This opens a new interesting discussion as to what is
actually observed in collapse experiments in nonlocal sys-
tems. It seems clear that it all comes down to oscillations
between opposite extreme states and how strong and rapid
they are. Such oscillations were recently found to occur in
BEC’s through numerical and variational studies @24#.
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