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Cellular materials with hollow lattice truss topologies exhibit higher compressive
strengths than equivalent structures with solid trusses owing to their greater resistance
to plastic buckling. Consequently, hollow trusses have attracted interest as the cores for
sandwich panels. Finite-element calculations are used to investigate the elastic–plastic
compressive collapse of a metallic sandwich core made from vertical or inclined circular
tubes, made from annealed AISI 304 stainless steel. First, the dependence of the axial
compressive collapse mode upon tube geometry is determined for vertical tubes with
built-in ends and is displayed in the form of a collapse mechanism map. Second, the
approach is extended to inclined circular hollow tubes arranged as a pyramidal lattice
core; the collapse modes are identified and the peak compressive strength is determined as
a function of geometry. For a given relative density of hollow pyramidal core, the inclined
tube geometry that maximizes peak strength is identified. The predicted collapse modes
and loads for the pyramidal core are in excellent agreement with measurements for the
limited set of experimentally investigated geometries.

Keywords: lattice materials; sandwich structures; finite-element analysis;

collapse mechanism maps

1. Introduction

Sandwich panels typically comprise two face sheets of high in-plane stiffness and
strength separated by a low-density core (Zenkert 1995). The primary function
of the core is to increase the structural bending stiffness by separation of the
face sheets, and to carry transverse shear and compressive loads. The pyramidal
lattice core is advantageous as it possesses a high shear strength at low relative
density r̄, as defined by the ratio of density of the cellular solid to that of the
solid material (Deshpande & Fleck 2001). In some applications, such as impact
or impulsive load mitigation, the sandwich is subjected to significant through-
thickness compressive loading (Fleck & Deshpande 2004) and the pyramidal
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2 S. M. Pingle et al.

core is compromised by plastic buckling. The recent tests by Queheillalt &
Wadley (submitted) reveal that a pyramidal core made from hollow struts has
a substantially higher compressive strength than a pyramidal core made from
solid struts. This motivates the present paper: the challenge is to determine the
collapse modes and associated compressive strengths for a pyramidal core made
from both hollow struts and solid struts. Additionally, the collapse response of a
sandwich core made from vertical hollow tubes is obtained, for comparison.
The practical interest in sandwich panels with lattice cores has been heightened

by recent innovations in manufacturing (Wadley 2006). Cellular materials achieve
a low relative density r̄ by gas-bubble generation, the incorporation of hollow
particles or the use of sacrificial space holders to produce foam or by the assembly
and the bonding of plates or trusses to create lattice materials.
Cellular materials find application as the cores of sandwich panels in part

because they are able to convert the kinetic energy of an impact event to
plastic deformation within the core. The most commonly used impact mitigation
materials are foams that are manufactured mostly from the melt by the expansion
of gas bubbles. The expansion process is thermodynamically driven by the
minimization of internal pressure and surface energy. Since the gas-generating
particles are randomly dispersed, this leads to stochastic topology foam with
a low nodal connectivity of three to four for adjoining cell edges. The small
nodal connectivity leads to a stiffness and strength of these three-dimensional
structures that is governed by the bending stiffness of the cell edges and foams
are consequently referred to as bending-dominated structures. The elastic modulus
and strength then scale as r̄

2 and r̄
3/2, respectively (Deshpande et al. 2001b).

In contrast, lattice materials are periodic, micro-architectured cellular solids in
which the individual elements can be oriented to deform by stretching rather
than by bending (figure 1). Consequently, both the stiffness and strength of
lattice materials scale linearly with their relative density and they compete
favourably with foams as the cores of sandwich panels (Ashby et al. 2000;
Deshpande et al. 2001b).
Lattice topologies can be classified as prismatic, honeycomb or truss based, as

summarized in figure 1. Triangular and diamond corrugations and the Navtruss
structures are examples of prismatic lattice materials. Honeycombs are closed cell
structures made of webs that are perpendicular to the faces. These webs can be
arranged to form triangular, square or hexagonal cells. Lattice truss structures
are assembled from inclined struts of arbitrary cross section (square, round, etc).
Examples include the tetrahedral, pyramidal and Kagome lattice truss topologies
in which either three, four or six trusses meet at a node. In addition to high
stiffness and strength, truss-based lattice structures are well suited to multi-
functional applications such as cross-flow heat exchange owing to their open
interior structure (Tian et al. 2006; Queheillalt et al. 2008). The superiority of the
thermo-structural characteristics of a periodic truss core is confirmed by Evans
et al. (1998, 2001), Deshpande et al. (2001a,b) and Wicks & Hutchinson (2001).
It is emphasized at this point that a degree of confusion has entered the

literature with regard to the use of the word ‘truss’. In the structural mechanics
literature, the term truss usually refers to a pin-jointed strut, whereas in the
materials literature it can also refer to a rigidly jointed member. In the present
study, we shall consider a lattice core that is rigidly welded to the face sheets so
that the ends of the struts are fully constrained against relative motion (rotation

Proc. R. Soc. A

 on October 27, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Collapse mechanism maps 3

(a) hexagonal (b) square (c) triangular

(d) triangular (e) diamond (f) navtruss

(g) tetrahedral (h) pyramidal (i) three-diamensional Kagomé

Figure 1. Examples of lattice materials. (a)–(c) are honeycombs, (d)–(f ) are prismatic and (g)–(i)
are truss based.

and displacement). We shall refer to such a core as a pyramidal truss, to follow
the materials convention, although it would be more precise to refer to the lattice
by the lengthier descriptor of ‘rigidly jointed framework’.
The dependence of compressive strength upon relative density for lattice

materials and foams is contrasted with that for fully dense engineering solids
in figure 2a. Lattice materials fill a large portion of material property space, but
there is scope for future improvements in topological design to generate materials
that lay in the region labelled ‘future materials’.
Figure 2a shows three lines emanating from the titanium ‘bubble’. These

correspond to the predicted strengths of a titanium diamond corrugation, a square
honeycomb and a pyramidal lattice with solid struts. As the relative density of
periodic cellular solids is reduced, in each case, the compressive strength becomes
dominated by web or truss buckling, and the strength drops steeply with any
further reduction in relative density. This transition in response from plastic
collapse to elastic buckling occurs at very low relative densities (below 1%) for the
truss-based lattice structures, and at a higher relative density on the order of 10
per cent for honeycombs. Additional stabilization against buckling is obtained by
increasing the second moment of area through use of hollow struts (Timoshenko &
Gere 1961) and this effect is addressed in the present paper. Recent experiments
have demonstrated that hollow truss cores with diamond and square orientations
made from stainless steels offer significant structural advantage over their solid
truss counterparts, see figure 2b and Queheillalt & Wadley (2005a,b, submitted).
In figure 2b, the measured peak strength spk has been normalized by the relative
density r̄ and yield strength sY = 180MPa of the stainless steel in order to
illustrate the structural efficiency of the hollow trusses. When buckling modes
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Figure 2. (a) The compressive strength of lattice materials shown on a plot of strength versus
density along with other engineering materials. (b) The normalized compressive peak strength of
304 stainless steel hollow pyramidal lattice structures compared with equivalent pyramidal cores
made from solid struts and metal foams. Adapted in modified form from Queheillalt & Wadley
(submitted).
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are suppressed, there is an opportunity to extend the ‘truss structures’ line on
figure 2a to lower densities (denoted by the dashed extension of the titanium
pyramidal lattice line). An increase in the strength of the material used to
make these optimized trusses then opens up an opportunity identified as ‘future
materials’ in figure 2a.
There are, however, manufacturing challenges associated with sandwich cores

made from hollow trusses (Kooistra & Wadley 2007):

— The limited bonded area between the core and face sheets may lead to
debonding;

— The conventional manufacturing method (of node row folding) used to
make lattice truss structures is difficult to implement for hollow trusses
(Queheillalt & Wadley 2005a,b).

Queheillalt & Wadley (submitted) have proposed a tube insertion method
for tackling both shortcomings. This method ensured efficient material usage
and a robust node design. Sandwich structures with hollow pyramidal core
(r̄ = 0.9–5.8%) made from annealed AISI type 304 stainless steel were fabricated
in this manner, and their through-thickness compressive and transverse shear
strengths were measured (Queheillalt & Wadley submitted). They found that the
compressive strength and energy absorption of these cores were 1.5–2 times that
of the equivalent solid truss, depending upon the stockiness and wall thickness of
the tubular core.
The compressive strength of the core depends upon the length l , outer diameter

d and wall thickness t of the tubes, as defined in figure 3a. The slenderness ratio
is given by l/d, and the normalized wall thickness is t/d. The collapse modes
observed by Queheillalt & Wadley (submitted) are shown in table 1, for two
selected values of l/d and t/d. The thick-walled, stocky struts underwent plastic
collapse without buckling, whereas the more slender, thinner walled struts buckled
plastically or elastically. We note in passing that the yield strain of the cell wall
material also plays a role: a material of high yield strain is more likely to buckle
elastically than plastically.

(a)Review of the axial compressive collapse of ductile circular tubes

A literature on the elasto-plastic axial collapse of circular tubes predates the
literature on lattice materials made from hollow struts. Since the collapse modes
are closely related, it is instructive to review existing knowledge on the axial
collapse of a circular tube. This has been studied from two perspectives:

— As a bifurcation problem to rigorously define the transition from elastic
to inelastic buckling and to investigate the significance of geometric
imperfections (e.g. Brush & Almroth 1975).

— As a large-strain elasto-plastic collapse problem focusing on energy
absorption during collapse (Johnson & Reid 1978; Abramowicz &
Jones 1997).

This second approach is motivated by the use of thin-walled tube sections
as primary impact energy-absorbing structural members in land, marine and
aerospace transportation systems because of their high structural efficiency
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Figure 3. (a) Unit cell of the hollow pyramidal core with the four struts touching at the top surface.
(b) Plan view of the four hollow struts on a plane corresponding to the lower surface of the top
face sheet. The separation between tubes equals 2k, and adjacent tubes touch when k = kmin.

and low manufacturing cost. Circular tubes subjected to axial compression are
effective for the plastic dissipation of impact energy over a long stroke distance
(Johnson & Reid 1978).
The performance of thin-walled tubes as energy absorbers is governed by their

collapse mode: the most desirable mode is by progressive axisymmetric folding.
In well-designed tubes that collapse in this manner, a large fraction of the tube
wall undergoes large plastic strain without significant fluctuations in axial load.
The shell nature of the tube ensures that the tube wall is loaded biaxially during
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Table 1. Comparison of the predicted and observed collapse modes of the hollow pyramidal lattice
core. The comparison is shown for an applied compressive strain 3n = 0.5. The observations are
taken from the experimental study of Queheillalt & Wadley (submitted).

geometry finite element prediction experiment

mode C

6.35
mm

exp. I

t

d
= 0.04,

l

d
= 4.88

mode E

exp. II

t

d
= 0.08,

l

d
= 4.88

collapse by a combination of stretching and bending. In contrast, a solid-walled
column of the same length and mass as that of the hollow tube (but of much
smaller diameter) absorbs less energy in axial collapse: a small number of plastic
hinges (typically 1 or 2) are triggered in the solid-walled column and these engage
only a small volume fraction of the material in plastic deformation.
The quasi-static, elasto-plastic axial collapse of a circular tube, of geometry

shown in figure 4a, is a classical problem in solid mechanics. However, most
previous studies have focused on a single collapse mechanism and a full
classification of the collapse mechanisms as a function of tube geometry has
not been addressed. Initial attempts to do so have been experimental in nature,
as follows. Andrews et al. (1983) investigated the collapse modes and energy
absorption properties of quasi-statically compressed aluminium alloy tubes. They
identified several modes of buckling and mapped the regimes of dominance on
a collapse mechanism map that is redrawn in figure 5a. The tubes were made
from annealed Ht-30 aluminium alloy (of composition Cu 0.1%, Mg 0.4–1.5%,
Si 0.6–1.3%, Fe 0.6%, Mn 0.4–1.0%, Zn 0.1%, Cr 0.5% and remainder Al);
this alloy exhibits appreciable strain hardening as shown in figure 4b. Likewise,
Guillow et al. (2001) have developed a collapse classification map (figure 5b)
for tubes made from 6060-T5 aluminium alloy. In this heat-treated state, the
6060 aluminium alloy has a much higher strength (and yield strain) but displays
negligible strain hardening (figure 4b). A comparison of the maps shown in
figure 5a,b indicates that the differences in yield strain and in strain-hardening
behaviours of the two alloys significantly affect the buckling modes and their
regimes of dominance. For example, the regime of multiple folds is located at
higher ratios of tube wall thickness to outer diameter (t/d) for the Ht-30 alloy
than for the 6060-T5 alloy.
Abramowicz & Jones (1997) have experimentally investigated the static axial

crushing of thin-walled mild steel tubes of square and circular cross sections. The
steel was in the cold-worked condition, with a yield strength of 250–450MPa
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Figure 4. (a) A vertical cylindrical tube of circular cross section undergoing axial compression;
(b) The true tensile stress versus logarithmic strain curves of the aluminium alloys used in
constructing the collapse mechanism charts in figure 5.

(depending upon the particular specimen) and strain hardening comparable
to that of the 6060-T6 aluminium alloy. Abramowicz & Jones identified the
boundary in geometry space between global plastic buckling and progressive
collapse by concertina-type modes. This boundary is included in figure 5b, and is
in good agreement with that observed by Guillow et al. (2001) for the 6060-T5
aluminium alloy. This is consistent with the observation that the mild steel and
6060-T5 aluminium alloy have similar yield strains and similar work-hardening
characteristics. Abramowicz & Jones (1997) also performed drop weight tests
with an impact velocity on the order of 10ms−1. They observed that the range
of geometries for which progressive folding occurs is greater for dynamic loading
than for quasi-static loading. They also noted that the amount of energy absorbed
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Figure 5. Collapse mechanism chart for circular vertical tubes made from (a) annealed aluminium
Ht-30 (Andrews et al. 1983) and (b) 6060-T5 aluminium alloy (Guillow et al. 2001).

is much greater for progressive collapse than for global plastic buckling: materials
and geometries which collapse by progressive folding are, therefore, preferred for
energy absorption applications. The search for cellular material topologies that
promote such responses is the motivation of this study.

(b) Scope of present study

Finite-element (FE) analysis is used to assess the compressive strength and
energy absorption of sandwich cores with inclined and vertical tubes made from
annealed AISI 304 stainless steel (a material with a low yield strain and high
strain-hardening rate). A wide range of buckling modes is predicted for both the
vertical and inclined tubes, and collapse mechanism maps are generated in order
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to scope out the compressive response as a function of geometry. The analysis
extends previous attempts to predict the mechanical properties of solid-section
lattice cores using FE analysis by Hyun et al. (2003) and Côté et al. (2006): these
previous studies were confined to a limited set of geometries and collapse modes
for solid struts.
The analysis begins by examining the compressive axial collapse of ductile

tubes of circular cross section (§2), in order to obtain the transverse compressive
response of a sandwich plate with a core made from vertical tubes. The
dependence of collapse mode upon tube geometry is investigated by FE analysis
and is presented as a collapse mechanism map.
The geometry of a sandwich panel with a hollow pyramidal truss core is

described in §3 along with the FE model used to analyse the collapse modes of the
core under compressive loading. Attention is restricted to the through-thickness
compression of a sandwich panel with rigid faces. Then, it suffices to consider
the collapse response of a single representative inclined tube. In §4, a collapse
mechanism map is constructed for the inclined tube; the map takes the core
geometry as axes and displays the regimes of collapse mode. The peak compressive
strength of the inclined tube is then used to determine the compressive strength
of a sandwich panel with hollow pyramidal core; the relative density r̄ of the
core is expressed in terms of tube geometry. A performance chart for the hollow
pyramidal core is thereby derived: it takes as axes the tube geometry, and displays
contours of peak compressive strength depends and r̄. The chart is used to obtain
the optimal tube geometries that maximize compressive strength for any given r̄.
The study concludes with a discussion of the energy absorption capacity of the
hollow pyramidal core, and with a comparison of the predicted collapse response
with the measurements of Queheillalt & Wadley (submitted).

2. Finite-element predictions of the axial collapse of end-clamped tubes

A series of FE predictions are reported for the axial compressive response of
circular cylindrical tubes of geometry defined in figure 4a. The wall material was
treated as an elastic, plastic solid, with constitutive law given by conventional
J2 flow theory. Isotropic hardening was assumed, and the uniaxial response was
that for annealed AISI 304 stainless steel, as measured by Queheillalt & Wadley
(submitted). The measured uniaxial tensile response of this steel is re-plotted in
figure 6 in terms of the nominal compressive stress and strain behaviour.
The axial compressive response of end-clamped circular tube was

modelled using the implicit version of the commercial FE software package,
ABAQUS/Standard. Write d as outer diameter of the tube, l as its length and t
as the wall thickness (figure 4a). The slenderness ratio l/d and thickness ratio t/d
were varied over a wide range and the total number of geometries considered was
on the order of 170. The tubes were modelled using continuum three-dimensional
elements (hexahedral elements employing linear shape functions and reduced
integration; C3D8R in ABAQUS notation). Typically, the three-dimensional
elements were cubes with four or more elements across the thickness of the
tube. The tubes were subjected to a progressively increasing axial displacement
U between the ends of the tube (figure 4a). The ‘self contact’ option was used
to prevent inter-penetration. A small initial imperfection was introduced into
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Figure 6. FE predictions of the compressive response of the six representative tube geometries. The
response is plotted in terms of the normalized wall stress s/sY versus the applied nominal strain 3.
The measured compressive nominal stress versus nominal strain response of annealed AISI 304
stainless steel is included; the yield strength is sY = 180MPa.

the FE model by superposition of the first four eigenmodes of elastic buckling.
The maximum amplitude of each of the modes was equal, and the imperfection
was introduced such that the maximum amplitude of the sum of the modes was
0.05t. The analysis was performed using the finite strain option in ABAQUS
(NLGEOM=YES in ABAQUS notation).

(a)Results

The predicted collapse modes in the post-buckled state were determined for
the 170 geometries considered, and these are marked as discrete data points on
a map of l/d versus t/d in the electronic supplementary material, figure A1
of appendix A. The collapse response was thereby catalogued into six distinct
modes A–F, and the boundaries identified from the data points are available
in the electronic supplementary material, figure A1; the data points have been
included in the figure in order to give the degree of resolution of the operative
modes. These modes are summarized in table 2, and the associated regimes of
dominance are repeated in figure 7. Selected geometries (a–f) that collapse in
each of the modes A–F, respectively, are marked on figure 7, and the collapse
response for each selected geometry is plotted in figure 6 in terms of nominal
average wall stress s versus nominal compressive strain 3. (The wall stress s

is defined as the applied force divided by the initial tube wall cross-sectional
area while the nominal axial strain 3 is defined in terms of the axial shortening
U and initial tube length l as 3 ≡U /l). In order to emphasize the degree of
strain hardening prior to plastic buckling, the wall stresses in figure 6 have been
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Table 2. Collapse modes of vertical tubes under compressive loading. Deformed geometries are
shown at peak load and beyond peak load, with the nominal strain value 3 reported. (Specimen
(b) deforms by plastic barrelling and hence does not display a peak load.)

geometry at peak load (exaggerated) beyond peak load
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(a)
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d
= 0.03,

l

d
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Figure 7. The predicted collapse mechanism map for vertical tubes. Note that the limiting geometry
t/d = 0.5 corresponds to a solid vertical strut. The six representative geometries (a–f) are marked
on the map.

normalized by the yield strength sY = 180MPa of the 304 stainless steel. Recall
that the uniaxial compressive response of the annealed AISI type 304 stainless
steel has been included in figure 6 as the reference case. The predictions shown
in figure 6 are for a particular level of initial imperfection in tube geometry,
as explained above. There is mild imperfection sensitivity and this is discussed
in the electronic supplementary material, appendix A. Note that modes A and
C–F display a peak, buckling load whereas mode B is plastic barrelling without
bifurcation. We shall adopt the following convention for defining a peak load Fpk.
For modes A and C–F, a peak load occurs at a nominal compressive strain of
below 0.5, and we write this peak load as Fpk. Otherwise (i.e. for mode B), we
write Fpk as the load at a nominal compressive strain of 0.5. The same convention
will be adopted below for the inclined hollow tube.
For completeness, the deformed tubes (a–f) at peak load and beyond peak load

are shown in table 2; the nominal axial strain of the deformed tubes, beyond peak
load, is included. For geometries (a), (b) and (d–f), the collapse mode at peak
load is the same as that deep in the post-buckled range. By contrast, geometry (c)
displays axisymmetric folding at peak load, but this mode later bifurcates into
a multi-lobe diamond mode (table 2). This switch in behaviour for geometries
of type (c) leads to a modification to the collapse mechanism map associated
with peak load: mode C is not present at peak load with mode A occupying that
region. To illustrate this, the boundary between modes A and C is marked by a
dashed line in figure 7. This transition in behaviour for tubes of geometry C was
noted previously by Tvergaard (1983).
The collapse map of figure 7 has not been extended into the regime of thin-

walled tubes (t/d < 0.01), as the buckling of thin tubes is highly imperfection
sensitive, see, for example, Gerard & Becker (1957), Brush & Almroth (1975)
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and Calladine (1995, 2001). In this regime, collapse is by plasticity-moderated
elastic buckling and it proved problematic to obtain accurate FE results. Such
thin-walled tubes are of limited practical interest for sandwich panel cores, and
are excluded from the present study.

(b)Discussion of the predicted collapse mechanisms

The collapse mechanism map for tubes deep in the post-buckled state is shown
in table 2 and in figure 7. It is more extensive than previous, experimentally
obtained collapse charts (figure 5) as the elastic Euler buckling regime for
slender tubes and the barrelling regimes for thick stubby tubes are included.
It is emphasized that the predicted (and observed) collapse mode is somewhat
sensitive to the initial imperfection for geometries that are near the boundaries
of neighbouring collapse modes. Each collapse mode, deep in the post-buckled
state, is now discussed in turn.

— Mode A: Axisymmetric. One or more axisymmetric bulges form along the
length of the tube, with no switch in mode beyond peak load. Analytical
models to give approximate expressions for this collapse mode have been
developed for an ideally plastic solid by Alexander (1960) and Wierzbiecki
et al. (1992).

— Mode B: Plastic barrelling. Stubby thick-walled tubes do not buckle but
rather deform in a barrelling mode. Barrelling is a consequence of the
end constraint against radial expansion of the tubes. The response is
continuously hardening with the applied loads higher than that required
for uniaxial compression.

— Mode C: Multi-lobe diamond. An initial axisymmetric bulge is formed
before peak load, but beyond peak load this mode bifurcates into a
diamond pattern. Previously, this collapse mode for thin tubes has been
observed experimentally by Horton et al. (1966) and theoretically by
Yoshimura (1955), Pugslay & Macaulay (1960) and Tvergaard (1983).

— Mode D: Two-lobe diamond. The tube collapses by diamonds with two
orthogonal lobes, as first observed by Andrews et al. (1983). This mode is
observed at intermediate t/d and l/d (figure 7). Plastic constraint effects
at the grips give rise to a response that is initially stiffer than the uniaxial
material response, as evident from figure 6.

— Mode E: Global plastic buckling. The tube ovalizes and a plastic hinge is
formed at mid-length. This results in significant softening in the structural
response post-peak load.

— Mode F: Euler buckling. Slender tubes exhibit Euler elastic buckling.
Beyond peak load, a plastic hinge developed at mid-span and the load
drops sharply.

(c)The dependence of peak force upon tube geometry

The dependence of peak load Fpk upon tube geometry is summarized in

figure 8 in which contours of normalized wall stress F̄ =Fpk/(sYA0) are plotted
in geometry space (l/d versus t/d), where A0 = p/4[d2 − (d − 2t)2] is the cross-
sectional wall area of the tube (on a plane with unit normal along the tube axis).
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Figure 8. The normalized collapse strength F̄ and normalized mass m̄ of vertical tubes, plotted as
a function of geometry (l/d and t/d). The trajectory of optimal geometries that maximize F̄ for
any given m̄ is included.

For all geometries excluding the Euler buckling regime, peak load is attained
beyond net section yield and the peak strength is enhanced by strain hardening.
Additional plastic constraint occurs at the grips for thick-walled, stubby tubes.
The results plotted in figure 8 allow for a simple optimization to be performed

on the choice of geometry of hollow tube that maximizes compressive strength.
Suppose the task is to select the wall thickness t and outer diameter d of tube
that maximize the peak compressive load Fpk, for a tube of given mass and given
length. The mass of the tube is given by

m =
p

4
rl[d2 − (d − 2t)2], (2.1)

in terms of the density r of wall material. Now introduce a reference mass mr by
considering a solid circular bar of length l and diameter d = l , such that

mr =
p

4
rl3, (2.2)

and note that for a sandwich core of fixed height l , the reference mass mr is
constant. The mass of the tube can now be written in a dimensionless form as

m̄ =
m

mr
=

(

d

l

)2
[

1−
(

1− 2
t

d

)2
]

. (2.3)

Note that m̄ equals unity for a tube of vanishing inner diameter (2t = d) and of
diameter d = l . For any fixed value of m̄, a family of tube geometries (t/d, l/d)
exists with equal mass and equal length l . Such contours of fixed normalized
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Figure 9. (a) The maximum normalized force F̄max of the optimal vertical tubes as a function of
normalized mass m̄. The normalized collapse force for a solid column is included. The operative
collapse modes range from E to B with increasing m̄. (b) The optimal vertical tube geometry as a
function of m̄. Dashed lines, optimum tube; solid lines, solid column.

mass m̄ have been added to figure 8. Consider a trajectory of fixed m̄ and note
that the collapse strength F̄ rises to a maximum (optimal value) and then drops
again. Thus, an optimal geometry (t/d, l/d) exists for any given value of m̄ with
a collapse load F̄max. Upon performing this optimization procedure, a plot of
optimal strength F̄max and optimal geometry (t/d, l/d) can be generated as a
function of m̄ (figure 9a,b). The optimal path is included in figure 8 and lies
mainly in the collapse domain of global plastic buckling, mode E. The above
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optimization procedure allows one to select the geometry (t, d) of vertical tubes
for a sandwich core, when the height l of the core and the mass of each tube are
prescribed.
The collapse strength of a solid circular bar (2t = d) is included in figure 9

for reference purposes; for the solid bar, the non-dimensional mass m̄ = (d/l)2.
We note that the collapse strength of the optimal tube is 1.5–2 times that of
the bar of equal solid cross section, implying that there is significant structural
advantage in the use of hollow tubes for a sandwich core. This is particularly
true for m̄ < 0.02 with the advantage lost at higher values of m̄ > 0.1: at high m̄,
the deformation mode is plastic barrelling for both the tube and the solid strut.
The operative collapse mode changes along the optimal path, with the regime of
dominance from one mode to the next marked as data points on each optimal
trajectory in figure 9a.

3. The pyramidal tube lattice

(a)Geometry

A unit cell of the hollow pyramidal lattice material, consisting of four inclined
circular tubes, is shown in figure 3a. The geometry is defined in terms of the wall
thickness t, outer tube diameter d, tube length l and inclination u of each strut.
The height of the core is l sinu. In general, the tube centres can be offset by a
distance of 2k as shown in figure 3b, with k constrained such that

k ≥ kmin = d

√

1+ sin2 u

2 sinu
. (3.1)

The tubes touch each at the face sheets when k = kmin. Unless otherwise specified,
all results for the pyramidal core discussed subsequently assume that the tubes
touch, k = kmin. For arbitrary k, the relative density of the lattice is

r̄ =
2p[d2 − (d − 2t)2]
(4k + 2l cosu)2 sinu

. (3.2)

(b)Finite-element modelling of hollow tube pyramidal core

The FE method was again used to determine the compressive collapse response
of a sandwich core comprising inclined tubes of circular cross section. The wall
material was treated as an elastic, plastic solid, with constitutive law given by
conventional J2 flow theory. Isotropic hardening was assumed, and the uniaxial
response was again that for annealed AISI 304 stainless steel as described in §2.
It suffices to consider only a single tube of the pyramidal unit cell. The

two face sheets of the sandwich panel were treated as rigid surfaces. It is
assumed that the pyramidal core is perfectly bonded to the rigid faces and
the end faces of each inclined tube approach each other by the compressive
displacement U in the 3 direction of figure 3a. Note that there is no lateral motion
in the 1 and 2 direction (figure 3a) and no end rotation. The representative
tube is inclined at u = 55◦, as employed in the related experimental study by
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Queheillalt & Wadley (submitted). Simulations1 on thin-walled tubes with t/d ≤
0.03 were carried out using four-noded shell elements with reduced integration and
based upon thick shell theory (S4R in the ABAQUS notation). Typically, there
were 600 elements around the circumference. For thick-walled tubes (t/d > 0.03),
the FE analysis was performed in a manner similar to that for the vertical tubes,
recall §2a. Unlike the vertical tubes, no geometric imperfections were required for
the inclined tube in order to induce buckling.
The vertical force P on each strut is along the 3 direction in figure 3 and is

work conjugate to the applied vertical displacement U . The compressive nominal
stress sn on the face sheets with a pyramidal core is given by

sn ≡
8P

(4k + 2l cosu)2
, (3.3)

while the corresponding nominal strain of the core of the sandwich plate is 3n ≡
U /(l sinu).

4. Collapse modes and performance charts for the pyramidal core

A collapse mechanism map has been constructed from the FE simulations, in
similar fashion to that described above for the vertical tube. The inclined tube
geometries considered are marked as discrete data points on a collapse mechanism
map, shown in the electronic supplementary material, figure A3. The boundaries,
without data points, are repeated in figure 10. Six distinct modes are identified.
The geometries of inclined tubes representing these collapse modes (a–f) are
displayed in table 3. The compressive responses are given in figure 11 in terms of
the sandwich-core nominal stress sn/(r̄sY) versus nominal strain 3n. A variety of
responses are observed ranging from rapid softening in mode F to a rapid strain-
hardening response in mode B. Of the high aspect ratio truss responses, mode D
exhibits the best energy-absorbing characteristics.

(a)Buckled states

Table 3 contains images of the deformed state of the six representative inclined
tubes beyond peak load. These modes resemble those observed under axial
compression (table 2) and so the same classification system is used as given in
figure 7 and in table 2. The regimes of dominance for each of the six modes for the
vertical tubes are included in figure 10 as dashed lines. Figure 10 clearly shows
that the regimes of dominance of the various collapse modes are very similar
for both the vertical and inclined tubes. The slight differences arise from the
induced bending moment and reduced symmetry for the inclined tube. These
considerations suggest that the collapse mechanism map of figure 10 is applicable
to a wider range of strut inclinations than the assumed value of u = 55◦.

1The FE simulations with three-dimensional elements took up to 30 h, those with shell elements
took up to 20 h, running on an IBM x3550 with 2x Intel (R) Xeon (R) CPU E5345, single 2.33GHz
processor, 16GB memory.
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Table 3. Collapse modes of inclined tubes (u = 55◦) under compressive loading. Deformed
geometries are shown beyond peak load, with the nominal strain value 3n reported. (Specimen
(b) deforms by plastic barrelling and hence does not display a peak load.)

mode name post-peak load

(a)

t

d
= 0.03,

l

d
= 0.5

r̄ = 0.0644 en = 0.15

en = 0.20

(b)

t

d
= 0.4,

l

d
= 1

r̄ = 0.4038

en = 0.08

(c)

t

d
= 0.02,

l

d
= 3

r̄ = 0.01384

en = 0.35

(d)

t

d
= 0.1,

l

d
= 3

r̄ = 0.06356

en = 0.10

(e)

t

d
= 0.06,

l

d
= 14.5

r̄ = 0.00442

en = 0.00080

(f)

t

d
= 0.068,

l

d
= 94

r̄ = 0.000541
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core, plotted as a function of tube geometry (l/d and t/d). The trajectory of optimal geometries
that maximize spk/sY at any r̄ is included.

(b)Optimization of the pyramidal core

Figure 12 shows the performance chart for the hollow pyramidal lattice
material under compressive loading: contours of normalized strength spk/sY are
plotted on a chart with axes of l/d and t/d. Here, spk is the peak value of sn.
Contours of relative density of the pyramidal core (equation 5) are included in
figure 12. Consider a trajectory of fixed r̄ and note that spk rises to a maximum
value (which is the optimal value and denoted by smax) and then drops again.
Thus, an optimal geometry exists for any given value of r̄ that maximizes the
peak strength. Similar to the vertical tubes, an optimization can be performed
giving an optimal path in figure 12.
The results of the above optimization procedure are replotted in figure 13: the

dependence of smax upon r̄ is displayed in figure 13a, along with the associated
optimal geometry t/d and d/l as a function of r̄ in figure 13b. The peak strength
of solid circular bars (t/d = 0.5) is also cross-plotted from figure 12 and is included
in figure 13a. Over the range 10−3 ≤ r̄ ≤ 0.1, the optimum core made from tubes
has a higher strength than the solid strut core by a factor of about two. The
advantage of tubes is the greatest for r̄ ≤ 0.002 when the solid struts collapse by
elastic Euler buckling. In contrast, at high values of r̄, plastic barrelling (mode B)
occurs for both the solid struts and tubes and hence any advantage of using
tubes is lost. In order to assess the degree to which the strength of the inclined
tube and solid strut compares with that of an ideal sandwich core made from
a rigid, ideally plastic porous solid of relative density r̄ and of parent material
yield strength sY , the peak strength smax in figure 13a has been normalized by

Proc. R. Soc. A

 on October 27, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


22 S. M. Pingle et al.

10–3
10–2

10–1

100

10–1

F

E

E

A

B

B

100

101(a)

(b)

10–2 10–1 0.3

t/d

d/l

s
m

ax
 / 

r
 s

Y

r

Figure 13. (a) The maximum collapse strength smax of the optimal hollow pyramidal core as a
function of r̄. The normalized collapse strength for solid struts is included. The operative collapse
modes range from E to B with increasing r̄. (b) The optimum inclined tube geometry as a function
of r̄. Dashed lines, optimum tube; solid lines, solid inclined strut.

the factor r̄sY. It is evident from figure 13a that both the inclined tubes and
solid struts are highly efficient structures, with compressive strengths exceeding
the value of r̄sY provided the relative density of the core is sufficiently high:
to be precise, (smax/sYr̄)> 1 when r̄ > 0.005 for the inclined hollow tube, and
(smax/sYr̄)> 1 when r̄ > 0.035 for the inclined solid strut. We emphasize that
a value of (smax/sYr̄) exceeding unity implies that buckling occurs deep in the
plastic range after significant strain hardening has occurred.
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(c)Energy absorption

A successful core of sandwich panel will be able to absorb a significant amount
of energy in addition to having a high strength while also maintaining a large
face sheet separation. Some collapse modes, such as elastic Euler buckling, are
catastrophic in nature and absorb little energy. Thus, energy absorption is an
important design metric in addition to compressive strength. We proceed to
evaluate the energy absorption of the hollow pyramidal core as a function of
geometry.
The compressive energy absorption capacity up to a practical nominal

compressive strain of 0.5 is

Wc =
∫ 0.5
0

sn d3n. (4.1)

We proceed to present predictions forWc normalized by the factor 0.5r̄sY, which
is the energy absorbed by an ideally plastic cellular solid of relative density r̄ up
to nominal strain of 0.5. Figure 14 shows the dependence of normalized energy
absorption capacities upon lattice relative density r̄. The pyramidal core made
from solid inclined struts (t/d = 0.5) underperforms when compared with hollow
pyramidal cores at low relative densities. By contrast, at high relative density, the
tubes and solid struts undergo plastic barrelling and are comparable in energy
absorption.
It is instructive to add to figure 14, the locus of absorbed energy for the

optimal hollow trusses of geometry given in figure 13b. Although this lattice core
is optimized from the perspective of peak strength it is not optimal in terms of
absorbed energy especially at low values of r̄.
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Figure 15. The measured and predicted compressive response of two hollow pyramidal cores,
with tube geometries defined in figure 10. The experimental measurements have been taken from
Queheillalt & Wadley (submitted). Solid lines, FE analysis; dashed lines, experiment.

The energy absorption capacity of metal foams up to a compressive strain of
0.5 is given as (Ashby et al. 2000)

Wc = 0.15r̄3/2sY. (4.2)

This prediction for the energy absorption of metal foams is included in figure 14.
The metal foams absorb energy by collapsing at almost a constant stress value
before densification. At high values of r̄, the struts of the pyramidal core deform
by plastic barrelling, and hence have a continuously hardening response with
consequently highWc. By contrast, at low values of r̄, the struts of the pyramidal
core collapse either by elastic or plastic buckling and the core has a strongly
softening response. As a consequence, the gap between energy absorption capacity
of the metal foams and that of the hollow pyramidal cores, is narrow at low r̄.

(d)Comparison of predicted and measured collapse responses of pyramidal core

Queheillalt & Wadley (submitted) have performed a limited set of experiments
on a hollow pyramidal core in order to measure the collapse response as a function
of geometry. We now gauge the fidelity of the FE simulations by comparing
our predictions with the observed response of two geometries as investigated by
Queheillalt & Wadley (submitted). These geometries have the same value of l/d
but different values of t/d, and are marked on the collapse mechanism map in
figure 10: the geometry labelled exp. I lies at the boundary between modes C and
E while the geometry labelled exp. II lies at the boundary between modes D and
E. In the experiments, the pyramidal cores were constructed such that the tube
centres were offset at the face sheets: the tubes do not touch their neighbours.
The adopted spacing k, as defined in figure 3b, was k =

√
2d and exceeds kmin.
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A comparison between the measured nominal compressive stress versus strain
responses and the corresponding FE predictions is given in figure 15. Also,
the observed and predicted deformation modes at an applied compressive
strain of 3n = 0.5 are included in table 1. Excellent agreement is noted between
observations and predictions both for the collapse response and for the
observed collapse mode, confirming the fidelity of the FE model for the hollow
pyramidal core.

5. Concluding remarks

Numerical simulations have been performed to predict the compressive response
of vertical and inclined tubes made from annealed stainless steel 304. First, a
collapse mechanism classification map, with axes l/d and t/d, is presented for
vertical tubes. Six distinct collapse modes are identified ranging from elastic Euler
buckling of slender tubes to plastic barrelling of stubby thick-walled tubes.
Next, a pyramidal lattice core whose unit cell comprises four inclined tubes

is analysed. The predicted collapse modes for the inclined tubes are similar to
the vertical tubes with some minor differences owing to the induced bending
moment in the inclined tubes. In similar manner to that achieved for the
vertical tubes, performance charts are constructed to quantify sandwich-core
strength as a function of its relative density. Also, the ideal tube geometry
(t/d, l/d) that maximizes the compressive strength is identified as a function
of relative density. For both the vertical and inclined tubes, we find that the
optimized tubes outperform their solid equivalents at low densities; however, this
advantage is lost at higher densities when plastic barrelling becomes the dominant
deformation mode.
The FE predictions are in excellent agreement with a limited set of

measurements on the compression of a pyramidal core made from hollow struts,
as reported by Queheillalt & Wadley (submitted). Our study focused on a
stainless steel of high strain-hardening capacity, and upon a pyramidal core of
strut inclination u = 55◦ in order to make contact with the experimental study
of Queheillalt & Wadley (submitted). The material strain hardening and strut
inclination are design variables and their significance should be addressed in
future studies.
The above analysis of the inclined tube applies to the collapse of a wide range

of sandwich panel cores, and is not limited to the pyramidal core. For example,
the response can be deduced for a hollow tetragonal core and for a pentagonal
arrangement of core struts. Indeed, the analysis can be extended to randomly
arranged inclined tubes as a sandwich core, provided the face sheets are rigid and
are constrained to approach each other with zero relative sliding.
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