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Collapse of a cylinder of Bingham fluid
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Abstract

The “Slump Test” is a simple method of measuring the yield stress
of certain materials such as concrete and concentrated suspensions. In
this procedure a cylindrical test sample is allowed to deform under its
own weight, and the yield stress is obtained from the change in height
(slump height) of the sample using an empirical calibration curve. In
this paper the slump height/yield stress relationship of the material,
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considered as a Bingham fluid, is investigated numerically using a fi-
nite volume procedure applied to a homogeneous two-fluid (liquid-air)
model representing flow of an equivalent single phase with variable
properties. Advection is approximated using a van Leer flux limiter
to reduce interface smearing without the occurrence of spurious os-
cillations. Predictions are in reasonable agreement with published
experimental data for high yield stress materials, but are less satisfac-
tory when the yield stress is low.
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1 Introduction

Rheologically complex materials such as concentrated mineral suspensions,
mud slurries and concrete mixtures exhibit yield stress. The flow behaviour
of such materials is dominated by the magnitude of this stress. Mineral
suspensions, for example, will not flow in a pipeline if the applied shear stress
is everywhere below the yield stress. Conversely, after a heavy downpour,
high moisture may cause the yield stress of the topsoil on a mountainside
to fall below the shear stress generated by gravitational body force; the soil
will then slide down the mountainside as a slurry initiating a mud avalanche.
It is therefore important to be able to measure, in situ if possible, the yield
stress of these materials.

In research laboratories specialised instruments such as the vane instru-
ment and various modified Couette and capillary viscometers [5] are used
to measure yield stress on carefully prepared samples. These instruments
are either too costly or are not robust enough for general use in the field.
Engineers have developed the slump test as a quick and ready means of de-
termining yield stress. In the simplest form of the slump test, a sample of
the yield stress material is allowed to deform under its own weight until the
final equilibrium shape is reached. The equilibrium shape clearly depends,
among other factors, on the yield stress. The objective of the slump test is to
extract the yield stress of the material by measuring the difference between
the initial and final heights of the sample.
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The slump test has the obvious advantage of simplicity; its main drawback
is the need of an empirical or semi-empirical calibration curve to convert the
observed height change in the sample to a yield stress. From published
experimental details on the slump test [6, 8] it is not clear that there is a
single well defined calibration curve that is valid for a wide range of yield
stresses. Pashias et al [6] obtained an algebraic expression for the calibration
curve based on an ad hoc model of the slump test which they concluded
was adequate for the range of materials investigated. However, more recent
results [2] seem to indicate that the applicability of this expression is more
restricted than originally thought. Schowalter and Christensen [8] analysed
the slump test for samples in the shape of truncated cones. As with Pashias
et al [6], their results also indicate that it is necessary to adopt a more
systematic approach to the modelling of the slump test.

The aim of this paper is to predict the slump height/yield stress relation-
ship of a material, considered as a Bingham fluid, by simulating the slump
test numerically using a finite volume procedure which treats the slumping
fluid and surrounding air as a single fluid with varying properties. The pre-
dicted curve is compared with values measured by Pashias et al [6] for a
variety of materials.
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2 Formulation

The transient deformation of the fluid sample is calculated by solving on a
fixed grid for the flow of both the liquid and the surrounding air considered
together as a homogeneous two-phase mixture (Figure 1). The interface posi-
tion is determined implicitly at any time by consideration of the volume frac-
tion distribution. This procedure (essentially a Volume-of-Fluid method [3])
is equivalent to solving for the flow of a single phase with variable proper-
ties, combined with advection of the volume fraction. The mixture takes the
properties of the sample in the liquid phase and those of air in the gas phase,
with a volume fraction weighted average in computational cells containing
the interface. The precise values of density and viscosity chosen for the gas
phase are unimportant.

The governing flow equations for the mixture in this formulation are:

∂ρu

∂t
+ ∇ · (ρuu) + ∇p + ρgẑ = ∇ · µ(∇u + (∇u)T ) (1)

∇ · u = 0 (2)

∂θ

∂t
+ ∇ · (θu) = 0 (3)

where u, p, g, µ, θ denote velocity, pressure, gravitational acceleration, mix-
ture viscosity, and sample volume fraction, respectively. The unit vector ẑ
is directed upwards. Equation (3) represents continuity of the liquid phase.
Combining this with the corresponding continuity equation for the gas phase
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Figure 1: Schematic of the flow geometry showing (i) the initial cylindrical
sample and (ii) the sample shape at a later time. The computational domain
in the (r, z) plane is given by the rectangle OABC
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yields Equation (2). Equations (1–3) are typical of those in Volume-of-Fluid
formulations (e.g. [7]).

The mixture density ρ is given in terms of the densities of the sample (ρl)
and the surrounding air (ρg) as

ρ = θρl + (1 − θ)ρg (4)

The viscosity of the sample is given by

µl =
τY

γ
+ µo (5)

where γ, τY and µo denote the rate of strain, yield stress and plastic viscosity
of the Bingham fluid sample, respectively. When γ = 0, the fluid stress is
below the yield stress and the viscosity effectively becomes infinite. Here the
dimensionless rate of strain is limited to a minimum value of 10−10. The
mixture viscosity in Equation (1) is given in terms of the sample viscosity
(µl) and the viscosity of the surrounding air (µg) as

µ = θµl + (1 − θ)µg (6)

The governing equations are solved in dimensionless form scaled according

to length h (initial sample height), time
√

h/g, density ρl, and stress ρlgh.

With reference to Figure 1, OC is the axis of symmetry and OA is taken
to be a no-slip boundary. Since the sample typically consists of slurry of fine
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particulates, partial slip on OA may be more appropriate in practice; consid-
eration of this possibility will be made in future work. Zero normal gradient
conditions are applied at AB and BC which are chosen to be sufficiently far
from the sample so as not to influence the calculation of slumping. For an
initial sample aspect ratio 2a/h = 1, OA and OC are chosen to have lengths
of 3 and 1.5 dimensionless units, respectively.

Predictions are made for dimensionless yield stress values (τ ∗
Y = τY /ρlgh)

in the range (0.05, 0.4) and for a sample aspect ratio of unity, consistent with
the data of Pashias et al [6].

3 Numerical Considerations

The numerical solution was performed using the commercial fluid flow solver
CFX-4.2 [1]. The simplec algorithm [9] is used to solve for the pressure
correction in the mixture flow equations. Advection of the velocity field was
performed using the hybrid differencing scheme, which in this problem be-
comes (second order) central differencing throughout because the Reynolds
number of the flow is very small (less than 0.01 based on properties of the
sample). A second order upwind advection scheme with a van Leer flux lim-
iter [4] was used for the volume fraction (Equation (3)) to help maintain the
steep gradients of θ in the interface cells without the appearance of spurious
oscillations.
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Test calculations were performed for two uniform, rectangular computa-
tional grids: a coarse grid with 30 and 15 cells in the horizontal and vertical
directions, and a finer 60 × 30 grid. The coarse grid gives a bare minimum
of 10 cells over the initial height of the sample. For the coarse grid, we chose
the dimensionless time step ∆t = 0.001 for t < 0.1 and ∆t = 0.01 thereafter.
The ∆t values used for fine grid calculations were a factor of 4–10 times
smaller. Convergence at each time step was assumed when the normalised
sum of the mass residuals was less than 10−4. An under-relaxation factor of
0.1 was applied to iterations of the velocity and volume fraction.

On the coarse grid, reducing the time step by a factor of 2 throughout pro-
duced a negligible change in predicted centreline height during the approach
of low yield stress materials to the final sample configuration. However, some
differences were found in the transient, but not in the final height, when τ ∗

Y

was increased to 0.3. Differences (2–6%) were found in the final calculated
height at still higher yield stresses. Reducing the convergence criterion from
10−4 to 10−5 produced a negligible effect in all cases.

For a fine grid, predictions of centreline height with time were almost
identical to the most accurate coarse-grid predictions at the lowest yield
stress τ ∗

Y = 0.05. However, some differences were found in the transient, but
not in the final height, when τ ∗

Y was increased to 0.2. Differences (5–12%)
between the final slump height predicted on a coarse and a fine grid were
also found for τ ∗

Y ≥ 0.35. Final results for slump height are based on fine
grid calculations for τ ∗

Y ≥ 0.2.
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4 Results and Discussion

Figure 2 shows the predicted variation of centreline height with time. As is
expected, the height falls more rapidly and achieves a lower final value as the
yield stress of the sample is reduced. In the limit of zero yield stress, the flow
is Newtonian and the final height must be near zero as the fluid spreads out
over the surface in a thin film. In practice, the calculation of flow with very
small yield stress would require a very fine grid to resolve the thin spreading
layer on the solid surface.

The predicted height variation with time is insensitive to the choice of
plastic viscosity of the Bingham fluid. This occurs because the flow is com-
pletely dominated by the yield stress, a circumstance more clearly understood
by considering the dimensionless stress-strain (τ ∗

l −G) relation for the sample:

τ ∗
l = τ ∗

Y + µ∗
oG (7)

where µ∗
o = µo/(ρg1/2h3/2). In the present calculations τ ∗

Y , µ∗
o and G are of

order 10−1–1, 10−4 and 10−2, respectively, illustrating the dominant role of
the yield stress relative to viscosity of the sample.

Figures 3 and 4 show the predicted change in the sample shape as it
slumps under its own weight for two different yield stresses. The profiles are
derived from the volume fraction distribution at each time. The diffuse band
outlining the sample is the region in which the volume fraction is intermediate
between one (Bingham fluid) and zero (surrounding air). Obviously the width
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Figure 2: Centreline height of the sample vs time for different values of
dimensionless yield stress. Height has been scaled by the initial sample height

h, and time by
√

h/g.
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t  = 0.1 t = 1.0 t = 2.0 t = 3.0

Figure 3: Sequence derived from the volume fraction distribution in a fine
grid calculation showing the shape change of the sample with dimensionless
time when τ ∗

Y = 0.05
.
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t  = 0.1 t = 1.0 t = 1.5 t = 2.5 t = 3.5

Figure 4: Shape change of the sample (derived from the volume fraction dis-
tribution in a fine grid calculation) and the velocity vectors with the sample
at different dimensionless times when τ ∗

Y = 0.2
.
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of this band, and hence the definition of the actual interface, depends on the
mesh cell size and on the degree of numerical smearing of the interface. The
resolution of the profile in Figure 3 where the film is thinnest will be poor as
the film thickness approaches that of the mesh cells; however, our numerical
tests show that the centreline height (where the film remains thickest) is
numerically accurate, at least for τ ∗

Y = 0.05. Accurate predictions for lower
τ ∗
Y values would require a finer computational mesh.

Both Figures 3 and 4 show that the sample begins to collapse almost
uniformly across its width. That is, the cylinder collapses as a plug, pre-
serving its topmost shape, with shearing occurring only near the base which
grows radially outwards. The predicted shapes are typical of those observed
experimentally, including the slight dip which develops in the centre of the
top surface for τ ∗

Y = 0.2 (Figure 4). The plug-like collapse of the central and
top portion occurs because the yield stress is exceeded only near the base
and lower side boundary of the cylinder. The effect is more pronounced in
Figure 4 because the yield stress is higher than in Figure 3.

The velocity vectors (calculated as θu) superimposed on Figure 4 for
τ∗
Y = 0.2 show an acceleration of the flow up to t = 1.5 followed by a

deceleration to zero velocity as shown for t = 3.5. The flow patterns show
the region of downwards plug flow, which partially diminishes with time,
from the bottom and side of the sample as it deforms. Velocity vectors are
not shown in Figure 3 but the patterns at t = 0.1 and 1.0 are similar to those
in Figure 4, only the velocities are larger.
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Figure 5: Slump height, defined as the difference between the initial sample
height h and the maximum final sample height Hmax vs yield stress. All
quantities are dimensionless. The experimental data are those in [6].
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Figure 5 shows the predicted slump height variation with yield stress
compared with experimental values measured for different materials [6]. The
slump height is defined as the difference between the initial sample height
and the maximum final sample height. Note that the maximum height is not
necessarily equal to the height of the sample at the centreline (see Figure 4).
In view of the variability in the data evident in the figure, the agreement be-
tween the predicted and experimental values is acceptable for dimensionless
yield stress τ ∗

Y ≥ 0.2, but is less satisfactory for lower values of yield stress.
At very low yield stress (Newtonian fluid) the predicted slump height should
approach 1. However, the current mesh cannot resolve the thin film which
spreads out on the surface when the fluid is almost Newtonian.

Notwithstanding the above discussion, the inability to predict the slump
height at very small yield stress is of little practical consequence since the
slump test is not used in such cases. Of greater importance is the over-
prediction of the slump height for τ ∗

Y < 0.2 shown explicitly in Figure 5.
This overprediction could be a consequence of ignoring surface tension which
can play an increasingly significant role in the deformation of the sample as
the yield stress is reduced. Surface tension will tend to retard the rate of
spreading of the sample. Whether it will also reduce the slump height is
not clear. Another factor which will tend to reduce the slump height of the
sample, and which is not included in the model, is the effect of removing the
sleeve which initially contains the sample. The shear stress imparted by the
upwards motion of the sleeve upon removal may be important as the yield
stress is reduced. These matters will be investigated in future work.
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5 Conclusion

Transient numerical calculations of the the flow of a Bingham fluid deforming
under its own weight from an initial cylindrical shape on a horizontal surface
have been performed. The calculations are made on a fixed grid for the
flow of both the liquid and the surrounding air considered together as a
homogeneous two-phase mixture in a procedure similar to Volume-of-Fluid
methods. The interface position at any time is determined implicitly from
the volume fraction distribution.

The experimentally observed plug-like collapse of the central and top por-
tions of the cylinder is predicted. The final predicted shapes when slumping
ceases are also representative of those observed. As is expected, the pre-
dicted centreline height falls further and more rapidly with time as the yield
stress of the fluid is reduced. The final predicted slump height is acceptable
compared with values measured for a variety of yield stress materials when
the dimensionless yield stress (scaled by the “hydrostatic” pressure variation
over the height of the initial sample) is 0.2 or larger (up to 0.4, the upper
range of the experiments). When the yield stress is smaller, the predictions
are less satisfactory.
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